- modified main LimitMask queries to include subdivision Rule
- split internal mask assignments into corner, crease and smooth cases
- adapted all three schemes to the new structure
- completed limit tangents for Loop
- update TopologyRefiner Limit methods to pass newly required Rule
This is the first step to tease off Osd compute controller/contexts
from Far API.
Currently FarStencilTable only creates a kernelbatch for the entire range,
so we can use [0, numStencils) for all cases instead of KernelBatch.
This might not be true if we apply non-factorized level-wise stencils,
then we'll add another modular utility to serve those cases.
PatchTablesFactory fills 20 indices topology into patchtable, and use it for eval and draw.
note: currently screen-space adaptive tessellation of gregory basis patches is
broken and cracks appear around them.
- new Options for Refine() methods for base face and vertex ordering
- removed ignored/unused "full topology" choice from AdaptiveOptions
- added base face and vertex ordering logic to Refinement
- addition of TopologyRefiner members for component counts and max valence
- refactoring of Level additions to update all new member totals
- addition of GetMaxValence() to TopologyRefiner
- updated PatchTablesFactory to user new GetMaxValence() method
- renaming of "Hole" methods for TopologyRefiner and Vtr::Level
- regular patches now generated for faces with non-manifold vertices
- non-manifold features treated as boundary edges and vertices
- other minor cleanup/improvement in patch identification method
- commented on approx of smooth x-ordinary corner with regular sharp patch
- added edge-face local-indices to Vtr::Level members
- added internal and public access to edge-face local-indices
- updated refinement methods to use and populate edge-face local-indices
- updated refinement methods to be sensitive to degenerate edges
- added Vtr::VALENCE_LIMIT constant for internal use
- updated Vtr::Level topology completion to fail on valence overflow
- simplfied non-manifold edge handling in Vtr::Level topology completion
- updated warnings for all topology construction failures
- added detection and warning when passing non-triangles for Loop
- changed return type of Vtr array empty() to bool
- renamed and adjusted arguments to Vtr gather methods for consistency
- removed lone Vtr gather method that took an explicit offset
- updated usage of revised Vtr gather methods in Far
- fixed warnings redeclaring names of local variables already in use
- extend Far::PatchTables data structures & interfaces to store requisite
information for channels of face-varying bi-cubic patches
- implement gather function in Far::PatchTablesFactory to populate face-varying
channels with adaptive patches
- extend accessor interface in Vtr::Level
- propagate code fall-out throughout OpenSubdiv code base, examples & tutorials
- extend vtrViewer code to visualize tessellated bi-cubic face-varying patches
- added new tag for sharp corner, now used in isolation
- split single semi-sharp tag in two for vertex and edge sharpness
- updated tag propagation and all tests of previous semi-sharp tag
- added clear() methods for all tags and simplified initialization
- added Vtr::FVarLevel method to resolve correct index in level 0 case
- updated tag retrieval methods that used face-value array as input
- changed signatures to accept face-verts when needed and updated usage
- added methods to FVarLevel to combine FVar tags with vertex tags
- use composite of combined tag to find FVar features needing isolation
- added more tagging related to the "linear borders" interpolation case
- added FVar channel consideration to TopologyRefiner's feature selection
- added more simple access methods to FVarLevel
- added _xordinary tag to FVarLevel::ValueTag; initialize and refine
- added composite tag method for FVarLevel::ValueTag similar to Level::VTag
- parameterize FVar topology initialization with regular valence
- move patch interpolation code out of Far::PatchTables into far/interpolate
- add bilinear quad interpolation function with derivatives
- switch OsdCpuEvalLimitController to far/interpolate
- add support for bilinear quad interpolation & clean varying interpolation
- all Factory<MESH> methods to specialize now return bool
- added topology validation of base level as indicated by option
- added populateBaseLevel() back to simplify premature failure
- renamed Sdc::Type to SchemeType and TypeTraits to SchemeTypeTraits
- renamed TYPE_ prefix to SCHEME_
- updated all usage within core library
- updated all usage in examples, tutorials, etc.
- fixed naming consistency of protected methods used by Factory
- removed other unused and/or redundant protected methods
- update Far Factories to reflect changes to Refiner methods
- updated usage in tutorials and regression
- changed template parameter to runtime method parameter
- added traits as static methods of all schemes
- constructed internal table of traits from all schemes
- move level of refinement / isolation into the Options structs
- fix splash damage in rest of the code
note 1: this is less than ideal, because most compilers accept the previous
call to these functions with an incorrect parameter list (ie. passing
the level instead of the struct issues no warnings and compiles...)
caveat emptor...
note 2: the level parameter names may not be final for adaptive modes
as we will likely want independent controls over crease vs.
extraordinary vertex isolation.
- don't rotate (s,t) coordinates but rotate the patch instead !
- refactor osd/cpuEvalLimitKernels to share Far::PatchTables cubic spline
interpolation functions : this replaces tensor product formulation with
weight matrices, which does not really impact performance here, but would
have to be replaced when implementing regular gridding functions.
- fix OsdCpuEvalLimitController to not rotate coordinates and pass the rotation bitfields
- expose Far::PatchTables spline interpolation API (protected -> public)
- fix glEvalLimit tangent buffers (remove empty padding - see below)
- change policy for tangent buffers : the output buffer descriptor is
**NO LONGER APPLIED** to tangent output buffers. Tangent primvar data
buffers are no longer applying the offset and stride from the descriptor
(because it doesn't make sense to share it). If more flexiblity is
required, we will consider adding independent descriptors for the tangent
buffers. This change will impact existing code that generates tangents
with the EvalLimit controller.
fixes#370