OpenSubdiv/opensubdiv/far/gregoryBasis.cpp

454 lines
17 KiB
C++
Raw Normal View History

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../far/gregoryBasis.h"
#include "../far/error.h"
#include "../far/stencilTableFactory.h"
#include "../far/topologyRefiner.h"
#include "../vtr/stackBuffer.h"
#include <cassert>
#include <cmath>
#include <cstring>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
int
GregoryBasis::ProtoBasis::GetNumElements() const {
int nelems=0;
for (int vid=0; vid<4; ++vid) {
nelems += P[vid].GetSize();
nelems += Ep[vid].GetSize();
nelems += Em[vid].GetSize();
nelems += Fp[vid].GetSize();
nelems += Fm[vid].GetSize();
}
return nelems;
}
void
GregoryBasis::ProtoBasis::Copy(int * sizes, Index * indices, float * weights) const {
for (int vid=0; vid<4; ++vid) {
P[vid].Copy(&sizes, &indices, &weights);
Ep[vid].Copy(&sizes, &indices, &weights);
Em[vid].Copy(&sizes, &indices, &weights);
Fp[vid].Copy(&sizes, &indices, &weights);
Fm[vid].Copy(&sizes, &indices, &weights);
}
}
void
GregoryBasis::ProtoBasis::Copy(GregoryBasis * dest) const {
int nelems = GetNumElements();
dest->_indices.resize(nelems);
dest->_weights.resize(nelems);
Copy(dest->_sizes, &dest->_indices[0], &dest->_weights[0]);
}
inline float csf(Index n, Index j) {
if (j%2 == 0) {
return cosf((2.0f * float(M_PI) * float(float(j-0)/2.0f))/(float(n)+3.0f));
} else {
return sinf((2.0f * float(M_PI) * float(float(j-1)/2.0f))/(float(n)+3.0f));
}
}
inline float computeCoefficient(int valence) {
// precomputed coefficient table up to valence 29
static float efTable[] = {
0, 0, 0,
0.812816f, 0.500000f, 0.363644f, 0.287514f,
0.238688f, 0.204544f, 0.179229f, 0.159657f,
0.144042f, 0.131276f, 0.120632f, 0.111614f,
0.103872f, 0.09715f, 0.0912559f, 0.0860444f,
0.0814022f, 0.0772401f, 0.0734867f, 0.0700842f,
0.0669851f, 0.0641504f, 0.0615475f, 0.0591488f,
0.0569311f, 0.0548745f, 0.0529621f
};
assert(valence > 0);
if (valence < 30) return efTable[valence];
float t = 2.0f * float(M_PI) / float(valence);
return 1.0f / (valence * (cosf(t) + 5.0f +
sqrtf((cosf(t) + 9) * (cosf(t) + 1)))/16.0f);
}
GregoryBasis::ProtoBasis::ProtoBasis(
Vtr::internal::Level const & level, Index faceIndex,
int levelVertOffset, int fvarChannel) {
// XXX: This function is subject to refactor in 3.1
Vtr::ConstIndexArray facePoints = (fvarChannel<0) ?
level.getFaceVertices(faceIndex) :
level.getFaceFVarValues(faceIndex, fvarChannel);
assert(facePoints.size()==4);
int maxvalence = level.getMaxValence(),
valences[4],
zerothNeighbors[4];
// XXX: a temporary hack for the performance issue
// ensure Point has a capacity for the neighborhood of
// 2 extraordinary verts + 2 regular verts
// worse case: n-valence verts at a corner of n-gon.
int stencilCapacity =
4/*0-ring*/ + 2*(2*(maxvalence-2)/*1-ring around extraordinaries*/
+ 2/*1-ring around regulars, excluding shared ones*/);
Point e0[4], e1[4];
for (int i = 0; i < 4; ++i) {
P[i].Clear(stencilCapacity);
e0[i].Clear(stencilCapacity);
e1[i].Clear(stencilCapacity);
}
Vtr::internal::StackBuffer<Index, 40> manifoldRings[4];
manifoldRings[0].SetSize(maxvalence*2);
manifoldRings[1].SetSize(maxvalence*2);
manifoldRings[2].SetSize(maxvalence*2);
manifoldRings[3].SetSize(maxvalence*2);
Vtr::internal::StackBuffer<Point, 10> f(maxvalence);
Vtr::internal::StackBuffer<Point, 40> r(maxvalence*4);
// the first phase
for (int vid=0; vid<4; ++vid) {
// save for varying stencils
varyingIndex[vid] = facePoints[vid] + levelVertOffset;
int ringSize =
level.gatherQuadRegularRingAroundVertex(
facePoints[vid], manifoldRings[vid], fvarChannel);
int valence;
if (ringSize & 1) {
// boundary vertex
manifoldRings[vid][ringSize] = manifoldRings[vid][ringSize-1];
++ringSize;
valence = -ringSize/2;
} else {
valence = ringSize/2;
}
int ivalence = abs(valence);
valences[vid] = valence;
Index boundaryEdgeNeighbors[2],
currentNeighbor = 0,
zerothNeighbor=0,
ibefore=0;
for (int i=0; i<ivalence; ++i) {
Index im = (i+ivalence-1)%ivalence,
ip = (i+1)%ivalence;
Index idx_neighbor = (manifoldRings[vid][2*i + 0]),
idx_diagonal = (manifoldRings[vid][2*i + 1]),
idx_neighbor_p = (manifoldRings[vid][2*ip + 0]),
idx_neighbor_m = (manifoldRings[vid][2*im + 0]),
idx_diagonal_m = (manifoldRings[vid][2*im + 1]);
bool boundaryNeighbor = (level.getVertexEdges(idx_neighbor).size() >
level.getVertexFaces(idx_neighbor).size());
if (fvarChannel>=0) {
// XXXX manuelk need logic to check for boundary in fvar
boundaryNeighbor = false;
}
if (boundaryNeighbor) {
if (currentNeighbor<2) {
boundaryEdgeNeighbors[currentNeighbor] = idx_neighbor;
}
++currentNeighbor;
if (currentNeighbor==1) {
ibefore = zerothNeighbor = i;
} else {
if (i-ibefore==1) {
std::swap(boundaryEdgeNeighbors[0], boundaryEdgeNeighbors[1]);
zerothNeighbor = i;
}
}
}
float d = float(ivalence)+5.0f;
f[i].Clear(4);
f[i].AddWithWeight(facePoints[vid], float(ivalence)/d);
f[i].AddWithWeight(idx_neighbor_p, 2.0f/d);
f[i].AddWithWeight(idx_neighbor, 2.0f/d);
f[i].AddWithWeight(idx_diagonal, 1.0f/d);
P[vid].AddWithWeight(f[i], 1.0f/float(ivalence));
int rid = vid * maxvalence + i;
r[rid].Clear(4);
r[rid].AddWithWeight(idx_neighbor_p, 1.0f/3.0f);
r[rid].AddWithWeight(idx_neighbor_m, -1.0f/3.0f);
r[rid].AddWithWeight(idx_diagonal, 1.0f/6.0f);
r[rid].AddWithWeight(idx_diagonal_m, -1.0f/6.0f);
}
zerothNeighbors[vid] = zerothNeighbor;
if (currentNeighbor == 1) {
boundaryEdgeNeighbors[1] = boundaryEdgeNeighbors[0];
}
for (int i=0; i<ivalence; ++i) {
int im = (i+ivalence-1)%ivalence;
float c0 = 0.5f * csf(ivalence-3, 2*i);
float c1 = 0.5f * csf(ivalence-3, 2*i+1);
e0[vid].AddWithWeight(f[i ], c0);
e0[vid].AddWithWeight(f[im], c0);
e1[vid].AddWithWeight(f[i ], c1);
e1[vid].AddWithWeight(f[im], c1);
}
float ef = computeCoefficient(ivalence);
e0[vid] *= ef;
e1[vid] *= ef;
// Boundary gregory case:
if (valence < 0) {
P[vid].Clear(stencilCapacity);
if (ivalence>2) {
P[vid].AddWithWeight(boundaryEdgeNeighbors[0], 1.0f/6.0f);
P[vid].AddWithWeight(boundaryEdgeNeighbors[1], 1.0f/6.0f);
P[vid].AddWithWeight(facePoints[vid], 4.0f/6.0f);
} else {
P[vid].AddWithWeight(facePoints[vid], 1.0f);
}
float k = float(float(ivalence) - 1.0f); //k is the number of faces
float c = cosf(float(M_PI)/k);
float s = sinf(float(M_PI)/k);
float gamma = -(4.0f*s)/(3.0f*k+c);
float alpha_0k = -((1.0f+2.0f*c)*sqrtf(1.0f+c))/((3.0f*k+c)*sqrtf(1.0f-c));
float beta_0 = s/(3.0f*k + c);
int idx_diagonal = manifoldRings[vid][2*zerothNeighbor + 1];
e0[vid].Clear(stencilCapacity);
e0[vid].AddWithWeight(boundaryEdgeNeighbors[0], 1.0f/6.0f);
e0[vid].AddWithWeight(boundaryEdgeNeighbors[1], -1.0f/6.0f);
e1[vid].Clear(stencilCapacity);
e1[vid].AddWithWeight(facePoints[vid], gamma);
e1[vid].AddWithWeight(idx_diagonal, beta_0);
e1[vid].AddWithWeight(boundaryEdgeNeighbors[0], alpha_0k);
e1[vid].AddWithWeight(boundaryEdgeNeighbors[1], alpha_0k);
for (int x=1; x<ivalence-1; ++x) {
Index curri = ((x + zerothNeighbor)%ivalence);
float alpha = (4.0f*sinf((float(M_PI) * float(x))/k))/(3.0f*k+c),
beta = (sinf((float(M_PI) * float(x))/k) + sinf((float(M_PI) * float(x+1))/k))/(3.0f*k+c);
Index idx_neighbor = manifoldRings[vid][2*curri + 0],
idx_diagonal = manifoldRings[vid][2*curri + 1];
e1[vid].AddWithWeight(idx_neighbor, alpha);
e1[vid].AddWithWeight(idx_diagonal, beta);
}
e1[vid] *= 1.0f/3.0f;
}
}
// the second phase
for (int vid=0; vid<4; ++vid) {
int n = abs(valences[vid]);
int ivalence = n;
int ip = (vid+1)%4,
im = (vid+3)%4,
np = abs(valences[ip]),
nm = abs(valences[im]);
Index start = -1, prev = -1, start_m = -1, prev_p = -1;
for (int i = 0; i < n; ++i) {
if (manifoldRings[vid][i*2] == facePoints[ip])
start = i;
if (manifoldRings[vid][i*2] == facePoints[im])
prev = i;
}
for (int i = 0; i < np; ++i) {
if (manifoldRings[ip][i*2] == facePoints[vid]) {
prev_p = i;
break;
}
}
for (int i = 0; i < nm; ++i) {
if (manifoldRings[im][i*2] == facePoints[vid]) {
start_m = i;
break;
}
}
assert(start != -1 && prev != -1 && start_m != -1 && prev_p != -1);
Point Em_ip = P[ip];
Point Ep_im = P[im];
if (valences[ip]<-2) {
Index j = (np + prev_p - zerothNeighbors[ip]) % np;
Em_ip.AddWithWeight(e0[ip], cosf((float(M_PI)*j)/float(np-1)));
Em_ip.AddWithWeight(e1[ip], sinf((float(M_PI)*j)/float(np-1)));
} else {
Em_ip.AddWithWeight(e0[ip], csf(np-3, 2*prev_p));
Em_ip.AddWithWeight(e1[ip], csf(np-3, 2*prev_p+1));
}
if (valences[im]<-2) {
Index j = (nm + start_m - zerothNeighbors[im]) % nm;
Ep_im.AddWithWeight(e0[im], cosf((float(M_PI)*j)/float(nm-1)));
Ep_im.AddWithWeight(e1[im], sinf((float(M_PI)*j)/float(nm-1)));
} else {
Ep_im.AddWithWeight(e0[im], csf(nm-3, 2*start_m));
Ep_im.AddWithWeight(e1[im], csf(nm-3, 2*start_m+1));
}
if (valences[vid] < 0) {
n = (n-1)*2;
}
if (valences[im] < 0) {
nm = (nm-1)*2;
}
if (valences[ip] < 0) {
np = (np-1)*2;
}
Point const * rp = &r[vid*maxvalence];
if (valences[vid] >= 2) {
float s1 = 3.0f - 2.0f*csf(n-3,2)-csf(np-3,2),
s2 = 2.0f*csf(n-3,2),
s3 = 3.0f -2.0f*cosf(2.0f*float(M_PI)/float(n)) - cosf(2.0f*float(M_PI)/float(nm));
Ep[vid] = P[vid];
Ep[vid].AddWithWeight(e0[vid], csf(n-3, 2*start));
Ep[vid].AddWithWeight(e1[vid], csf(n-3, 2*start +1));
Em[vid] = P[vid];
Em[vid].AddWithWeight(e0[vid], csf(n-3, 2*prev ));
Em[vid].AddWithWeight(e1[vid], csf(n-3, 2*prev + 1));
Fp[vid].Clear(stencilCapacity);
Fp[vid].AddWithWeight(P[vid], csf(np-3, 2)/3.0f);
Fp[vid].AddWithWeight(Ep[vid], s1/3.0f);
Fp[vid].AddWithWeight(Em_ip, s2/3.0f);
Fp[vid].AddWithWeight(rp[start], 1.0f/3.0f);
Fm[vid].Clear(stencilCapacity);
Fm[vid].AddWithWeight(P[vid], csf(nm-3, 2)/3.0f);
Fm[vid].AddWithWeight(Em[vid], s3/3.0f);
Fm[vid].AddWithWeight(Ep_im, s2/3.0f);
Fm[vid].AddWithWeight(rp[prev], -1.0f/3.0f);
} else if (valences[vid] < -2) {
Index jp = (ivalence + start - zerothNeighbors[vid]) % ivalence,
jm = (ivalence + prev - zerothNeighbors[vid]) % ivalence;
float s1 = 3-2*csf(n-3,2)-csf(np-3,2),
s2 = 2*csf(n-3,2),
s3 = 3.0f-2.0f*cosf(2.0f*float(M_PI)/n)-cosf(2.0f*float(M_PI)/nm);
Ep[vid] = P[vid];
Ep[vid].AddWithWeight(e0[vid], cosf((float(M_PI)*jp)/float(ivalence-1)));
Ep[vid].AddWithWeight(e1[vid], sinf((float(M_PI)*jp)/float(ivalence-1)));
Em[vid] = P[vid];
Em[vid].AddWithWeight(e0[vid], cosf((float(M_PI)*jm)/float(ivalence-1)));
Em[vid].AddWithWeight(e1[vid], sinf((float(M_PI)*jm)/float(ivalence-1)));
Fp[vid].Clear(stencilCapacity);
Fp[vid].AddWithWeight(P[vid], csf(np-3,2)/3.0f);
Fp[vid].AddWithWeight(Ep[vid], s1/3.0f);
Fp[vid].AddWithWeight(Em_ip, s2/3.0f);
Fp[vid].AddWithWeight(rp[start], 1.0f/3.0f);
Fm[vid].Clear(stencilCapacity);
Fm[vid].AddWithWeight(P[vid], csf(nm-3,2)/3.0f);
Fm[vid].AddWithWeight(Em[vid], s3/3.0f);
Fm[vid].AddWithWeight(Ep_im, s2/3.0f);
Fm[vid].AddWithWeight(rp[prev], -1.0f/3.0f);
if (valences[im]<0) {
s1=3-2*csf(n-3,2)-csf(np-3,2);
Fp[vid].Clear(stencilCapacity);
Fp[vid].AddWithWeight(P[vid], csf(np-3,2)/3.0f);
Fp[vid].AddWithWeight(Ep[vid], s1/3.0f);
Fp[vid].AddWithWeight(Em_ip, s2/3.0f);
Fp[vid].AddWithWeight(rp[start], 1.0f/3.0f);
Fm[vid] = Fp[vid];
} else if (valences[ip]<0) {
s1 = 3.0f-2.0f*cosf(2.0f*float(M_PI)/n)-cosf(2.0f*float(M_PI)/nm);
Fm[vid].Clear(stencilCapacity);
Fm[vid].AddWithWeight(P[vid], csf(nm-3,2)/3.0f);
Fm[vid].AddWithWeight(Em[vid], s1/3.0f);
Fm[vid].AddWithWeight(Ep_im, s2/3.0f);
Fm[vid].AddWithWeight(rp[prev], -1.0f/3.0f);
Fp[vid] = Fm[vid];
}
} else if (valences[vid]==-2) {
Ep[vid].Clear(stencilCapacity);
Ep[vid].AddWithWeight(facePoints[vid], 2.0f/3.0f);
Ep[vid].AddWithWeight(facePoints[ip], 1.0f/3.0f);
Em[vid].Clear(stencilCapacity);
Em[vid].AddWithWeight(facePoints[vid], 2.0f/3.0f);
Em[vid].AddWithWeight(facePoints[im], 1.0f/3.0f);
Fp[vid].Clear(stencilCapacity);
Fp[vid].AddWithWeight(facePoints[vid], 4.0f/9.0f);
Fp[vid].AddWithWeight(facePoints[((vid+2)%n)], 1.0f/9.0f);
Fp[vid].AddWithWeight(facePoints[ip], 2.0f/9.0f);
Fp[vid].AddWithWeight(facePoints[im], 2.0f/9.0f);
Fm[vid] = Fp[vid];
}
}
// offset stencil indices.
// These stencils are created relative to the level. Adding levelVertOffset,
// we get stencils with absolute indices
// (starts from the coarse level if the leveVertOffset includes level 0)
for (int i = 0; i < 4; ++i) {
P[i].OffsetIndices(levelVertOffset);
Ep[i].OffsetIndices(levelVertOffset);
Em[i].OffsetIndices(levelVertOffset);
Fp[i].OffsetIndices(levelVertOffset);
Fm[i].OffsetIndices(levelVertOffset);
}
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv