1887 lines
68 KiB
C
1887 lines
68 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2007 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
#include "alMain.h"
|
|
#include "alSource.h"
|
|
#include "alBuffer.h"
|
|
#include "alListener.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alu.h"
|
|
#include "bs2b.h"
|
|
#include "hrtf.h"
|
|
#include "uhjfilter.h"
|
|
#include "bformatdec.h"
|
|
#include "static_assert.h"
|
|
|
|
#include "mixer_defs.h"
|
|
#include "bsinc_inc.h"
|
|
|
|
#include "backends/base.h"
|
|
|
|
|
|
extern inline ALfloat minf(ALfloat a, ALfloat b);
|
|
extern inline ALfloat maxf(ALfloat a, ALfloat b);
|
|
extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
|
|
|
|
extern inline ALdouble mind(ALdouble a, ALdouble b);
|
|
extern inline ALdouble maxd(ALdouble a, ALdouble b);
|
|
extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
|
|
|
|
extern inline ALuint minu(ALuint a, ALuint b);
|
|
extern inline ALuint maxu(ALuint a, ALuint b);
|
|
extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
|
|
|
|
extern inline ALint mini(ALint a, ALint b);
|
|
extern inline ALint maxi(ALint a, ALint b);
|
|
extern inline ALint clampi(ALint val, ALint min, ALint max);
|
|
|
|
extern inline ALint64 mini64(ALint64 a, ALint64 b);
|
|
extern inline ALint64 maxi64(ALint64 a, ALint64 b);
|
|
extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
|
|
|
|
extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
|
|
extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
|
|
extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
|
|
|
|
extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
|
|
extern inline ALfloat resample_fir4(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3,
|
|
const ALfloat *restrict filter);
|
|
|
|
extern inline void aluVectorSet(aluVector *restrict vector, ALfloat x, ALfloat y, ALfloat z, ALfloat w);
|
|
|
|
extern inline void aluMatrixfSetRow(aluMatrixf *matrix, ALuint row,
|
|
ALfloat m0, ALfloat m1, ALfloat m2, ALfloat m3);
|
|
extern inline void aluMatrixfSet(aluMatrixf *matrix,
|
|
ALfloat m00, ALfloat m01, ALfloat m02, ALfloat m03,
|
|
ALfloat m10, ALfloat m11, ALfloat m12, ALfloat m13,
|
|
ALfloat m20, ALfloat m21, ALfloat m22, ALfloat m23,
|
|
ALfloat m30, ALfloat m31, ALfloat m32, ALfloat m33);
|
|
|
|
|
|
/* Cone scalar */
|
|
ALfloat ConeScale = 1.0f;
|
|
|
|
/* Localized Z scalar for mono sources */
|
|
ALfloat ZScale = 1.0f;
|
|
|
|
const aluMatrixf IdentityMatrixf = {{
|
|
{ 1.0f, 0.0f, 0.0f, 0.0f },
|
|
{ 0.0f, 1.0f, 0.0f, 0.0f },
|
|
{ 0.0f, 0.0f, 1.0f, 0.0f },
|
|
{ 0.0f, 0.0f, 0.0f, 1.0f },
|
|
}};
|
|
|
|
|
|
struct ChanMap {
|
|
enum Channel channel;
|
|
ALfloat angle;
|
|
ALfloat elevation;
|
|
};
|
|
|
|
static HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_C;
|
|
|
|
|
|
void DeinitVoice(ALvoice *voice)
|
|
{
|
|
struct ALvoiceProps *props;
|
|
size_t count = 0;
|
|
|
|
props = ATOMIC_EXCHANGE_PTR_SEQ(&voice->Update, NULL);
|
|
if(props) al_free(props);
|
|
|
|
props = ATOMIC_EXCHANGE_PTR(&voice->FreeList, NULL, almemory_order_relaxed);
|
|
while(props)
|
|
{
|
|
struct ALvoiceProps *next;
|
|
next = ATOMIC_LOAD(&props->next, almemory_order_relaxed);
|
|
al_free(props);
|
|
props = next;
|
|
++count;
|
|
}
|
|
/* This is excessively spammy if it traces every voice destruction, so just
|
|
* warn if it was unexpectedly large.
|
|
*/
|
|
if(count > 3)
|
|
WARN("Freed "SZFMT" voice property objects\n", count);
|
|
}
|
|
|
|
|
|
static inline HrtfDirectMixerFunc SelectHrtfMixer(void)
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return MixDirectHrtf_Neon;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return MixDirectHrtf_SSE;
|
|
#endif
|
|
|
|
return MixDirectHrtf_C;
|
|
}
|
|
|
|
|
|
/* Prior to VS2013, MSVC lacks the round() family of functions. */
|
|
#if defined(_MSC_VER) && _MSC_VER < 1800
|
|
static float roundf(float val)
|
|
{
|
|
if(val < 0.0f)
|
|
return ceilf(val-0.5f);
|
|
return floorf(val+0.5f);
|
|
}
|
|
#endif
|
|
|
|
/* This RNG method was created based on the math found in opusdec. It's quick,
|
|
* and starting with a seed value of 22222, is suitable for generating
|
|
* whitenoise.
|
|
*/
|
|
static inline ALuint dither_rng(ALuint *seed)
|
|
{
|
|
*seed = (*seed * 96314165) + 907633515;
|
|
return *seed;
|
|
}
|
|
|
|
|
|
static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
|
|
{
|
|
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
|
|
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
|
|
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
|
|
}
|
|
|
|
static inline ALfloat aluDotproduct(const aluVector *vec1, const aluVector *vec2)
|
|
{
|
|
return vec1->v[0]*vec2->v[0] + vec1->v[1]*vec2->v[1] + vec1->v[2]*vec2->v[2];
|
|
}
|
|
|
|
static ALfloat aluNormalize(ALfloat *vec)
|
|
{
|
|
ALfloat length = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
|
|
if(length > 0.0f)
|
|
{
|
|
ALfloat inv_length = 1.0f/length;
|
|
vec[0] *= inv_length;
|
|
vec[1] *= inv_length;
|
|
vec[2] *= inv_length;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
static void aluMatrixfFloat3(ALfloat *vec, ALfloat w, const aluMatrixf *mtx)
|
|
{
|
|
ALfloat v[4] = { vec[0], vec[1], vec[2], w };
|
|
|
|
vec[0] = v[0]*mtx->m[0][0] + v[1]*mtx->m[1][0] + v[2]*mtx->m[2][0] + v[3]*mtx->m[3][0];
|
|
vec[1] = v[0]*mtx->m[0][1] + v[1]*mtx->m[1][1] + v[2]*mtx->m[2][1] + v[3]*mtx->m[3][1];
|
|
vec[2] = v[0]*mtx->m[0][2] + v[1]*mtx->m[1][2] + v[2]*mtx->m[2][2] + v[3]*mtx->m[3][2];
|
|
}
|
|
|
|
static aluVector aluMatrixfVector(const aluMatrixf *mtx, const aluVector *vec)
|
|
{
|
|
aluVector v;
|
|
v.v[0] = vec->v[0]*mtx->m[0][0] + vec->v[1]*mtx->m[1][0] + vec->v[2]*mtx->m[2][0] + vec->v[3]*mtx->m[3][0];
|
|
v.v[1] = vec->v[0]*mtx->m[0][1] + vec->v[1]*mtx->m[1][1] + vec->v[2]*mtx->m[2][1] + vec->v[3]*mtx->m[3][1];
|
|
v.v[2] = vec->v[0]*mtx->m[0][2] + vec->v[1]*mtx->m[1][2] + vec->v[2]*mtx->m[2][2] + vec->v[3]*mtx->m[3][2];
|
|
v.v[3] = vec->v[0]*mtx->m[0][3] + vec->v[1]*mtx->m[1][3] + vec->v[2]*mtx->m[2][3] + vec->v[3]*mtx->m[3][3];
|
|
return v;
|
|
}
|
|
|
|
|
|
void aluInit(void)
|
|
{
|
|
MixDirectHrtf = SelectHrtfMixer();
|
|
}
|
|
|
|
/* Prepares the interpolator for a given rate (determined by increment). A
|
|
* result of AL_FALSE indicates that the filter output will completely cut
|
|
* the input signal.
|
|
*
|
|
* With a bit of work, and a trade of memory for CPU cost, this could be
|
|
* modified for use with an interpolated increment for buttery-smooth pitch
|
|
* changes.
|
|
*/
|
|
ALboolean BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
|
|
{
|
|
ALboolean uncut = AL_TRUE;
|
|
ALfloat sf;
|
|
ALsizei si;
|
|
|
|
if(increment > FRACTIONONE)
|
|
{
|
|
sf = (ALfloat)FRACTIONONE / increment;
|
|
if(sf < table->scaleBase)
|
|
{
|
|
/* Signal has been completely cut. The return result can be used
|
|
* to skip the filter (and output zeros) as an optimization.
|
|
*/
|
|
sf = 0.0f;
|
|
si = 0;
|
|
uncut = AL_FALSE;
|
|
}
|
|
else
|
|
{
|
|
sf = (BSINC_SCALE_COUNT - 1) * (sf - table->scaleBase) * table->scaleRange;
|
|
si = fastf2i(sf);
|
|
/* The interpolation factor is fit to this diagonally-symmetric
|
|
* curve to reduce the transition ripple caused by interpolating
|
|
* different scales of the sinc function.
|
|
*/
|
|
sf = 1.0f - cosf(asinf(sf - si));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
sf = 0.0f;
|
|
si = BSINC_SCALE_COUNT - 1;
|
|
}
|
|
|
|
state->sf = sf;
|
|
state->m = table->m[si];
|
|
state->l = -((state->m/2) - 1);
|
|
state->filter = table->Tab + table->filterOffset[si];
|
|
return uncut;
|
|
}
|
|
|
|
|
|
static ALboolean CalcListenerParams(ALCcontext *Context)
|
|
{
|
|
ALlistener *Listener = Context->Listener;
|
|
ALfloat N[3], V[3], U[3], P[3];
|
|
struct ALlistenerProps *props;
|
|
aluVector vel;
|
|
|
|
props = ATOMIC_EXCHANGE_PTR(&Listener->Update, NULL, almemory_order_acq_rel);
|
|
if(!props) return AL_FALSE;
|
|
|
|
/* AT then UP */
|
|
N[0] = props->Forward[0];
|
|
N[1] = props->Forward[1];
|
|
N[2] = props->Forward[2];
|
|
aluNormalize(N);
|
|
V[0] = props->Up[0];
|
|
V[1] = props->Up[1];
|
|
V[2] = props->Up[2];
|
|
aluNormalize(V);
|
|
/* Build and normalize right-vector */
|
|
aluCrossproduct(N, V, U);
|
|
aluNormalize(U);
|
|
|
|
aluMatrixfSet(&Listener->Params.Matrix,
|
|
U[0], V[0], -N[0], 0.0,
|
|
U[1], V[1], -N[1], 0.0,
|
|
U[2], V[2], -N[2], 0.0,
|
|
0.0, 0.0, 0.0, 1.0
|
|
);
|
|
|
|
P[0] = props->Position[0];
|
|
P[1] = props->Position[1];
|
|
P[2] = props->Position[2];
|
|
aluMatrixfFloat3(P, 1.0, &Listener->Params.Matrix);
|
|
aluMatrixfSetRow(&Listener->Params.Matrix, 3, -P[0], -P[1], -P[2], 1.0f);
|
|
|
|
aluVectorSet(&vel, props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f);
|
|
Listener->Params.Velocity = aluMatrixfVector(&Listener->Params.Matrix, &vel);
|
|
|
|
Listener->Params.Gain = props->Gain * Context->GainBoost;
|
|
Listener->Params.MetersPerUnit = props->MetersPerUnit;
|
|
|
|
Listener->Params.DopplerFactor = props->DopplerFactor;
|
|
Listener->Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
|
|
|
|
Listener->Params.SourceDistanceModel = props->SourceDistanceModel;
|
|
Listener->Params.DistanceModel = props->DistanceModel;
|
|
|
|
ATOMIC_REPLACE_HEAD(struct ALlistenerProps*, &Listener->FreeList, props);
|
|
return AL_TRUE;
|
|
}
|
|
|
|
static ALboolean CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context)
|
|
{
|
|
struct ALeffectslotProps *props;
|
|
ALeffectState *state;
|
|
|
|
props = ATOMIC_EXCHANGE_PTR(&slot->Update, NULL, almemory_order_acq_rel);
|
|
if(!props) return AL_FALSE;
|
|
|
|
slot->Params.Gain = props->Gain;
|
|
slot->Params.AuxSendAuto = props->AuxSendAuto;
|
|
slot->Params.EffectType = props->Type;
|
|
if(IsReverbEffect(slot->Params.EffectType))
|
|
{
|
|
slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
|
|
slot->Params.DecayTime = props->Props.Reverb.DecayTime;
|
|
slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio;
|
|
slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit;
|
|
slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
|
|
}
|
|
else
|
|
{
|
|
slot->Params.RoomRolloff = 0.0f;
|
|
slot->Params.DecayTime = 0.0f;
|
|
slot->Params.DecayHFRatio = 0.0f;
|
|
slot->Params.DecayHFLimit = AL_FALSE;
|
|
slot->Params.AirAbsorptionGainHF = 1.0f;
|
|
}
|
|
|
|
/* Swap effect states. No need to play with the ref counts since they keep
|
|
* the same number of refs.
|
|
*/
|
|
state = props->State;
|
|
props->State = slot->Params.EffectState;
|
|
slot->Params.EffectState = state;
|
|
|
|
V(state,update)(context, slot, &props->Props);
|
|
|
|
ATOMIC_REPLACE_HEAD(struct ALeffectslotProps*, &slot->FreeList, props);
|
|
return AL_TRUE;
|
|
}
|
|
|
|
|
|
static const struct ChanMap MonoMap[1] = {
|
|
{ FrontCenter, 0.0f, 0.0f }
|
|
}, RearMap[2] = {
|
|
{ BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
|
|
{ BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
|
|
}, QuadMap[4] = {
|
|
{ FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
|
|
{ BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
|
|
{ BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
|
|
}, X51Map[6] = {
|
|
{ FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
|
|
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ SideLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
|
|
{ SideRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
|
|
}, X61Map[7] = {
|
|
{ FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
|
|
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
|
|
{ SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
|
|
{ SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
|
|
}, X71Map[8] = {
|
|
{ FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
|
|
{ FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
|
|
{ BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
|
|
{ SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
|
|
{ SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
|
|
};
|
|
|
|
static void CalcPanningAndFilters(ALvoice *voice, const ALfloat Distance, const ALfloat *Dir,
|
|
const ALfloat Spread, const ALfloat DryGain,
|
|
const ALfloat DryGainHF, const ALfloat DryGainLF,
|
|
const ALfloat *WetGain, const ALfloat *WetGainLF,
|
|
const ALfloat *WetGainHF, ALeffectslot **SendSlots,
|
|
const ALbuffer *Buffer, const struct ALvoiceProps *props,
|
|
const ALlistener *Listener, const ALCdevice *Device)
|
|
{
|
|
struct ChanMap StereoMap[2] = {
|
|
{ FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
|
|
{ FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
|
|
};
|
|
bool DirectChannels = props->DirectChannels;
|
|
const ALsizei NumSends = Device->NumAuxSends;
|
|
const ALuint Frequency = Device->Frequency;
|
|
const struct ChanMap *chans = NULL;
|
|
ALsizei num_channels = 0;
|
|
bool isbformat = false;
|
|
ALfloat downmix_gain = 1.0f;
|
|
ALsizei c, i, j;
|
|
|
|
switch(Buffer->FmtChannels)
|
|
{
|
|
case FmtMono:
|
|
chans = MonoMap;
|
|
num_channels = 1;
|
|
/* Mono buffers are never played direct. */
|
|
DirectChannels = false;
|
|
break;
|
|
|
|
case FmtStereo:
|
|
/* Convert counter-clockwise to clockwise. */
|
|
StereoMap[0].angle = -props->StereoPan[0];
|
|
StereoMap[1].angle = -props->StereoPan[1];
|
|
|
|
chans = StereoMap;
|
|
num_channels = 2;
|
|
downmix_gain = 1.0f / 2.0f;
|
|
break;
|
|
|
|
case FmtRear:
|
|
chans = RearMap;
|
|
num_channels = 2;
|
|
downmix_gain = 1.0f / 2.0f;
|
|
break;
|
|
|
|
case FmtQuad:
|
|
chans = QuadMap;
|
|
num_channels = 4;
|
|
downmix_gain = 1.0f / 4.0f;
|
|
break;
|
|
|
|
case FmtX51:
|
|
chans = X51Map;
|
|
num_channels = 6;
|
|
/* NOTE: Excludes LFE. */
|
|
downmix_gain = 1.0f / 5.0f;
|
|
break;
|
|
|
|
case FmtX61:
|
|
chans = X61Map;
|
|
num_channels = 7;
|
|
/* NOTE: Excludes LFE. */
|
|
downmix_gain = 1.0f / 6.0f;
|
|
break;
|
|
|
|
case FmtX71:
|
|
chans = X71Map;
|
|
num_channels = 8;
|
|
/* NOTE: Excludes LFE. */
|
|
downmix_gain = 1.0f / 7.0f;
|
|
break;
|
|
|
|
case FmtBFormat2D:
|
|
num_channels = 3;
|
|
isbformat = true;
|
|
DirectChannels = false;
|
|
break;
|
|
|
|
case FmtBFormat3D:
|
|
num_channels = 4;
|
|
isbformat = true;
|
|
DirectChannels = false;
|
|
break;
|
|
}
|
|
|
|
voice->Flags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC);
|
|
if(isbformat)
|
|
{
|
|
/* Special handling for B-Format sources. */
|
|
|
|
if(Distance > FLT_EPSILON)
|
|
{
|
|
/* Panning a B-Format sound toward some direction is easy. Just pan
|
|
* the first (W) channel as a normal mono sound and silence the
|
|
* others.
|
|
*/
|
|
ALfloat coeffs[MAX_AMBI_COEFFS];
|
|
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
ALfloat mdist = Distance * Listener->Params.MetersPerUnit;
|
|
ALfloat w0 = SPEEDOFSOUNDMETRESPERSEC /
|
|
(mdist * (ALfloat)Device->Frequency);
|
|
ALfloat w1 = SPEEDOFSOUNDMETRESPERSEC /
|
|
(Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
|
|
/* Clamp w0 for really close distances, to prevent excessive
|
|
* bass.
|
|
*/
|
|
w0 = minf(w0, w1*4.0f);
|
|
|
|
/* Only need to adjust the first channel of a B-Format source. */
|
|
NfcFilterAdjust1(&voice->Direct.Params[0].NFCtrlFilter[0], w0);
|
|
NfcFilterAdjust2(&voice->Direct.Params[0].NFCtrlFilter[1], w0);
|
|
NfcFilterAdjust3(&voice->Direct.Params[0].NFCtrlFilter[2], w0);
|
|
|
|
for(i = 0;i < MAX_AMBI_ORDER+1;i++)
|
|
voice->Direct.ChannelsPerOrder[i] = Device->Dry.NumChannelsPerOrder[i];
|
|
voice->Flags |= VOICE_HAS_NFC;
|
|
}
|
|
|
|
if(Device->Render_Mode == StereoPair)
|
|
{
|
|
ALfloat ev = asinf(Dir[1]);
|
|
ALfloat az = atan2f(Dir[0], -Dir[2]);
|
|
CalcAnglePairwiseCoeffs(az, ev, Spread, coeffs);
|
|
}
|
|
else
|
|
CalcDirectionCoeffs(Dir, Spread, coeffs);
|
|
|
|
/* NOTE: W needs to be scaled by sqrt(2) due to FuMa normalization. */
|
|
ComputePanningGains(Device->Dry, coeffs, DryGain*1.414213562f,
|
|
voice->Direct.Params[0].Gains.Target);
|
|
for(c = 1;c < num_channels;c++)
|
|
{
|
|
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
|
|
voice->Direct.Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
const ALeffectslot *Slot = SendSlots[i];
|
|
if(Slot)
|
|
ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
|
|
coeffs, WetGain[i]*1.414213562f, voice->Send[i].Params[0].Gains.Target
|
|
);
|
|
else
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[0].Gains.Target[j] = 0.0f;
|
|
for(c = 1;c < num_channels;c++)
|
|
{
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Local B-Format sources have their XYZ channels rotated according
|
|
* to the orientation.
|
|
*/
|
|
ALfloat N[3], V[3], U[3];
|
|
aluMatrixf matrix;
|
|
ALfloat scale;
|
|
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
/* NOTE: The NFCtrlFilters were created with a w0 of 0, which
|
|
* is what we want for FOA input. The first channel may have
|
|
* been previously re-adjusted if panned, so reset it.
|
|
*/
|
|
NfcFilterAdjust1(&voice->Direct.Params[0].NFCtrlFilter[0], 0.0f);
|
|
NfcFilterAdjust2(&voice->Direct.Params[0].NFCtrlFilter[1], 0.0f);
|
|
NfcFilterAdjust3(&voice->Direct.Params[0].NFCtrlFilter[2], 0.0f);
|
|
|
|
voice->Direct.ChannelsPerOrder[0] = 1;
|
|
voice->Direct.ChannelsPerOrder[1] = mini(voice->Direct.Channels-1, 3);
|
|
for(i = 2;i < MAX_AMBI_ORDER+1;i++)
|
|
voice->Direct.ChannelsPerOrder[i] = 0;
|
|
voice->Flags |= VOICE_HAS_NFC;
|
|
}
|
|
|
|
/* AT then UP */
|
|
N[0] = props->Orientation[0][0];
|
|
N[1] = props->Orientation[0][1];
|
|
N[2] = props->Orientation[0][2];
|
|
aluNormalize(N);
|
|
V[0] = props->Orientation[1][0];
|
|
V[1] = props->Orientation[1][1];
|
|
V[2] = props->Orientation[1][2];
|
|
aluNormalize(V);
|
|
if(!props->HeadRelative)
|
|
{
|
|
const aluMatrixf *lmatrix = &Listener->Params.Matrix;
|
|
aluMatrixfFloat3(N, 0.0f, lmatrix);
|
|
aluMatrixfFloat3(V, 0.0f, lmatrix);
|
|
}
|
|
/* Build and normalize right-vector */
|
|
aluCrossproduct(N, V, U);
|
|
aluNormalize(U);
|
|
|
|
/* Build a rotate + conversion matrix (FuMa -> ACN+N3D). */
|
|
scale = 1.732050808f;
|
|
aluMatrixfSet(&matrix,
|
|
1.414213562f, 0.0f, 0.0f, 0.0f,
|
|
0.0f, -N[0]*scale, N[1]*scale, -N[2]*scale,
|
|
0.0f, U[0]*scale, -U[1]*scale, U[2]*scale,
|
|
0.0f, -V[0]*scale, V[1]*scale, -V[2]*scale
|
|
);
|
|
|
|
voice->Direct.Buffer = Device->FOAOut.Buffer;
|
|
voice->Direct.Channels = Device->FOAOut.NumChannels;
|
|
for(c = 0;c < num_channels;c++)
|
|
ComputeFirstOrderGains(Device->FOAOut, matrix.m[c], DryGain,
|
|
voice->Direct.Params[c].Gains.Target);
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
const ALeffectslot *Slot = SendSlots[i];
|
|
if(Slot)
|
|
{
|
|
for(c = 0;c < num_channels;c++)
|
|
ComputeFirstOrderGainsBF(Slot->ChanMap, Slot->NumChannels,
|
|
matrix.m[c], WetGain[i], voice->Send[i].Params[c].Gains.Target
|
|
);
|
|
}
|
|
else
|
|
{
|
|
for(c = 0;c < num_channels;c++)
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(DirectChannels)
|
|
{
|
|
/* Direct source channels always play local. Skip the virtual channels
|
|
* and write inputs to the matching real outputs.
|
|
*/
|
|
voice->Direct.Buffer = Device->RealOut.Buffer;
|
|
voice->Direct.Channels = Device->RealOut.NumChannels;
|
|
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
int idx;
|
|
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
|
|
voice->Direct.Params[c].Gains.Target[j] = 0.0f;
|
|
if((idx=GetChannelIdxByName(Device->RealOut, chans[c].channel)) != -1)
|
|
voice->Direct.Params[c].Gains.Target[idx] = DryGain;
|
|
}
|
|
|
|
/* Auxiliary sends still use normal channel panning since they mix to
|
|
* B-Format, which can't channel-match.
|
|
*/
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
ALfloat coeffs[MAX_AMBI_COEFFS];
|
|
CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs);
|
|
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
const ALeffectslot *Slot = SendSlots[i];
|
|
if(Slot)
|
|
ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
|
|
coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
|
|
);
|
|
else
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
else if(Device->Render_Mode == HrtfRender)
|
|
{
|
|
/* Full HRTF rendering. Skip the virtual channels and render to the
|
|
* real outputs.
|
|
*/
|
|
voice->Direct.Buffer = Device->RealOut.Buffer;
|
|
voice->Direct.Channels = Device->RealOut.NumChannels;
|
|
|
|
if(Distance > FLT_EPSILON)
|
|
{
|
|
ALfloat coeffs[MAX_AMBI_COEFFS];
|
|
ALfloat ev, az;
|
|
|
|
ev = asinf(Dir[1]);
|
|
az = atan2f(Dir[0], -Dir[2]);
|
|
|
|
/* Get the HRIR coefficients and delays just once, for the given
|
|
* source direction.
|
|
*/
|
|
GetHrtfCoeffs(Device->HrtfHandle, ev, az, Spread,
|
|
voice->Direct.Params[0].Hrtf.Target.Coeffs,
|
|
voice->Direct.Params[0].Hrtf.Target.Delay);
|
|
voice->Direct.Params[0].Hrtf.Target.Gain = DryGain * downmix_gain;
|
|
|
|
/* Remaining channels use the same results as the first. */
|
|
for(c = 1;c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel == LFE)
|
|
memset(&voice->Direct.Params[c].Hrtf.Target, 0,
|
|
sizeof(voice->Direct.Params[c].Hrtf.Target));
|
|
else
|
|
voice->Direct.Params[c].Hrtf.Target = voice->Direct.Params[0].Hrtf.Target;
|
|
}
|
|
|
|
/* Calculate the directional coefficients once, which apply to all
|
|
* input channels of the source sends.
|
|
*/
|
|
CalcDirectionCoeffs(Dir, Spread, coeffs);
|
|
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
const ALeffectslot *Slot = SendSlots[i];
|
|
if(Slot)
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel == LFE)
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
else
|
|
ComputePanningGainsBF(Slot->ChanMap,
|
|
Slot->NumChannels, coeffs, WetGain[i] * downmix_gain,
|
|
voice->Send[i].Params[c].Gains.Target
|
|
);
|
|
}
|
|
else
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Local sources on HRTF play with each channel panned to its
|
|
* relative location around the listener, providing "virtual
|
|
* speaker" responses.
|
|
*/
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
ALfloat coeffs[MAX_AMBI_COEFFS];
|
|
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
/* Skip LFE */
|
|
memset(&voice->Direct.Params[c].Hrtf.Target, 0,
|
|
sizeof(voice->Direct.Params[c].Hrtf.Target));
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Get the HRIR coefficients and delays for this channel
|
|
* position.
|
|
*/
|
|
GetHrtfCoeffs(Device->HrtfHandle,
|
|
chans[c].elevation, chans[c].angle, Spread,
|
|
voice->Direct.Params[c].Hrtf.Target.Coeffs,
|
|
voice->Direct.Params[c].Hrtf.Target.Delay
|
|
);
|
|
voice->Direct.Params[c].Hrtf.Target.Gain = DryGain;
|
|
|
|
/* Normal panning for auxiliary sends. */
|
|
CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
|
|
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
const ALeffectslot *Slot = SendSlots[i];
|
|
if(Slot)
|
|
ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
|
|
coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
|
|
);
|
|
else
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
voice->Flags |= VOICE_HAS_HRTF;
|
|
}
|
|
else
|
|
{
|
|
/* Non-HRTF rendering. Use normal panning to the output. */
|
|
|
|
if(Distance > FLT_EPSILON)
|
|
{
|
|
ALfloat coeffs[MAX_AMBI_COEFFS];
|
|
ALfloat w0 = 0.0f;
|
|
|
|
/* Calculate NFC filter coefficient if needed. */
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
ALfloat mdist = Distance * Listener->Params.MetersPerUnit;
|
|
ALfloat w1 = SPEEDOFSOUNDMETRESPERSEC /
|
|
(Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
|
|
w0 = SPEEDOFSOUNDMETRESPERSEC /
|
|
(mdist * (ALfloat)Device->Frequency);
|
|
/* Clamp w0 for really close distances, to prevent excessive
|
|
* bass.
|
|
*/
|
|
w0 = minf(w0, w1*4.0f);
|
|
|
|
for(i = 0;i < MAX_AMBI_ORDER+1;i++)
|
|
voice->Direct.ChannelsPerOrder[i] = Device->Dry.NumChannelsPerOrder[i];
|
|
voice->Flags |= VOICE_HAS_NFC;
|
|
}
|
|
|
|
/* Calculate the directional coefficients once, which apply to all
|
|
* input channels.
|
|
*/
|
|
if(Device->Render_Mode == StereoPair)
|
|
{
|
|
ALfloat ev = asinf(Dir[1]);
|
|
ALfloat az = atan2f(Dir[0], -Dir[2]);
|
|
CalcAnglePairwiseCoeffs(az, ev, Spread, coeffs);
|
|
}
|
|
else
|
|
CalcDirectionCoeffs(Dir, Spread, coeffs);
|
|
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
/* Adjust NFC filters if needed. */
|
|
if((voice->Flags&VOICE_HAS_NFC))
|
|
{
|
|
NfcFilterAdjust1(&voice->Direct.Params[c].NFCtrlFilter[0], w0);
|
|
NfcFilterAdjust2(&voice->Direct.Params[c].NFCtrlFilter[1], w0);
|
|
NfcFilterAdjust3(&voice->Direct.Params[c].NFCtrlFilter[2], w0);
|
|
}
|
|
|
|
/* Special-case LFE */
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
|
|
voice->Direct.Params[c].Gains.Target[j] = 0.0f;
|
|
if(Device->Dry.Buffer == Device->RealOut.Buffer)
|
|
{
|
|
int idx = GetChannelIdxByName(Device->RealOut, chans[c].channel);
|
|
if(idx != -1) voice->Direct.Params[c].Gains.Target[idx] = DryGain;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
ComputePanningGains(Device->Dry,
|
|
coeffs, DryGain * downmix_gain, voice->Direct.Params[c].Gains.Target
|
|
);
|
|
}
|
|
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
const ALeffectslot *Slot = SendSlots[i];
|
|
if(Slot)
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel == LFE)
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
else
|
|
ComputePanningGainsBF(Slot->ChanMap,
|
|
Slot->NumChannels, coeffs, WetGain[i] * downmix_gain,
|
|
voice->Send[i].Params[c].Gains.Target
|
|
);
|
|
}
|
|
else
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ALfloat w0 = 0.0f;
|
|
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
/* If the source distance is 0, set w0 to w1 to act as a pass-
|
|
* through. We still want to pass the signal through the
|
|
* filters so they keep an appropriate history, in case the
|
|
* source moves away from the listener.
|
|
*/
|
|
w0 = SPEEDOFSOUNDMETRESPERSEC /
|
|
(Device->AvgSpeakerDist * (ALfloat)Device->Frequency);
|
|
|
|
for(i = 0;i < MAX_AMBI_ORDER+1;i++)
|
|
voice->Direct.ChannelsPerOrder[i] = Device->Dry.NumChannelsPerOrder[i];
|
|
voice->Flags |= VOICE_HAS_NFC;
|
|
}
|
|
|
|
for(c = 0;c < num_channels;c++)
|
|
{
|
|
ALfloat coeffs[MAX_AMBI_COEFFS];
|
|
|
|
if((voice->Flags&VOICE_HAS_NFC))
|
|
{
|
|
NfcFilterAdjust1(&voice->Direct.Params[c].NFCtrlFilter[0], w0);
|
|
NfcFilterAdjust2(&voice->Direct.Params[c].NFCtrlFilter[1], w0);
|
|
NfcFilterAdjust3(&voice->Direct.Params[c].NFCtrlFilter[2], w0);
|
|
}
|
|
|
|
/* Special-case LFE */
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
|
|
voice->Direct.Params[c].Gains.Target[j] = 0.0f;
|
|
if(Device->Dry.Buffer == Device->RealOut.Buffer)
|
|
{
|
|
int idx = GetChannelIdxByName(Device->RealOut, chans[c].channel);
|
|
if(idx != -1) voice->Direct.Params[c].Gains.Target[idx] = DryGain;
|
|
}
|
|
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if(Device->Render_Mode == StereoPair)
|
|
CalcAnglePairwiseCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
|
|
else
|
|
CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
|
|
ComputePanningGains(Device->Dry,
|
|
coeffs, DryGain, voice->Direct.Params[c].Gains.Target
|
|
);
|
|
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
const ALeffectslot *Slot = SendSlots[i];
|
|
if(Slot)
|
|
ComputePanningGainsBF(Slot->ChanMap, Slot->NumChannels,
|
|
coeffs, WetGain[i], voice->Send[i].Params[c].Gains.Target
|
|
);
|
|
else
|
|
for(j = 0;j < MAX_EFFECT_CHANNELS;j++)
|
|
voice->Send[i].Params[c].Gains.Target[j] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
ALfloat hfScale = props->Direct.HFReference / Frequency;
|
|
ALfloat lfScale = props->Direct.LFReference / Frequency;
|
|
ALfloat gainHF = maxf(DryGainHF, 0.001f); /* Limit -60dB */
|
|
ALfloat gainLF = maxf(DryGainLF, 0.001f);
|
|
|
|
voice->Direct.FilterType = AF_None;
|
|
if(gainHF != 1.0f) voice->Direct.FilterType |= AF_LowPass;
|
|
if(gainLF != 1.0f) voice->Direct.FilterType |= AF_HighPass;
|
|
ALfilterState_setParams(
|
|
&voice->Direct.Params[0].LowPass, ALfilterType_HighShelf,
|
|
gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
|
|
);
|
|
ALfilterState_setParams(
|
|
&voice->Direct.Params[0].HighPass, ALfilterType_LowShelf,
|
|
gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
|
|
);
|
|
for(c = 1;c < num_channels;c++)
|
|
{
|
|
ALfilterState_copyParams(&voice->Direct.Params[c].LowPass,
|
|
&voice->Direct.Params[0].LowPass);
|
|
ALfilterState_copyParams(&voice->Direct.Params[c].HighPass,
|
|
&voice->Direct.Params[0].HighPass);
|
|
}
|
|
}
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALfloat hfScale = props->Send[i].HFReference / Frequency;
|
|
ALfloat lfScale = props->Send[i].LFReference / Frequency;
|
|
ALfloat gainHF = maxf(WetGainHF[i], 0.001f);
|
|
ALfloat gainLF = maxf(WetGainLF[i], 0.001f);
|
|
|
|
voice->Send[i].FilterType = AF_None;
|
|
if(gainHF != 1.0f) voice->Send[i].FilterType |= AF_LowPass;
|
|
if(gainLF != 1.0f) voice->Send[i].FilterType |= AF_HighPass;
|
|
ALfilterState_setParams(
|
|
&voice->Send[i].Params[0].LowPass, ALfilterType_HighShelf,
|
|
gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
|
|
);
|
|
ALfilterState_setParams(
|
|
&voice->Send[i].Params[0].HighPass, ALfilterType_LowShelf,
|
|
gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
|
|
);
|
|
for(c = 1;c < num_channels;c++)
|
|
{
|
|
ALfilterState_copyParams(&voice->Send[i].Params[c].LowPass,
|
|
&voice->Send[i].Params[0].LowPass);
|
|
ALfilterState_copyParams(&voice->Send[i].Params[c].HighPass,
|
|
&voice->Send[i].Params[0].HighPass);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void CalcNonAttnSourceParams(ALvoice *voice, const struct ALvoiceProps *props, const ALbuffer *ALBuffer, const ALCcontext *ALContext)
|
|
{
|
|
static const ALfloat dir[3] = { 0.0f, 0.0f, -1.0f };
|
|
const ALCdevice *Device = ALContext->Device;
|
|
const ALlistener *Listener = ALContext->Listener;
|
|
ALfloat DryGain, DryGainHF, DryGainLF;
|
|
ALfloat WetGain[MAX_SENDS];
|
|
ALfloat WetGainHF[MAX_SENDS];
|
|
ALfloat WetGainLF[MAX_SENDS];
|
|
ALeffectslot *SendSlots[MAX_SENDS];
|
|
ALfloat Pitch;
|
|
ALsizei i;
|
|
|
|
voice->Direct.Buffer = Device->Dry.Buffer;
|
|
voice->Direct.Channels = Device->Dry.NumChannels;
|
|
for(i = 0;i < Device->NumAuxSends;i++)
|
|
{
|
|
SendSlots[i] = props->Send[i].Slot;
|
|
if(!SendSlots[i] && i == 0)
|
|
SendSlots[i] = ALContext->DefaultSlot;
|
|
if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
|
|
{
|
|
SendSlots[i] = NULL;
|
|
voice->Send[i].Buffer = NULL;
|
|
voice->Send[i].Channels = 0;
|
|
}
|
|
else
|
|
{
|
|
voice->Send[i].Buffer = SendSlots[i]->WetBuffer;
|
|
voice->Send[i].Channels = SendSlots[i]->NumChannels;
|
|
}
|
|
}
|
|
|
|
/* Calculate the stepping value */
|
|
Pitch = (ALfloat)ALBuffer->Frequency/(ALfloat)Device->Frequency * props->Pitch;
|
|
if(Pitch > (ALfloat)MAX_PITCH)
|
|
voice->Step = MAX_PITCH<<FRACTIONBITS;
|
|
else
|
|
voice->Step = maxi(fastf2i(Pitch*FRACTIONONE + 0.5f), 1);
|
|
if(props->Resampler == BSinc24Resampler)
|
|
BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc24);
|
|
else if(props->Resampler == BSinc12Resampler)
|
|
BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc12);
|
|
else
|
|
|
|
voice->ResampleState.sinc4.filter = sinc4Tab;
|
|
voice->Resampler = SelectResampler(props->Resampler);
|
|
|
|
/* Calculate gains */
|
|
DryGain = clampf(props->Gain, props->MinGain, props->MaxGain);
|
|
DryGain *= props->Direct.Gain * Listener->Params.Gain;
|
|
DryGain = minf(DryGain, GAIN_MIX_MAX);
|
|
DryGainHF = props->Direct.GainHF;
|
|
DryGainLF = props->Direct.GainLF;
|
|
for(i = 0;i < Device->NumAuxSends;i++)
|
|
{
|
|
WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain);
|
|
WetGain[i] *= props->Send[i].Gain * Listener->Params.Gain;
|
|
WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX);
|
|
WetGainHF[i] = props->Send[i].GainHF;
|
|
WetGainLF[i] = props->Send[i].GainLF;
|
|
}
|
|
|
|
CalcPanningAndFilters(voice, 0.0f, dir, 0.0f, DryGain, DryGainHF, DryGainLF, WetGain,
|
|
WetGainLF, WetGainHF, SendSlots, ALBuffer, props, Listener, Device);
|
|
}
|
|
|
|
static void CalcAttnSourceParams(ALvoice *voice, const struct ALvoiceProps *props, const ALbuffer *ALBuffer, const ALCcontext *ALContext)
|
|
{
|
|
const ALCdevice *Device = ALContext->Device;
|
|
const ALlistener *Listener = ALContext->Listener;
|
|
const ALsizei NumSends = Device->NumAuxSends;
|
|
aluVector Position, Velocity, Direction, SourceToListener;
|
|
ALfloat Distance, ClampedDist, DopplerFactor;
|
|
ALeffectslot *SendSlots[MAX_SENDS];
|
|
ALfloat RoomRolloff[MAX_SENDS];
|
|
ALfloat DecayDistance[MAX_SENDS];
|
|
ALfloat DecayHFDistance[MAX_SENDS];
|
|
ALfloat DryGain, DryGainHF, DryGainLF;
|
|
ALfloat WetGain[MAX_SENDS];
|
|
ALfloat WetGainHF[MAX_SENDS];
|
|
ALfloat WetGainLF[MAX_SENDS];
|
|
bool directional;
|
|
ALfloat dir[3];
|
|
ALfloat spread;
|
|
ALfloat Pitch;
|
|
ALint i;
|
|
|
|
/* Set mixing buffers and get send parameters. */
|
|
voice->Direct.Buffer = Device->Dry.Buffer;
|
|
voice->Direct.Channels = Device->Dry.NumChannels;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
SendSlots[i] = props->Send[i].Slot;
|
|
if(!SendSlots[i] && i == 0)
|
|
SendSlots[i] = ALContext->DefaultSlot;
|
|
if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
|
|
{
|
|
SendSlots[i] = NULL;
|
|
RoomRolloff[i] = 0.0f;
|
|
DecayDistance[i] = 0.0f;
|
|
DecayHFDistance[i] = 0.0f;
|
|
}
|
|
else if(SendSlots[i]->Params.AuxSendAuto)
|
|
{
|
|
RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor;
|
|
DecayDistance[i] = SendSlots[i]->Params.DecayTime * SPEEDOFSOUNDMETRESPERSEC;
|
|
DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio;
|
|
if(SendSlots[i]->Params.DecayHFLimit)
|
|
{
|
|
ALfloat airAbsorption = SendSlots[i]->Params.AirAbsorptionGainHF;
|
|
if(airAbsorption < 1.0f)
|
|
{
|
|
ALfloat limitRatio = log10f(REVERB_DECAY_GAIN) / log10f(airAbsorption);
|
|
DecayHFDistance[i] = minf(limitRatio, DecayHFDistance[i]);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the slot's auxiliary send auto is off, the data sent to the
|
|
* effect slot is the same as the dry path, sans filter effects */
|
|
RoomRolloff[i] = props->RolloffFactor;
|
|
DecayDistance[i] = 0.0f;
|
|
DecayHFDistance[i] = 0.0f;
|
|
}
|
|
|
|
if(!SendSlots[i])
|
|
{
|
|
voice->Send[i].Buffer = NULL;
|
|
voice->Send[i].Channels = 0;
|
|
}
|
|
else
|
|
{
|
|
voice->Send[i].Buffer = SendSlots[i]->WetBuffer;
|
|
voice->Send[i].Channels = SendSlots[i]->NumChannels;
|
|
}
|
|
}
|
|
|
|
/* Transform source to listener space (convert to head relative) */
|
|
aluVectorSet(&Position, props->Position[0], props->Position[1], props->Position[2], 1.0f);
|
|
aluVectorSet(&Direction, props->Direction[0], props->Direction[1], props->Direction[2], 0.0f);
|
|
aluVectorSet(&Velocity, props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f);
|
|
if(props->HeadRelative == AL_FALSE)
|
|
{
|
|
const aluMatrixf *Matrix = &Listener->Params.Matrix;
|
|
/* Transform source vectors */
|
|
Position = aluMatrixfVector(Matrix, &Position);
|
|
Velocity = aluMatrixfVector(Matrix, &Velocity);
|
|
Direction = aluMatrixfVector(Matrix, &Direction);
|
|
}
|
|
else
|
|
{
|
|
const aluVector *lvelocity = &Listener->Params.Velocity;
|
|
/* Offset the source velocity to be relative of the listener velocity */
|
|
Velocity.v[0] += lvelocity->v[0];
|
|
Velocity.v[1] += lvelocity->v[1];
|
|
Velocity.v[2] += lvelocity->v[2];
|
|
}
|
|
|
|
directional = aluNormalize(Direction.v) > FLT_EPSILON;
|
|
SourceToListener.v[0] = -Position.v[0];
|
|
SourceToListener.v[1] = -Position.v[1];
|
|
SourceToListener.v[2] = -Position.v[2];
|
|
SourceToListener.v[3] = 0.0f;
|
|
Distance = aluNormalize(SourceToListener.v);
|
|
|
|
/* Initial source gain */
|
|
DryGain = props->Gain;
|
|
DryGainHF = 1.0f;
|
|
DryGainLF = 1.0f;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
WetGain[i] = props->Gain;
|
|
WetGainHF[i] = 1.0f;
|
|
WetGainLF[i] = 1.0f;
|
|
}
|
|
|
|
/* Calculate distance attenuation */
|
|
ClampedDist = Distance;
|
|
|
|
switch(Listener->Params.SourceDistanceModel ?
|
|
props->DistanceModel : Listener->Params.DistanceModel)
|
|
{
|
|
case InverseDistanceClamped:
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
if(props->MaxDistance < props->RefDistance)
|
|
break;
|
|
/*fall-through*/
|
|
case InverseDistance:
|
|
if(!(props->RefDistance > 0.0f))
|
|
ClampedDist = props->RefDistance;
|
|
else
|
|
{
|
|
ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor);
|
|
if(dist > 0.0f) DryGain *= props->RefDistance / dist;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]);
|
|
if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case LinearDistanceClamped:
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
if(props->MaxDistance < props->RefDistance)
|
|
break;
|
|
/*fall-through*/
|
|
case LinearDistance:
|
|
if(!(props->MaxDistance != props->RefDistance))
|
|
ClampedDist = props->RefDistance;
|
|
else
|
|
{
|
|
ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) /
|
|
(props->MaxDistance-props->RefDistance);
|
|
DryGain *= maxf(1.0f - attn, 0.0f);
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) /
|
|
(props->MaxDistance-props->RefDistance);
|
|
WetGain[i] *= maxf(1.0f - attn, 0.0f);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ExponentDistanceClamped:
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
if(props->MaxDistance < props->RefDistance)
|
|
break;
|
|
/*fall-through*/
|
|
case ExponentDistance:
|
|
if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f))
|
|
ClampedDist = props->RefDistance;
|
|
else
|
|
{
|
|
DryGain *= powf(ClampedDist/props->RefDistance, -props->RolloffFactor);
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] *= powf(ClampedDist/props->RefDistance, -RoomRolloff[i]);
|
|
}
|
|
break;
|
|
|
|
case DisableDistance:
|
|
ClampedDist = props->RefDistance;
|
|
break;
|
|
}
|
|
|
|
/* Distance-based air absorption */
|
|
if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f)
|
|
{
|
|
ALfloat meters_base = (ClampedDist-props->RefDistance) * props->RolloffFactor *
|
|
Listener->Params.MetersPerUnit;
|
|
if(props->AirAbsorptionFactor > 0.0f)
|
|
{
|
|
ALfloat hfattn = powf(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor);
|
|
DryGainHF *= hfattn;
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGainHF[i] *= hfattn;
|
|
}
|
|
|
|
if(props->WetGainAuto)
|
|
{
|
|
/* Apply a decay-time transformation to the wet path, based on the
|
|
* source distance in meters. The initial decay of the reverb
|
|
* effect is calculated and applied to the wet path.
|
|
*/
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
ALfloat gain;
|
|
|
|
if(!(DecayDistance[i] > 0.0f))
|
|
continue;
|
|
|
|
gain = powf(REVERB_DECAY_GAIN, meters_base/DecayDistance[i]);
|
|
WetGain[i] *= gain;
|
|
/* Yes, the wet path's air absorption is applied with
|
|
* WetGainAuto on, rather than WetGainHFAuto.
|
|
*/
|
|
if(gain > 0.0f)
|
|
{
|
|
ALfloat gainhf = powf(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i]);
|
|
WetGainHF[i] *= minf(gainhf / gain, 1.0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate directional soundcones */
|
|
if(directional && props->InnerAngle < 360.0f)
|
|
{
|
|
ALfloat ConeVolume;
|
|
ALfloat ConeHF;
|
|
ALfloat Angle;
|
|
|
|
Angle = acosf(aluDotproduct(&Direction, &SourceToListener));
|
|
Angle = RAD2DEG(Angle * ConeScale * 2.0f);
|
|
if(!(Angle > props->InnerAngle))
|
|
{
|
|
ConeVolume = 1.0f;
|
|
ConeHF = 1.0f;
|
|
}
|
|
else if(Angle < props->OuterAngle)
|
|
{
|
|
ALfloat scale = ( Angle-props->InnerAngle) /
|
|
(props->OuterAngle-props->InnerAngle);
|
|
ConeVolume = lerp(1.0f, props->OuterGain, scale);
|
|
ConeHF = lerp(1.0f, props->OuterGainHF, scale);
|
|
}
|
|
else
|
|
{
|
|
ConeVolume = props->OuterGain;
|
|
ConeHF = props->OuterGainHF;
|
|
}
|
|
|
|
DryGain *= ConeVolume;
|
|
if(props->DryGainHFAuto)
|
|
DryGainHF *= ConeHF;
|
|
if(props->WetGainAuto)
|
|
{
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGain[i] *= ConeVolume;
|
|
}
|
|
if(props->WetGainHFAuto)
|
|
{
|
|
for(i = 0;i < NumSends;i++)
|
|
WetGainHF[i] *= ConeHF;
|
|
}
|
|
}
|
|
|
|
/* Apply gain and frequency filters */
|
|
DryGain = clampf(DryGain, props->MinGain, props->MaxGain);
|
|
DryGain = minf(DryGain*props->Direct.Gain*Listener->Params.Gain, GAIN_MIX_MAX);
|
|
DryGainHF *= props->Direct.GainHF;
|
|
DryGainLF *= props->Direct.GainLF;
|
|
for(i = 0;i < NumSends;i++)
|
|
{
|
|
WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain);
|
|
WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener->Params.Gain, GAIN_MIX_MAX);
|
|
WetGainHF[i] *= props->Send[i].GainHF;
|
|
WetGainLF[i] *= props->Send[i].GainLF;
|
|
}
|
|
|
|
|
|
/* Initial source pitch */
|
|
Pitch = props->Pitch;
|
|
|
|
/* Calculate velocity-based doppler effect */
|
|
DopplerFactor = props->DopplerFactor * Listener->Params.DopplerFactor;
|
|
if(DopplerFactor > 0.0f)
|
|
{
|
|
const aluVector *lvelocity = &Listener->Params.Velocity;
|
|
const ALfloat SpeedOfSound = Listener->Params.SpeedOfSound;
|
|
ALfloat vss, vls;
|
|
|
|
vss = aluDotproduct(&Velocity, &SourceToListener) * DopplerFactor;
|
|
vls = aluDotproduct(lvelocity, &SourceToListener) * DopplerFactor;
|
|
|
|
if(!(vls < SpeedOfSound))
|
|
{
|
|
/* Listener moving away from the source at the speed of sound.
|
|
* Sound waves can't catch it.
|
|
*/
|
|
Pitch = 0.0f;
|
|
}
|
|
else if(!(vss < SpeedOfSound))
|
|
{
|
|
/* Source moving toward the listener at the speed of sound. Sound
|
|
* waves bunch up to extreme frequencies.
|
|
*/
|
|
Pitch = HUGE_VALF;
|
|
}
|
|
else
|
|
{
|
|
/* Source and listener movement is nominal. Calculate the proper
|
|
* doppler shift.
|
|
*/
|
|
Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
|
|
}
|
|
}
|
|
|
|
/* Adjust pitch based on the buffer and output frequencies, and calculate
|
|
* fixed-point stepping value.
|
|
*/
|
|
Pitch *= (ALfloat)ALBuffer->Frequency/(ALfloat)Device->Frequency;
|
|
if(Pitch > (ALfloat)MAX_PITCH)
|
|
voice->Step = MAX_PITCH<<FRACTIONBITS;
|
|
else
|
|
voice->Step = maxi(fastf2i(Pitch*FRACTIONONE + 0.5f), 1);
|
|
if(props->Resampler == BSinc24Resampler)
|
|
BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc24);
|
|
else if(props->Resampler == BSinc12Resampler)
|
|
BsincPrepare(voice->Step, &voice->ResampleState.bsinc, &bsinc12);
|
|
else
|
|
voice->ResampleState.sinc4.filter = sinc4Tab;
|
|
voice->Resampler = SelectResampler(props->Resampler);
|
|
|
|
if(Distance > FLT_EPSILON)
|
|
{
|
|
dir[0] = -SourceToListener.v[0];
|
|
/* Clamp Y, in case rounding errors caused it to end up outside of
|
|
* -1...+1.
|
|
*/
|
|
dir[1] = clampf(-SourceToListener.v[1], -1.0f, 1.0f);
|
|
dir[2] = -SourceToListener.v[2] * ZScale;
|
|
}
|
|
else
|
|
{
|
|
dir[0] = 0.0f;
|
|
dir[1] = 0.0f;
|
|
dir[2] = -1.0f;
|
|
}
|
|
if(props->Radius > Distance)
|
|
spread = F_TAU - Distance/props->Radius*F_PI;
|
|
else if(Distance > FLT_EPSILON)
|
|
spread = asinf(props->Radius / Distance) * 2.0f;
|
|
else
|
|
spread = 0.0f;
|
|
|
|
CalcPanningAndFilters(voice, Distance, dir, spread, DryGain, DryGainHF, DryGainLF, WetGain,
|
|
WetGainLF, WetGainHF, SendSlots, ALBuffer, props, Listener, Device);
|
|
}
|
|
|
|
static void CalcSourceParams(ALvoice *voice, ALCcontext *context, ALboolean force)
|
|
{
|
|
ALbufferlistitem *BufferListItem;
|
|
struct ALvoiceProps *props;
|
|
|
|
props = ATOMIC_EXCHANGE_PTR(&voice->Update, NULL, almemory_order_acq_rel);
|
|
if(!props && !force) return;
|
|
|
|
if(props)
|
|
{
|
|
memcpy(voice->Props, props,
|
|
FAM_SIZE(struct ALvoiceProps, Send, context->Device->NumAuxSends)
|
|
);
|
|
|
|
ATOMIC_REPLACE_HEAD(struct ALvoiceProps*, &voice->FreeList, props);
|
|
}
|
|
props = voice->Props;
|
|
|
|
BufferListItem = ATOMIC_LOAD(&voice->current_buffer, almemory_order_relaxed);
|
|
while(BufferListItem != NULL)
|
|
{
|
|
const ALbuffer *buffer;
|
|
if((buffer=BufferListItem->buffer) != NULL)
|
|
{
|
|
if(props->SpatializeMode == SpatializeOn ||
|
|
(props->SpatializeMode == SpatializeAuto && buffer->FmtChannels == FmtMono))
|
|
CalcAttnSourceParams(voice, props, buffer, context);
|
|
else
|
|
CalcNonAttnSourceParams(voice, props, buffer, context);
|
|
break;
|
|
}
|
|
BufferListItem = ATOMIC_LOAD(&BufferListItem->next, almemory_order_acquire);
|
|
}
|
|
}
|
|
|
|
|
|
static void UpdateContextSources(ALCcontext *ctx, const struct ALeffectslotArray *slots)
|
|
{
|
|
ALvoice **voice, **voice_end;
|
|
ALsource *source;
|
|
ALsizei i;
|
|
|
|
IncrementRef(&ctx->UpdateCount);
|
|
if(!ATOMIC_LOAD(&ctx->HoldUpdates, almemory_order_acquire))
|
|
{
|
|
ALboolean force = CalcListenerParams(ctx);
|
|
for(i = 0;i < slots->count;i++)
|
|
force |= CalcEffectSlotParams(slots->slot[i], ctx);
|
|
|
|
voice = ctx->Voices;
|
|
voice_end = voice + ctx->VoiceCount;
|
|
for(;voice != voice_end;++voice)
|
|
{
|
|
source = ATOMIC_LOAD(&(*voice)->Source, almemory_order_acquire);
|
|
if(source) CalcSourceParams(*voice, ctx, force);
|
|
}
|
|
}
|
|
IncrementRef(&ctx->UpdateCount);
|
|
}
|
|
|
|
|
|
static void ApplyStablizer(FrontStablizer *Stablizer, ALfloat (*restrict Buffer)[BUFFERSIZE],
|
|
int lidx, int ridx, int cidx, ALsizei SamplesToDo,
|
|
ALsizei NumChannels)
|
|
{
|
|
ALfloat (*restrict lsplit)[BUFFERSIZE] = ASSUME_ALIGNED(Stablizer->LSplit, 16);
|
|
ALfloat (*restrict rsplit)[BUFFERSIZE] = ASSUME_ALIGNED(Stablizer->RSplit, 16);
|
|
ALsizei i;
|
|
|
|
/* Apply an all-pass to all channels, except the front-left and front-
|
|
* right, so they maintain the same relative phase.
|
|
*/
|
|
for(i = 0;i < NumChannels;i++)
|
|
{
|
|
if(i == lidx || i == ridx)
|
|
continue;
|
|
splitterap_process(&Stablizer->APFilter[i], Buffer[i], SamplesToDo);
|
|
}
|
|
|
|
bandsplit_process(&Stablizer->LFilter, lsplit[1], lsplit[0], Buffer[lidx], SamplesToDo);
|
|
bandsplit_process(&Stablizer->RFilter, rsplit[1], rsplit[0], Buffer[ridx], SamplesToDo);
|
|
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
{
|
|
ALfloat lfsum, hfsum;
|
|
ALfloat m, s, c;
|
|
|
|
lfsum = lsplit[0][i] + rsplit[0][i];
|
|
hfsum = lsplit[1][i] + rsplit[1][i];
|
|
s = lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i];
|
|
|
|
/* This pans the separate low- and high-frequency sums between being on
|
|
* the center channel and the left/right channels. The low-frequency
|
|
* sum is 1/3rd toward center (2/3rds on left/right) and the high-
|
|
* frequency sum is 1/4th toward center (3/4ths on left/right). These
|
|
* values can be tweaked.
|
|
*/
|
|
m = lfsum*cosf(1.0f/3.0f * F_PI_2) + hfsum*cosf(1.0f/4.0f * F_PI_2);
|
|
c = lfsum*sinf(1.0f/3.0f * F_PI_2) + hfsum*sinf(1.0f/4.0f * F_PI_2);
|
|
|
|
/* The generated center channel signal adds to the existing signal,
|
|
* while the modified left and right channels replace.
|
|
*/
|
|
Buffer[lidx][i] = (m + s) * 0.5f;
|
|
Buffer[ridx][i] = (m - s) * 0.5f;
|
|
Buffer[cidx][i] += c * 0.5f;
|
|
}
|
|
}
|
|
|
|
static void ApplyDistanceComp(ALfloatBUFFERSIZE *restrict Samples, DistanceComp *distcomp,
|
|
ALfloat *restrict Values, ALsizei SamplesToDo, ALsizei numchans)
|
|
{
|
|
ALsizei i, c;
|
|
|
|
Values = ASSUME_ALIGNED(Values, 16);
|
|
for(c = 0;c < numchans;c++)
|
|
{
|
|
ALfloat *restrict inout = ASSUME_ALIGNED(Samples[c], 16);
|
|
const ALfloat gain = distcomp[c].Gain;
|
|
const ALsizei base = distcomp[c].Length;
|
|
ALfloat *restrict distbuf = ASSUME_ALIGNED(distcomp[c].Buffer, 16);
|
|
|
|
if(base == 0)
|
|
{
|
|
if(gain < 1.0f)
|
|
{
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
inout[i] *= gain;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if(SamplesToDo >= base)
|
|
{
|
|
for(i = 0;i < base;i++)
|
|
Values[i] = distbuf[i];
|
|
for(;i < SamplesToDo;i++)
|
|
Values[i] = inout[i-base];
|
|
memcpy(distbuf, &inout[SamplesToDo-base], base*sizeof(ALfloat));
|
|
}
|
|
else
|
|
{
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
Values[i] = distbuf[i];
|
|
memmove(distbuf, distbuf+SamplesToDo, (base-SamplesToDo)*sizeof(ALfloat));
|
|
memcpy(distbuf+base-SamplesToDo, inout, SamplesToDo*sizeof(ALfloat));
|
|
}
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
inout[i] = Values[i]*gain;
|
|
}
|
|
}
|
|
|
|
static void ApplyDither(ALfloatBUFFERSIZE *restrict Samples, ALuint *dither_seed,
|
|
const ALfloat quant_scale, const ALsizei SamplesToDo,
|
|
const ALsizei numchans)
|
|
{
|
|
const ALfloat invscale = 1.0f / quant_scale;
|
|
ALuint seed = *dither_seed;
|
|
ALsizei c, i;
|
|
|
|
/* Dithering. Step 1, generate whitenoise (uniform distribution of random
|
|
* values between -1 and +1). Step 2 is to add the noise to the samples,
|
|
* before rounding and after scaling up to the desired quantization depth.
|
|
*/
|
|
for(c = 0;c < numchans;c++)
|
|
{
|
|
ALfloat *restrict samples = Samples[c];
|
|
for(i = 0;i < SamplesToDo;i++)
|
|
{
|
|
ALfloat val = samples[i] * quant_scale;
|
|
ALuint rng0 = dither_rng(&seed);
|
|
ALuint rng1 = dither_rng(&seed);
|
|
val += (ALfloat)(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
|
|
samples[i] = roundf(val) * invscale;
|
|
}
|
|
}
|
|
*dither_seed = seed;
|
|
}
|
|
|
|
|
|
static inline ALfloat Conv_ALfloat(ALfloat val)
|
|
{ return val; }
|
|
static inline ALint Conv_ALint(ALfloat val)
|
|
{
|
|
/* Floats only have a 24-bit mantissa, so [-16777216, +16777216] is the max
|
|
* integer range normalized floats can be safely converted to (a bit of the
|
|
* exponent helps out, effectively giving 25 bits).
|
|
*/
|
|
return fastf2i(clampf(val*16777216.0f, -16777216.0f, 16777215.0f))<<7;
|
|
}
|
|
static inline ALshort Conv_ALshort(ALfloat val)
|
|
{ return fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f)); }
|
|
static inline ALbyte Conv_ALbyte(ALfloat val)
|
|
{ return fastf2i(clampf(val*128.0f, -128.0f, 127.0f)); }
|
|
|
|
/* Define unsigned output variations. */
|
|
#define DECL_TEMPLATE(T, func, O) \
|
|
static inline T Conv_##T(ALfloat val) { return func(val)+O; }
|
|
|
|
DECL_TEMPLATE(ALubyte, Conv_ALbyte, 128)
|
|
DECL_TEMPLATE(ALushort, Conv_ALshort, 32768)
|
|
DECL_TEMPLATE(ALuint, Conv_ALint, 2147483648u)
|
|
|
|
#undef DECL_TEMPLATE
|
|
|
|
#define DECL_TEMPLATE(T, A) \
|
|
static void Write##A(const ALfloatBUFFERSIZE *InBuffer, ALvoid *OutBuffer, \
|
|
ALsizei Offset, ALsizei SamplesToDo, ALsizei numchans) \
|
|
{ \
|
|
ALsizei i, j; \
|
|
for(j = 0;j < numchans;j++) \
|
|
{ \
|
|
const ALfloat *restrict in = ASSUME_ALIGNED(InBuffer[j], 16); \
|
|
T *restrict out = (T*)OutBuffer + Offset*numchans + j; \
|
|
\
|
|
for(i = 0;i < SamplesToDo;i++) \
|
|
out[i*numchans] = Conv_##T(in[i]); \
|
|
} \
|
|
}
|
|
|
|
DECL_TEMPLATE(ALfloat, F32)
|
|
DECL_TEMPLATE(ALuint, UI32)
|
|
DECL_TEMPLATE(ALint, I32)
|
|
DECL_TEMPLATE(ALushort, UI16)
|
|
DECL_TEMPLATE(ALshort, I16)
|
|
DECL_TEMPLATE(ALubyte, UI8)
|
|
DECL_TEMPLATE(ALbyte, I8)
|
|
|
|
#undef DECL_TEMPLATE
|
|
|
|
|
|
void aluMixData(ALCdevice *device, ALvoid *OutBuffer, ALsizei NumSamples)
|
|
{
|
|
ALsizei SamplesToDo;
|
|
ALsizei SamplesDone;
|
|
ALCcontext *ctx;
|
|
ALsizei i, c;
|
|
|
|
START_MIXER_MODE();
|
|
for(SamplesDone = 0;SamplesDone < NumSamples;)
|
|
{
|
|
SamplesToDo = mini(NumSamples-SamplesDone, BUFFERSIZE);
|
|
for(c = 0;c < device->Dry.NumChannels;c++)
|
|
memset(device->Dry.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
|
|
if(device->Dry.Buffer != device->FOAOut.Buffer)
|
|
for(c = 0;c < device->FOAOut.NumChannels;c++)
|
|
memset(device->FOAOut.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
|
|
if(device->Dry.Buffer != device->RealOut.Buffer)
|
|
for(c = 0;c < device->RealOut.NumChannels;c++)
|
|
memset(device->RealOut.Buffer[c], 0, SamplesToDo*sizeof(ALfloat));
|
|
|
|
IncrementRef(&device->MixCount);
|
|
|
|
ctx = ATOMIC_LOAD(&device->ContextList, almemory_order_acquire);
|
|
while(ctx)
|
|
{
|
|
const struct ALeffectslotArray *auxslots;
|
|
|
|
auxslots = ATOMIC_LOAD(&ctx->ActiveAuxSlots, almemory_order_acquire);
|
|
UpdateContextSources(ctx, auxslots);
|
|
|
|
for(i = 0;i < auxslots->count;i++)
|
|
{
|
|
ALeffectslot *slot = auxslots->slot[i];
|
|
for(c = 0;c < slot->NumChannels;c++)
|
|
memset(slot->WetBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
|
|
}
|
|
|
|
/* source processing */
|
|
for(i = 0;i < ctx->VoiceCount;i++)
|
|
{
|
|
ALvoice *voice = ctx->Voices[i];
|
|
ALsource *source = ATOMIC_LOAD(&voice->Source, almemory_order_acquire);
|
|
if(source && ATOMIC_LOAD(&voice->Playing, almemory_order_relaxed) &&
|
|
voice->Step > 0)
|
|
{
|
|
if(!MixSource(voice, source, device, SamplesToDo))
|
|
{
|
|
ATOMIC_STORE(&voice->Source, NULL, almemory_order_relaxed);
|
|
ATOMIC_STORE(&voice->Playing, false, almemory_order_release);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* effect slot processing */
|
|
for(i = 0;i < auxslots->count;i++)
|
|
{
|
|
const ALeffectslot *slot = auxslots->slot[i];
|
|
ALeffectState *state = slot->Params.EffectState;
|
|
V(state,process)(SamplesToDo, slot->WetBuffer, state->OutBuffer,
|
|
state->OutChannels);
|
|
}
|
|
|
|
ctx = ctx->next;
|
|
}
|
|
|
|
/* Increment the clock time. Every second's worth of samples is
|
|
* converted and added to clock base so that large sample counts don't
|
|
* overflow during conversion. This also guarantees an exact, stable
|
|
* conversion. */
|
|
device->SamplesDone += SamplesToDo;
|
|
device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
|
|
device->SamplesDone %= device->Frequency;
|
|
IncrementRef(&device->MixCount);
|
|
|
|
if(device->HrtfHandle)
|
|
{
|
|
DirectHrtfState *state;
|
|
int lidx, ridx;
|
|
|
|
if(device->AmbiUp)
|
|
ambiup_process(device->AmbiUp,
|
|
device->Dry.Buffer, device->Dry.NumChannels,
|
|
SAFE_CONST(ALfloatBUFFERSIZE*,device->FOAOut.Buffer), SamplesToDo
|
|
);
|
|
|
|
lidx = GetChannelIdxByName(device->RealOut, FrontLeft);
|
|
ridx = GetChannelIdxByName(device->RealOut, FrontRight);
|
|
assert(lidx != -1 && ridx != -1);
|
|
|
|
state = device->Hrtf;
|
|
for(c = 0;c < device->Dry.NumChannels;c++)
|
|
{
|
|
MixDirectHrtf(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx],
|
|
device->Dry.Buffer[c], state->Offset, state->IrSize,
|
|
SAFE_CONST(ALfloat2*,state->Chan[c].Coeffs),
|
|
state->Chan[c].Values, SamplesToDo
|
|
);
|
|
}
|
|
state->Offset += SamplesToDo;
|
|
}
|
|
else if(device->AmbiDecoder)
|
|
{
|
|
if(device->Dry.Buffer != device->FOAOut.Buffer)
|
|
bformatdec_upSample(device->AmbiDecoder,
|
|
device->Dry.Buffer, SAFE_CONST(ALfloatBUFFERSIZE*,device->FOAOut.Buffer),
|
|
device->FOAOut.NumChannels, SamplesToDo
|
|
);
|
|
bformatdec_process(device->AmbiDecoder,
|
|
device->RealOut.Buffer, device->RealOut.NumChannels,
|
|
SAFE_CONST(ALfloatBUFFERSIZE*,device->Dry.Buffer), SamplesToDo
|
|
);
|
|
}
|
|
else if(device->AmbiUp)
|
|
{
|
|
ambiup_process(device->AmbiUp,
|
|
device->RealOut.Buffer, device->RealOut.NumChannels,
|
|
SAFE_CONST(ALfloatBUFFERSIZE*,device->FOAOut.Buffer), SamplesToDo
|
|
);
|
|
}
|
|
else if(device->Uhj_Encoder)
|
|
{
|
|
int lidx = GetChannelIdxByName(device->RealOut, FrontLeft);
|
|
int ridx = GetChannelIdxByName(device->RealOut, FrontRight);
|
|
if(lidx != -1 && ridx != -1)
|
|
{
|
|
/* Encode to stereo-compatible 2-channel UHJ output. */
|
|
EncodeUhj2(device->Uhj_Encoder,
|
|
device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx],
|
|
device->Dry.Buffer, SamplesToDo
|
|
);
|
|
}
|
|
}
|
|
else if(device->Bs2b)
|
|
{
|
|
int lidx = GetChannelIdxByName(device->RealOut, FrontLeft);
|
|
int ridx = GetChannelIdxByName(device->RealOut, FrontRight);
|
|
if(lidx != -1 && ridx != -1)
|
|
{
|
|
/* Apply binaural/crossfeed filter */
|
|
bs2b_cross_feed(device->Bs2b, device->RealOut.Buffer[lidx],
|
|
device->RealOut.Buffer[ridx], SamplesToDo);
|
|
}
|
|
}
|
|
|
|
if(OutBuffer)
|
|
{
|
|
ALfloat (*Buffer)[BUFFERSIZE] = device->RealOut.Buffer;
|
|
ALsizei Channels = device->RealOut.NumChannels;
|
|
|
|
if(device->Stablizer)
|
|
{
|
|
int lidx = GetChannelIdxByName(device->RealOut, FrontLeft);
|
|
int ridx = GetChannelIdxByName(device->RealOut, FrontRight);
|
|
int cidx = GetChannelIdxByName(device->RealOut, FrontCenter);
|
|
assert(lidx >= 0 && ridx >= 0 && cidx >= 0);
|
|
|
|
ApplyStablizer(device->Stablizer, Buffer, lidx, ridx, cidx,
|
|
SamplesToDo, Channels);
|
|
}
|
|
|
|
/* Use NFCtrlData for temp value storage. */
|
|
ApplyDistanceComp(Buffer, device->ChannelDelay, device->NFCtrlData,
|
|
SamplesToDo, Channels);
|
|
|
|
if(device->Limiter)
|
|
ApplyCompression(device->Limiter, Channels, SamplesToDo, Buffer);
|
|
|
|
if(device->DitherDepth > 0.0f)
|
|
ApplyDither(Buffer, &device->DitherSeed, device->DitherDepth, SamplesToDo,
|
|
Channels);
|
|
|
|
switch(device->FmtType)
|
|
{
|
|
case DevFmtByte:
|
|
WriteI8(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels);
|
|
break;
|
|
case DevFmtUByte:
|
|
WriteUI8(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels);
|
|
break;
|
|
case DevFmtShort:
|
|
WriteI16(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels);
|
|
break;
|
|
case DevFmtUShort:
|
|
WriteUI16(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels);
|
|
break;
|
|
case DevFmtInt:
|
|
WriteI32(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels);
|
|
break;
|
|
case DevFmtUInt:
|
|
WriteUI32(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels);
|
|
break;
|
|
case DevFmtFloat:
|
|
WriteF32(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SamplesDone += SamplesToDo;
|
|
}
|
|
END_MIXER_MODE();
|
|
}
|
|
|
|
|
|
void aluHandleDisconnect(ALCdevice *device)
|
|
{
|
|
ALCcontext *ctx;
|
|
|
|
device->Connected = ALC_FALSE;
|
|
|
|
ctx = ATOMIC_LOAD_SEQ(&device->ContextList);
|
|
while(ctx)
|
|
{
|
|
ALsizei i;
|
|
for(i = 0;i < ctx->VoiceCount;i++)
|
|
{
|
|
ALvoice *voice = ctx->Voices[i];
|
|
ALsource *source;
|
|
|
|
source = ATOMIC_EXCHANGE_PTR(&voice->Source, NULL, almemory_order_acq_rel);
|
|
ATOMIC_STORE(&voice->Playing, false, almemory_order_release);
|
|
|
|
if(source)
|
|
{
|
|
ALenum playing = AL_PLAYING;
|
|
(void)(ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(&source->state, &playing, AL_STOPPED));
|
|
}
|
|
}
|
|
ctx->VoiceCount = 0;
|
|
|
|
ctx = ctx->next;
|
|
}
|
|
}
|