OpenSubdiv/opensubdiv/osd/patchBasis.h
David G Yu fa5b57caba Reorganized osd/patchBasis and osd/patchBasisTypes
Folded osd/patchBasisCommon.h and osd/patchBasisCommonEval.h into the
single header file osd/patchBasis.h and renamed osd/PatchBasisCommonTypes.h
to osd/patchBasisTypes.h

Moved these into the OpenSubdiv::Osd namespace when compiled for C++ and
added a brief comment describing the intended use cases for this code.
2023-09-13 16:47:32 -07:00

1628 lines
57 KiB
C++

//
// Copyright 2016-2018 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef OPENSUBDIV3_OSD_PATCH_BASIS_H
#define OPENSUBDIV3_OSD_PATCH_BASIS_H
/// This is an implementation of the functionality from far/patchBasis.h
/// which can be used from client shader and kernel code, i.e for
/// GLSL, HLSL, CUDA, OpenCL, Metal, and C++ shaders and kernels.
///
/// This is defined within the OpenSubdiv::Osd namespace for C++, but
/// the methods and types also have an Osd prefix for consistency with
/// environments (e.g. GLSL, etc.) where C++ namespaces are not available.
#if !defined(OSD_PATCH_BASIS_GLSL) && \
!defined(OSD_PATCH_BASIS_HLSL) && \
!defined(OSD_PATCH_BASIS_CUDA) && \
!defined(OSD_PATCH_BASIS_OPENCL) && \
!defined(OSD_PATCH_BASIS_METAL)
#include "../version.h"
#include "../osd/patchBasisTypes.h"
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Osd {
#endif
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
int
Osd_EvalBasisLinear(OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDs, 4),
OSD_OUT_ARRAY(OSD_REAL, wDt, 4),
OSD_OUT_ARRAY(OSD_REAL, wDss, 4),
OSD_OUT_ARRAY(OSD_REAL, wDst, 4),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 4)) {
OSD_REAL sC = 1.0f - s;
OSD_REAL tC = 1.0f - t;
if (OSD_OPTIONAL(wP)) {
wP[0] = sC * tC;
wP[1] = s * tC;
wP[2] = s * t;
wP[3] = sC * t;
}
if (OSD_OPTIONAL(wDs && wDt)) {
wDs[0] = -tC;
wDs[1] = tC;
wDs[2] = t;
wDs[3] = -t;
wDt[0] = -sC;
wDt[1] = -s;
wDt[2] = s;
wDt[3] = sC;
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
for(int i = 0; i < 4; ++i) {
wDss[i] = 0.0f;
wDtt[i] = 0.0f;
}
wDst[0] = 1.0f;
wDst[1] = -1.0f;
wDst[2] = 1.0f;
wDst[3] = -1.0f;
}
}
return 4;
}
// namespace {
//
// Cubic BSpline curve basis evaluation:
//
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_evalBSplineCurve(OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDP2, 4)) {
const OSD_REAL one6th = OSD_REAL_CAST(1.0f / 6.0f);
OSD_REAL t2 = t * t;
OSD_REAL t3 = t * t2;
wP[0] = one6th * (1.0f - 3.0f*(t - t2) - t3);
wP[1] = one6th * (4.0f - 6.0f*t2 + 3.0f*t3);
wP[2] = one6th * (1.0f + 3.0f*(t + t2 - t3));
wP[3] = one6th * ( t3);
if (OSD_OPTIONAL(wDP)) {
wDP[0] = -0.5f*t2 + t - 0.5f;
wDP[1] = 1.5f*t2 - 2.0f*t;
wDP[2] = -1.5f*t2 + t + 0.5f;
wDP[3] = 0.5f*t2;
}
if (OSD_OPTIONAL(wDP2)) {
wDP2[0] = - t + 1.0f;
wDP2[1] = 3.0f * t - 2.0f;
wDP2[2] = -3.0f * t + 1.0f;
wDP2[3] = t;
}
}
//
// Weight adjustments to account for phantom end points:
//
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_adjustBSplineBoundaryWeights(
int boundary,
OSD_INOUT_ARRAY(OSD_REAL, w, 16)) {
if ((boundary & 1) != 0) {
for (int i = 0; i < 4; ++i) {
w[i + 8] -= w[i + 0];
w[i + 4] += w[i + 0] * 2.0f;
w[i + 0] = 0.0f;
}
}
if ((boundary & 2) != 0) {
for (int i = 0; i < 16; i += 4) {
w[i + 1] -= w[i + 3];
w[i + 2] += w[i + 3] * 2.0f;
w[i + 3] = 0.0f;
}
}
if ((boundary & 4) != 0) {
for (int i = 0; i < 4; ++i) {
w[i + 4] -= w[i + 12];
w[i + 8] += w[i + 12] * 2.0f;
w[i + 12] = 0.0f;
}
}
if ((boundary & 8) != 0) {
for (int i = 0; i < 16; i += 4) {
w[i + 2] -= w[i + 0];
w[i + 1] += w[i + 0] * 2.0f;
w[i + 0] = 0.0f;
}
}
}
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_boundBasisBSpline(
int boundary,
OSD_INOUT_ARRAY(OSD_REAL, wP, 16),
OSD_INOUT_ARRAY(OSD_REAL, wDs, 16),
OSD_INOUT_ARRAY(OSD_REAL, wDt, 16),
OSD_INOUT_ARRAY(OSD_REAL, wDss, 16),
OSD_INOUT_ARRAY(OSD_REAL, wDst, 16),
OSD_INOUT_ARRAY(OSD_REAL, wDtt, 16)) {
if (OSD_OPTIONAL(wP)) {
Osd_adjustBSplineBoundaryWeights(boundary, wP);
}
if (OSD_OPTIONAL(wDs && wDt)) {
Osd_adjustBSplineBoundaryWeights(boundary, wDs);
Osd_adjustBSplineBoundaryWeights(boundary, wDt);
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
Osd_adjustBSplineBoundaryWeights(boundary, wDss);
Osd_adjustBSplineBoundaryWeights(boundary, wDst);
Osd_adjustBSplineBoundaryWeights(boundary, wDtt);
}
}
}
// } // end namespace
OSD_FUNCTION_STORAGE_CLASS
int
Osd_EvalBasisBSpline(OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 16),
OSD_OUT_ARRAY(OSD_REAL, wDs, 16),
OSD_OUT_ARRAY(OSD_REAL, wDt, 16),
OSD_OUT_ARRAY(OSD_REAL, wDss, 16),
OSD_OUT_ARRAY(OSD_REAL, wDst, 16),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 16)) {
OSD_REAL sWeights[4], tWeights[4], dsWeights[4], dtWeights[4], dssWeights[4], dttWeights[4];
Osd_evalBSplineCurve(s, sWeights, OSD_OPTIONAL_INIT(wDs, dsWeights), OSD_OPTIONAL_INIT(wDss, dssWeights));
Osd_evalBSplineCurve(t, tWeights, OSD_OPTIONAL_INIT(wDt, dtWeights), OSD_OPTIONAL_INIT(wDtt, dttWeights));
if (OSD_OPTIONAL(wP)) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wP[4*i+j] = sWeights[j] * tWeights[i];
}
}
}
if (OSD_OPTIONAL(wDs && wDt)) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wDs[4*i+j] = dsWeights[j] * tWeights[i];
wDt[4*i+j] = sWeights[j] * dtWeights[i];
}
}
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wDss[4*i+j] = dssWeights[j] * tWeights[i];
wDst[4*i+j] = dsWeights[j] * dtWeights[i];
wDtt[4*i+j] = sWeights[j] * dttWeights[i];
}
}
}
}
return 16;
}
// namespace {
//
// Cubic Bezier curve basis evaluation:
//
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_evalBezierCurve(
OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDP2, 4)) {
// The four uniform cubic Bezier basis functions (in terms of t and its
// complement tC) evaluated at t:
OSD_REAL t2 = t*t;
OSD_REAL tC = 1.0f - t;
OSD_REAL tC2 = tC * tC;
wP[0] = tC2 * tC;
wP[1] = tC2 * t * 3.0f;
wP[2] = t2 * tC * 3.0f;
wP[3] = t2 * t;
// Derivatives of the above four basis functions at t:
if (OSD_OPTIONAL(wDP)) {
wDP[0] = -3.0f * tC2;
wDP[1] = 9.0f * t2 - 12.0f * t + 3.0f;
wDP[2] = -9.0f * t2 + 6.0f * t;
wDP[3] = 3.0f * t2;
}
// Second derivatives of the basis functions at t:
if (OSD_OPTIONAL(wDP2)) {
wDP2[0] = 6.0f * tC;
wDP2[1] = 18.0f * t - 12.0f;
wDP2[2] = -18.0f * t + 6.0f;
wDP2[3] = 6.0f * t;
}
}
// } // end namespace
OSD_FUNCTION_STORAGE_CLASS
int
Osd_EvalBasisBezier(OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 16),
OSD_OUT_ARRAY(OSD_REAL, wDs, 16),
OSD_OUT_ARRAY(OSD_REAL, wDt, 16),
OSD_OUT_ARRAY(OSD_REAL, wDss, 16),
OSD_OUT_ARRAY(OSD_REAL, wDst, 16),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 16)) {
OSD_REAL sWeights[4], tWeights[4], dsWeights[4], dtWeights[4], dssWeights[4], dttWeights[4];
Osd_evalBezierCurve(s, OSD_OPTIONAL_INIT(wP, sWeights), OSD_OPTIONAL_INIT(wDs, dsWeights), OSD_OPTIONAL_INIT(wDss, dssWeights));
Osd_evalBezierCurve(t, OSD_OPTIONAL_INIT(wP, tWeights), OSD_OPTIONAL_INIT(wDt, dtWeights), OSD_OPTIONAL_INIT(wDtt, dttWeights));
if (OSD_OPTIONAL(wP)) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wP[4*i+j] = sWeights[j] * tWeights[i];
}
}
}
if (OSD_OPTIONAL(wDs && wDt)) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wDs[4*i+j] = dsWeights[j] * tWeights[i];
wDt[4*i+j] = sWeights[j] * dtWeights[i];
}
}
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wDss[4*i+j] = dssWeights[j] * tWeights[i];
wDst[4*i+j] = dsWeights[j] * dtWeights[i];
wDtt[4*i+j] = sWeights[j] * dttWeights[i];
}
}
}
}
return 16;
}
OSD_FUNCTION_STORAGE_CLASS
int
Osd_EvalBasisGregory(OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 20),
OSD_OUT_ARRAY(OSD_REAL, wDs, 20),
OSD_OUT_ARRAY(OSD_REAL, wDt, 20),
OSD_OUT_ARRAY(OSD_REAL, wDss, 20),
OSD_OUT_ARRAY(OSD_REAL, wDst, 20),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 20)) {
// Indices of boundary and interior points and their corresponding Bezier points
// (this can be reduced with more direct indexing and unrolling of loops):
//
OSD_DATA_STORAGE_CLASS const int boundaryGregory[12] = OSD_ARRAY_12(int, 0, 1, 7, 5, 2, 6, 16, 12, 15, 17, 11, 10 );
OSD_DATA_STORAGE_CLASS const int boundaryBezSCol[12] = OSD_ARRAY_12(int, 0, 1, 2, 3, 0, 3, 0, 3, 0, 1, 2, 3 );
OSD_DATA_STORAGE_CLASS const int boundaryBezTRow[12] = OSD_ARRAY_12(int, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3 );
OSD_DATA_STORAGE_CLASS const int interiorGregory[8] = OSD_ARRAY_8(int, 3, 4, 8, 9, 13, 14, 18, 19 );
OSD_DATA_STORAGE_CLASS const int interiorBezSCol[8] = OSD_ARRAY_8(int, 1, 1, 2, 2, 2, 2, 1, 1 );
OSD_DATA_STORAGE_CLASS const int interiorBezTRow[8] = OSD_ARRAY_8(int, 1, 1, 1, 1, 2, 2, 2, 2 );
//
// Bezier basis functions are denoted with B while the rational multipliers for the
// interior points will be denoted G -- so we have B(s), B(t) and G(s,t):
//
// Directional Bezier basis functions B at s and t:
OSD_REAL Bs[4], Bds[4], Bdss[4];
OSD_REAL Bt[4], Bdt[4], Bdtt[4];
Osd_evalBezierCurve(s, Bs, OSD_OPTIONAL_INIT(wDs, Bds), OSD_OPTIONAL_INIT(wDss, Bdss));
Osd_evalBezierCurve(t, Bt, OSD_OPTIONAL_INIT(wDt, Bdt), OSD_OPTIONAL_INIT(wDtt, Bdtt));
// Rational multipliers G at s and t:
OSD_REAL sC = 1.0f - s;
OSD_REAL tC = 1.0f - t;
// Use <= here to avoid compiler warnings -- the sums should always be non-negative:
OSD_REAL df0 = s + t; df0 = (df0 <= 0.0f) ? 1.0f : (1.0f / df0);
OSD_REAL df1 = sC + t; df1 = (df1 <= 0.0f) ? 1.0f : (1.0f / df1);
OSD_REAL df2 = sC + tC; df2 = (df2 <= 0.0f) ? 1.0f : (1.0f / df2);
OSD_REAL df3 = s + tC; df3 = (df3 <= 0.0f) ? 1.0f : (1.0f / df3);
// Make sure the G[i] for pairs of interior points sum to 1 in all cases:
OSD_REAL G[8] = OSD_ARRAY_8(OSD_REAL, s*df0, (1.0f - s*df0),
t*df1, (1.0f - t*df1),
sC*df2, (1.0f - sC*df2),
tC*df3, (1.0f - tC*df3) );
// Combined weights for boundary and interior points:
for (int i = 0; i < 12; ++i) {
wP[boundaryGregory[i]] = Bs[boundaryBezSCol[i]] * Bt[boundaryBezTRow[i]];
}
for (int j = 0; j < 8; ++j) {
wP[interiorGregory[j]] = Bs[interiorBezSCol[j]] * Bt[interiorBezTRow[j]] * G[j];
}
//
// For derivatives, the basis functions for the interior points are rational and ideally
// require appropriate differentiation, i.e. product rule for the combination of B and G
// and the quotient rule for the rational G itself. As initially proposed by Loop et al
// though, the approximation using the 16 Bezier points arising from the G(s,t) has
// proved adequate (and is what the GPU shaders use) so we continue to use that here.
//
// An implementation of the true derivatives is provided and conditionally compiled for
// those that require it, e.g.:
//
// dclyde's note: skipping half of the product rule like this does seem to change the
// result a lot in my tests. This is not a runtime bottleneck for cloth sims anyway
// so I'm just using the accurate version.
//
if (OSD_OPTIONAL(wDs && wDt)) {
bool find_second_partials = OSD_OPTIONAL(wDs && wDst && wDtt);
// Combined weights for boundary points -- simple tensor products:
for (int i = 0; i < 12; ++i) {
int iDst = boundaryGregory[i];
int tRow = boundaryBezTRow[i];
int sCol = boundaryBezSCol[i];
wDs[iDst] = Bds[sCol] * Bt[tRow];
wDt[iDst] = Bdt[tRow] * Bs[sCol];
if (find_second_partials) {
wDss[iDst] = Bdss[sCol] * Bt[tRow];
wDst[iDst] = Bds[sCol] * Bdt[tRow];
wDtt[iDst] = Bs[sCol] * Bdtt[tRow];
}
}
#ifndef OPENSUBDIV_GREGORY_EVAL_TRUE_DERIVATIVES
// Approximation to the true Gregory derivatives by differentiating the Bezier patch
// unique to the given (s,t), i.e. having F = (g^+ * f^+) + (g^- * f^-) as its four
// interior points:
//
// Combined weights for interior points -- tensor products with G+ or G-:
for (int j = 0; j < 8; ++j) {
int iDst = interiorGregory[j];
int tRow = interiorBezTRow[j];
int sCol = interiorBezSCol[j];
wDs[iDst] = Bds[sCol] * Bt[tRow] * G[j];
wDt[iDst] = Bdt[tRow] * Bs[sCol] * G[j];
if (find_second_partials) {
wDss[iDst] = Bdss[sCol] * Bt[tRow] * G[j];
wDst[iDst] = Bds[sCol] * Bdt[tRow] * G[j];
wDtt[iDst] = Bs[sCol] * Bdtt[tRow] * G[j];
}
}
#else
// True Gregory derivatives using appropriate differentiation of composite functions:
//
// Note that for G(s,t) = N(s,t) / D(s,t), all N' and D' are trivial constants (which
// simplifies things for higher order derivatives). And while each pair of functions
// G (i.e. the G+ and G- corresponding to points f+ and f-) must sum to 1 to ensure
// Bezier equivalence (when f+ = f-), the pairs of G' must similarly sum to 0. So we
// can potentially compute only one of the pair and negate the result for the other
// (and with 4 or 8 computations involving these constants, this is all very SIMD
// friendly...) but for now we treat all 8 independently for simplicity.
//
//float N[8] = OSD_ARRAY_8(float, s, t, t, sC, sC, tC, tC, s );
OSD_REAL D[8] = OSD_ARRAY_8(OSD_REAL, df0, df0, df1, df1, df2, df2, df3, df3 );
OSD_DATA_STORAGE_CLASS const OSD_REAL Nds[8] = OSD_ARRAY_8(OSD_REAL, 1.0f, 0.0f, 0.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f );
OSD_DATA_STORAGE_CLASS const OSD_REAL Ndt[8] = OSD_ARRAY_8(OSD_REAL, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, -1.0f, -1.0f, 0.0f );
OSD_DATA_STORAGE_CLASS const OSD_REAL Dds[8] = OSD_ARRAY_8(OSD_REAL, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 1.0f );
OSD_DATA_STORAGE_CLASS const OSD_REAL Ddt[8] = OSD_ARRAY_8(OSD_REAL, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f );
// Combined weights for interior points -- (scaled) combinations of B, B', G and G':
for (int k = 0; k < 8; ++k) {
int iDst = interiorGregory[k];
int tRow = interiorBezTRow[k];
int sCol = interiorBezSCol[k];
// Quotient rule for G' (re-expressed in terms of G to simplify (and D = 1/D)):
OSD_REAL Gds = (Nds[k] - Dds[k] * G[k]) * D[k];
OSD_REAL Gdt = (Ndt[k] - Ddt[k] * G[k]) * D[k];
// Product rule combining B and B' with G and G':
wDs[iDst] = (Bds[sCol] * G[k] + Bs[sCol] * Gds) * Bt[tRow];
wDt[iDst] = (Bdt[tRow] * G[k] + Bt[tRow] * Gdt) * Bs[sCol];
if (find_second_partials) {
OSD_REAL Dsqr_inv = D[k]*D[k];
OSD_REAL Gdss = 2.0f * Dds[k] * Dsqr_inv * (G[k] * Dds[k] - Nds[k]);
OSD_REAL Gdst = Dsqr_inv * (2.0f * G[k] * Dds[k] * Ddt[k] - Nds[k] * Ddt[k] - Ndt[k] * Dds[k]);
OSD_REAL Gdtt = 2.0f * Ddt[k] * Dsqr_inv * (G[k] * Ddt[k] - Ndt[k]);
wDss[iDst] = (Bdss[sCol] * G[k] + 2.0f * Bds[sCol] * Gds + Bs[sCol] * Gdss) * Bt[tRow];
wDst[iDst] = Bt[tRow] * (Bs[sCol] * Gdst + Bds[sCol] * Gdt) +
Bdt[tRow] * (Bds[sCol] * G[k] + Bs[sCol] * Gds);
wDtt[iDst] = (Bdtt[tRow] * G[k] + 2.0f * Bdt[tRow] * Gdt + Bt[tRow] * Gdtt) * Bs[sCol];
}
}
#endif
}
return 20;
}
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
int
Osd_EvalBasisLinearTri(OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 3),
OSD_OUT_ARRAY(OSD_REAL, wDs, 3),
OSD_OUT_ARRAY(OSD_REAL, wDt, 3),
OSD_OUT_ARRAY(OSD_REAL, wDss, 3),
OSD_OUT_ARRAY(OSD_REAL, wDst, 3),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 3)) {
if (OSD_OPTIONAL(wP)) {
wP[0] = 1.0f - s - t;
wP[1] = s;
wP[2] = t;
}
if (OSD_OPTIONAL(wDs && wDt)) {
wDs[0] = -1.0f;
wDs[1] = 1.0f;
wDs[2] = 0.0f;
wDt[0] = -1.0f;
wDt[1] = 0.0f;
wDt[2] = 1.0f;
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
wDss[0] = wDss[1] = wDss[2] = 0.0f;
wDst[0] = wDst[1] = wDst[2] = 0.0f;
wDtt[0] = wDtt[1] = wDtt[2] = 0.0f;
}
}
return 3;
}
// namespace {
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_evalBivariateMonomialsQuartic(
OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, M, 15)) {
M[0] = 1.0;
M[1] = s;
M[2] = t;
M[3] = s * s;
M[4] = s * t;
M[5] = t * t;
M[6] = M[3] * s;
M[7] = M[4] * s;
M[8] = M[4] * t;
M[9] = M[5] * t;
M[10] = M[6] * s;
M[11] = M[7] * s;
M[12] = M[3] * M[5];
M[13] = M[8] * t;
M[14] = M[9] * t;
}
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_evalBoxSplineTriDerivWeights(
OSD_INOUT_ARRAY(OSD_REAL, /*stMonomials*/M, 15),
int ds, int dt,
OSD_OUT_ARRAY(OSD_REAL, w, 12)) {
// const OSD_REAL M[15] = stMonomials;
OSD_REAL S = 1.0f;
int totalOrder = ds + dt;
if (totalOrder == 0) {
S *= OSD_REAL_CAST(1.0f / 12.0f);
w[0] = S * (1 - 2*M[1] - 4*M[2] + 6*M[4] + 6*M[5] + 2*M[6] - 6*M[8] - 4*M[9] - M[10] - 2*M[11] + 2*M[13] + M[14]);
w[1] = S * (1 + 2*M[1] - 2*M[2] - 6*M[4] - 4*M[6] + 6*M[8] + 2*M[9] + 2*M[10] + 4*M[11] - 2*M[13] - M[14]);
w[2] = S * ( 2*M[6] - M[10] - 2*M[11] );
w[3] = S * (1 - 4*M[1] - 2*M[2] + 6*M[3] + 6*M[4] - 4*M[6] - 6*M[7] + 2*M[9] + M[10] + 2*M[11] - 2*M[13] - M[14]);
w[4] = S * (6 -12*M[3] -12*M[4] -12*M[5] + 8*M[6] +12*M[7] +12*M[8] + 8*M[9] - M[10] - 2*M[11] - 2*M[13] - M[14]);
w[5] = S * (1 + 4*M[1] + 2*M[2] + 6*M[3] + 6*M[4] - 4*M[6] - 6*M[7] -12*M[8] - 4*M[9] - M[10] - 2*M[11] + 4*M[13] + 2*M[14]);
w[6] = S * ( M[10] + 2*M[11] );
w[7] = S * (1 - 2*M[1] + 2*M[2] - 6*M[4] + 2*M[6] + 6*M[7] - 4*M[9] - M[10] - 2*M[11] + 4*M[13] + 2*M[14]);
w[8] = S * (1 + 2*M[1] + 4*M[2] + 6*M[4] + 6*M[5] - 4*M[6] -12*M[7] - 6*M[8] - 4*M[9] + 2*M[10] + 4*M[11] - 2*M[13] - M[14]);
w[9] = S * ( 2*M[6] + 6*M[7] + 6*M[8] + 2*M[9] - M[10] - 2*M[11] - 2*M[13] - M[14]);
w[10] = S * ( 2*M[9] - 2*M[13] - M[14]);
w[11] = S * ( 2*M[13] + M[14]);
} else if (totalOrder == 1) {
S *= OSD_REAL_CAST(1.0f / 6.0f);
if (ds != 0) {
w[0] = S * (-1 + 3*M[2] + 3*M[3] - 3*M[5] - 2*M[6] - 3*M[7] + M[9]);
w[1] = S * ( 1 - 3*M[2] - 6*M[3] + 3*M[5] + 4*M[6] + 6*M[7] - M[9]);
w[2] = S * ( 3*M[3] - 2*M[6] - 3*M[7] );
w[3] = S * (-2 + 6*M[1] + 3*M[2] - 6*M[3] - 6*M[4] + 2*M[6] + 3*M[7] - M[9]);
w[4] = S * ( -12*M[1] - 6*M[2] +12*M[3] +12*M[4] + 6*M[5] - 2*M[6] - 3*M[7] - M[9]);
w[5] = S * ( 2 + 6*M[1] + 3*M[2] - 6*M[3] - 6*M[4] - 6*M[5] - 2*M[6] - 3*M[7] + 2*M[9]);
w[6] = S * ( 2*M[6] + 3*M[7] );
w[7] = S * (-1 - 3*M[2] + 3*M[3] + 6*M[4] - 2*M[6] - 3*M[7] + 2*M[9]);
w[8] = S * ( 1 + 3*M[2] - 6*M[3] -12*M[4] - 3*M[5] + 4*M[6] + 6*M[7] - M[9]);
w[9] = S * ( 3*M[3] + 6*M[4] + 3*M[5] - 2*M[6] - 3*M[7] - M[9]);
w[10] = S * ( - M[9]);
w[11] = S * ( M[9]);
} else {
w[0] = S * (-2 + 3*M[1] + 6*M[2] - 6*M[4] - 6*M[5] - M[6] + 3*M[8] + 2*M[9]);
w[1] = S * (-1 - 3*M[1] + 6*M[4] + 3*M[5] + 2*M[6] - 3*M[8] - 2*M[9]);
w[2] = S * ( - M[6] );
w[3] = S * (-1 + 3*M[1] - 3*M[3] + 3*M[5] + M[6] - 3*M[8] - 2*M[9]);
w[4] = S * ( - 6*M[1] -12*M[2] + 6*M[3] +12*M[4] +12*M[5] - M[6] - 3*M[8] - 2*M[9]);
w[5] = S * ( 1 + 3*M[1] - 3*M[3] -12*M[4] - 6*M[5] - M[6] + 6*M[8] + 4*M[9]);
w[6] = S * ( + M[6] );
w[7] = S * ( 1 - 3*M[1] + 3*M[3] - 6*M[5] - M[6] + 6*M[8] + 4*M[9]);
w[8] = S * ( 2 + 3*M[1] + 6*M[2] - 6*M[3] - 6*M[4] - 6*M[5] + 2*M[6] - 3*M[8] - 2*M[9]);
w[9] = S * ( + 3*M[3] + 6*M[4] + 3*M[5] - M[6] - 3*M[8] - 2*M[9]);
w[10] = S * ( 3*M[5] - 3*M[8] - 2*M[9]);
w[11] = S * ( 3*M[8] + 2*M[9]);
}
} else if (totalOrder == 2) {
if (ds == 2) {
w[0] = S * ( + M[1] - M[3] - M[4]);
w[1] = S * ( - 2*M[1] + 2*M[3] + 2*M[4]);
w[2] = S * ( M[1] - M[3] - M[4]);
w[3] = S * ( 1 - 2*M[1] - M[2] + M[3] + M[4]);
w[4] = S * (-2 + 4*M[1] + 2*M[2] - M[3] - M[4]);
w[5] = S * ( 1 - 2*M[1] - M[2] - M[3] - M[4]);
w[6] = S * ( M[3] + M[4]);
w[7] = S * ( + M[1] + M[2] - M[3] - M[4]);
w[8] = S * ( - 2*M[1] - 2*M[2] + 2*M[3] + 2*M[4]);
w[9] = S * ( M[1] + M[2] - M[3] - M[4]);
w[10] = 0;
w[11] = 0;
} else if (dt == 2) {
w[0] = S * ( 1 - M[1] - 2*M[2] + M[4] + M[5]);
w[1] = S * ( + M[1] + M[2] - M[4] - M[5]);
w[2] = 0;
w[3] = S * ( + M[2] - M[4] - M[5]);
w[4] = S * (-2 + 2*M[1] + 4*M[2] - M[4] - M[5]);
w[5] = S * ( - 2*M[1] - 2*M[2] + 2*M[4] + 2*M[5]);
w[6] = 0;
w[7] = S * ( - 2*M[2] + 2*M[4] + 2*M[5]);
w[8] = S * ( 1 - M[1] - 2*M[2] - M[4] - M[5]);
w[9] = S * ( + M[1] + M[2] - M[4] - M[5]);
w[10] = S * ( M[2] - M[4] - M[5]);
w[11] = S * ( M[4] + M[5]);
} else {
S *= OSD_REAL_CAST(1.0f / 2.0f);
w[0] = S * ( 1 - 2*M[2] - M[3] + M[5]);
w[1] = S * (-1 + 2*M[2] + 2*M[3] - M[5]);
w[2] = S * ( - M[3] );
w[3] = S * ( 1 - 2*M[1] + M[3] - M[5]);
w[4] = S * (-2 + 4*M[1] + 4*M[2] - M[3] - M[5]);
w[5] = S * ( 1 - 2*M[1] - 4*M[2] - M[3] + 2*M[5]);
w[6] = S * ( + M[3] );
w[7] = S * (-1 + 2*M[1] - M[3] + 2*M[5]);
w[8] = S * ( 1 - 4*M[1] - 2*M[2] + 2*M[3] - M[5]);
w[9] = S * ( + 2*M[1] + 2*M[2] - M[3] - M[5]);
w[10] = S * ( - M[5]);
w[11] = S * ( M[5]);
}
} else {
// assert(totalOrder <= 2);
}
}
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_adjustBoxSplineTriBoundaryWeights(
int boundaryMask,
OSD_INOUT_ARRAY(OSD_REAL, weights, 12)) {
if (boundaryMask == 0) return;
//
// Determine boundary edges and vertices from the lower 3 and upper
// 2 bits of the 5-bit mask:
//
int upperBits = (boundaryMask >> 3) & 0x3;
int lowerBits = boundaryMask & 7;
int eBits = lowerBits;
int vBits = 0;
if (upperBits == 1) {
// Boundary vertices only:
vBits = eBits;
eBits = 0;
} else if (upperBits == 2) {
// Opposite vertex bit is edge bit rotated one to the right:
vBits = ((eBits & 1) << 2) | (eBits >> 1);
}
bool edge0IsBoundary = (eBits & 1) != 0;
bool edge1IsBoundary = (eBits & 2) != 0;
bool edge2IsBoundary = (eBits & 4) != 0;
//
// Adjust weights for the 4 boundary points and 3 interior points
// to account for the 3 phantom points adjacent to each
// boundary edge:
//
if (edge0IsBoundary) {
OSD_REAL w0 = weights[0];
if (edge2IsBoundary) {
// P0 = B1 + (B1 - I1)
weights[4] += w0;
weights[4] += w0;
weights[8] -= w0;
} else {
// P0 = B1 + (B0 - I0)
weights[4] += w0;
weights[3] += w0;
weights[7] -= w0;
}
// P1 = B1 + (B2 - I1)
OSD_REAL w1 = weights[1];
weights[4] += w1;
weights[5] += w1;
weights[8] -= w1;
OSD_REAL w2 = weights[2];
if (edge1IsBoundary) {
// P2 = B2 + (B2 - I1)
weights[5] += w2;
weights[5] += w2;
weights[8] -= w2;
} else {
// P2 = B2 + (B3 - I2)
weights[5] += w2;
weights[6] += w2;
weights[9] -= w2;
}
// Clear weights for the phantom points:
weights[0] = weights[1] = weights[2] = 0.0f;
}
if (edge1IsBoundary) {
OSD_REAL w0 = weights[6];
if (edge0IsBoundary) {
// P0 = B1 + (B1 - I1)
weights[5] += w0;
weights[5] += w0;
weights[4] -= w0;
} else {
// P0 = B1 + (B0 - I0)
weights[5] += w0;
weights[2] += w0;
weights[1] -= w0;
}
// P1 = B1 + (B2 - I1)
OSD_REAL w1 = weights[9];
weights[5] += w1;
weights[8] += w1;
weights[4] -= w1;
OSD_REAL w2 = weights[11];
if (edge2IsBoundary) {
// P2 = B2 + (B2 - I1)
weights[8] += w2;
weights[8] += w2;
weights[4] -= w2;
} else {
// P2 = B2 + (B3 - I2)
weights[8] += w2;
weights[10] += w2;
weights[7] -= w2;
}
// Clear weights for the phantom points:
weights[6] = weights[9] = weights[11] = 0.0f;
}
if (edge2IsBoundary) {
OSD_REAL w0 = weights[10];
if (edge1IsBoundary) {
// P0 = B1 + (B1 - I1)
weights[8] += w0;
weights[8] += w0;
weights[5] -= w0;
} else {
// P0 = B1 + (B0 - I0)
weights[8] += w0;
weights[11] += w0;
weights[9] -= w0;
}
// P1 = B1 + (B2 - I1)
OSD_REAL w1 = weights[7];
weights[8] += w1;
weights[4] += w1;
weights[5] -= w1;
OSD_REAL w2 = weights[3];
if (edge0IsBoundary) {
// P2 = B2 + (B2 - I1)
weights[4] += w2;
weights[4] += w2;
weights[5] -= w2;
} else {
// P2 = B2 + (B3 - I2)
weights[4] += w2;
weights[0] += w2;
weights[1] -= w2;
}
// Clear weights for the phantom points:
weights[10] = weights[7] = weights[3] = 0.0f;
}
//
// Adjust weights for the 3 boundary points and the 2 interior
// points to account for the 2 phantom points adjacent to
// each boundary vertex:
//
if ((vBits & 1) != 0) {
// P0 = B1 + (B0 - I0)
OSD_REAL w0 = weights[3];
weights[4] += w0;
weights[7] += w0;
weights[8] -= w0;
// P1 = B1 + (B2 - I1)
OSD_REAL w1 = weights[0];
weights[4] += w1;
weights[1] += w1;
weights[5] -= w1;
// Clear weights for the phantom points:
weights[3] = weights[0] = 0.0f;
}
if ((vBits & 2) != 0) {
// P0 = B1 + (B0 - I0)
OSD_REAL w0 = weights[2];
weights[5] += w0;
weights[1] += w0;
weights[4] -= w0;
// P1 = B1 + (B2 - I1)
OSD_REAL w1 = weights[6];
weights[5] += w1;
weights[9] += w1;
weights[8] -= w1;
// Clear weights for the phantom points:
weights[2] = weights[6] = 0.0f;
}
if ((vBits & 4) != 0) {
// P0 = B1 + (B0 - I0)
OSD_REAL w0 = weights[11];
weights[8] += w0;
weights[9] += w0;
weights[5] -= w0;
// P1 = B1 + (B2 - I1)
OSD_REAL w1 = weights[10];
weights[8] += w1;
weights[7] += w1;
weights[4] -= w1;
// Clear weights for the phantom points:
weights[11] = weights[10] = 0.0f;
}
}
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_boundBasisBoxSplineTri(
int boundary,
OSD_INOUT_ARRAY(OSD_REAL, wP, 12),
OSD_INOUT_ARRAY(OSD_REAL, wDs, 12),
OSD_INOUT_ARRAY(OSD_REAL, wDt, 12),
OSD_INOUT_ARRAY(OSD_REAL, wDss, 12),
OSD_INOUT_ARRAY(OSD_REAL, wDst, 12),
OSD_INOUT_ARRAY(OSD_REAL, wDtt, 12)) {
if (OSD_OPTIONAL(wP)) {
Osd_adjustBoxSplineTriBoundaryWeights(boundary, wP);
}
if (OSD_OPTIONAL(wDs && wDt)) {
Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDs);
Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDt);
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDss);
Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDst);
Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDtt);
}
}
}
// } // namespace
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
int
Osd_EvalBasisBoxSplineTri(OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 12),
OSD_OUT_ARRAY(OSD_REAL, wDs, 12),
OSD_OUT_ARRAY(OSD_REAL, wDt, 12),
OSD_OUT_ARRAY(OSD_REAL, wDss, 12),
OSD_OUT_ARRAY(OSD_REAL, wDst, 12),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 12)) {
OSD_REAL stMonomials[15];
Osd_evalBivariateMonomialsQuartic(s, t, stMonomials);
if (OSD_OPTIONAL(wP)) {
Osd_evalBoxSplineTriDerivWeights(stMonomials, 0, 0, wP);
}
if (OSD_OPTIONAL(wDs && wDt)) {
Osd_evalBoxSplineTriDerivWeights(stMonomials, 1, 0, wDs);
Osd_evalBoxSplineTriDerivWeights(stMonomials, 0, 1, wDt);
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
Osd_evalBoxSplineTriDerivWeights(stMonomials, 2, 0, wDss);
Osd_evalBoxSplineTriDerivWeights(stMonomials, 1, 1, wDst);
Osd_evalBoxSplineTriDerivWeights(stMonomials, 0, 2, wDtt);
}
}
return 12;
}
// namespace {
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_evalBezierTriDerivWeights(
OSD_REAL s, OSD_REAL t, int ds, int dt,
OSD_OUT_ARRAY(OSD_REAL, wB, 15)) {
OSD_REAL u = s;
OSD_REAL v = t;
OSD_REAL w = 1 - u - v;
OSD_REAL uu = u * u;
OSD_REAL vv = v * v;
OSD_REAL ww = w * w;
OSD_REAL uv = u * v;
OSD_REAL vw = v * w;
OSD_REAL uw = u * w;
int totalOrder = ds + dt;
if (totalOrder == 0) {
wB[0] = ww * ww;
wB[1] = 4 * uw * ww;
wB[2] = 6 * uw * uw;
wB[3] = 4 * uw * uu;
wB[4] = uu * uu;
wB[5] = 4 * vw * ww;
wB[6] = 12 * ww * uv;
wB[7] = 12 * uu * vw;
wB[8] = 4 * uv * uu;
wB[9] = 6 * vw * vw;
wB[10] = 12 * vv * uw;
wB[11] = 6 * uv * uv;
wB[12] = 4 * vw * vv;
wB[13] = 4 * uv * vv;
wB[14] = vv * vv;
} else if (totalOrder == 1) {
if (ds == 1) {
wB[0] = -4 * ww * w;
wB[1] = 4 * ww * (w - 3 * u);
wB[2] = 12 * uw * (w - u);
wB[3] = 4 * uu * (3 * w - u);
wB[4] = 4 * uu * u;
wB[5] = -12 * vw * w;
wB[6] = 12 * vw * (w - 2 * u);
wB[7] = 12 * uv * (2 * w - u);
wB[8] = 12 * uv * u;
wB[9] = -12 * vv * w;
wB[10] = 12 * vv * (w - u);
wB[11] = 12 * vv * u;
wB[12] = -4 * vv * v;
wB[13] = 4 * vv * v;
wB[14] = 0;
} else {
wB[0] = -4 * ww * w;
wB[1] = -12 * ww * u;
wB[2] = -12 * uu * w;
wB[3] = -4 * uu * u;
wB[4] = 0;
wB[5] = 4 * ww * (w - 3 * v);
wB[6] = 12 * uw * (w - 2 * v);
wB[7] = 12 * uu * (w - v);
wB[8] = 4 * uu * u;
wB[9] = 12 * vw * (w - v);
wB[10] = 12 * uv * (2 * w - v);
wB[11] = 12 * uv * u;;
wB[12] = 4 * vv * (3 * w - v);
wB[13] = 12 * vv * u;
wB[14] = 4 * vv * v;
}
} else if (totalOrder == 2) {
if (ds == 2) {
wB[0] = 12 * ww;
wB[1] = 24 * (uw - ww);
wB[2] = 12 * (uu - 4 * uw + ww);
wB[3] = 24 * (uw - uu);
wB[4] = 12 * uu;
wB[5] = 24 * vw;
wB[6] = 24 * (uv - 2 * vw);
wB[7] = 24 * (vw - 2 * uv);
wB[8] = 24 * uv;
wB[9] = 12 * vv;
wB[10] = -24 * vv;
wB[11] = 12 * vv;
wB[12] = 0;
wB[13] = 0;
wB[14] = 0;
} else if (dt == 2) {
wB[0] = 12 * ww;
wB[1] = 24 * uw;
wB[2] = 12 * uu;
wB[3] = 0;
wB[4] = 0;
wB[5] = 24 * (vw - ww);
wB[6] = 24 * (uv - 2 * uw);
wB[7] = -24 * uu;
wB[8] = 0;
wB[9] = 12 * (vv - 4 * vw + ww);
wB[10] = 24 * (uw - 2 * uv);
wB[11] = 12 * uu;
wB[12] = 24 * (vw - vv);
wB[13] = 24 * uv;
wB[14] = 12 * vv;
} else {
wB[0] = 12 * ww;
wB[3] = -12 * uu;
wB[13] = 12 * vv;
wB[11] = 24 * uv;
wB[1] = 24 * uw - wB[0];
wB[2] = -24 * uw - wB[3];
wB[5] = 24 * vw - wB[0];
wB[6] = -24 * vw + wB[11] - wB[1];
wB[8] = - wB[3];
wB[7] = -(wB[11] + wB[2]);
wB[9] = wB[13] - wB[5] - wB[0];
wB[10] = -(wB[9] + wB[11]);
wB[12] = - wB[13];
wB[4] = 0;
wB[14] = 0;
}
} else {
// assert(totalOrder <= 2);
}
}
// } // end namespace
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
int
Osd_EvalBasisBezierTri(OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 15),
OSD_OUT_ARRAY(OSD_REAL, wDs, 15),
OSD_OUT_ARRAY(OSD_REAL, wDt, 15),
OSD_OUT_ARRAY(OSD_REAL, wDss, 15),
OSD_OUT_ARRAY(OSD_REAL, wDst, 15),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 15)) {
if (OSD_OPTIONAL(wP)) {
Osd_evalBezierTriDerivWeights(s, t, 0, 0, wP);
}
if (OSD_OPTIONAL(wDs && wDt)) {
Osd_evalBezierTriDerivWeights(s, t, 1, 0, wDs);
Osd_evalBezierTriDerivWeights(s, t, 0, 1, wDt);
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
Osd_evalBezierTriDerivWeights(s, t, 2, 0, wDss);
Osd_evalBezierTriDerivWeights(s, t, 1, 1, wDst);
Osd_evalBezierTriDerivWeights(s, t, 0, 2, wDtt);
}
}
return 15;
}
// namespace {
//
// Expanding a set of 15 Bezier basis functions for the 6 (3 pairs) of
// rational weights for the 18 Gregory basis functions:
//
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
void
Osd_convertBezierWeightsToGregory(
OSD_INOUT_ARRAY(OSD_REAL, wB, 15),
OSD_INOUT_ARRAY(OSD_REAL, rG, 6),
OSD_OUT_ARRAY(OSD_REAL, wG, 18)) {
wG[0] = wB[0];
wG[1] = wB[1];
wG[2] = wB[5];
wG[3] = wB[6] * rG[0];
wG[4] = wB[6] * rG[1];
wG[5] = wB[4];
wG[6] = wB[8];
wG[7] = wB[3];
wG[8] = wB[7] * rG[2];
wG[9] = wB[7] * rG[3];
wG[10] = wB[14];
wG[11] = wB[12];
wG[12] = wB[13];
wG[13] = wB[10] * rG[4];
wG[14] = wB[10] * rG[5];
wG[15] = wB[2];
wG[16] = wB[11];
wG[17] = wB[9];
}
// } // end namespace
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
int
Osd_EvalBasisGregoryTri(OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 18),
OSD_OUT_ARRAY(OSD_REAL, wDs, 18),
OSD_OUT_ARRAY(OSD_REAL, wDt, 18),
OSD_OUT_ARRAY(OSD_REAL, wDss, 18),
OSD_OUT_ARRAY(OSD_REAL, wDst, 18),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 18)) {
//
// Bezier basis functions are denoted with B while the rational multipliers for the
// interior points will be denoted G -- so we have B(s,t) and G(s,t) (though we
// switch to barycentric (u,v,w) briefly to compute G)
//
OSD_REAL BP[15], BDs[15], BDt[15], BDss[15], BDst[15], BDtt[15];
OSD_REAL G[6] = OSD_ARRAY_6(OSD_REAL, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f );
OSD_REAL u = s;
OSD_REAL v = t;
OSD_REAL w = 1 - u - v;
if ((u + v) > 0) {
G[0] = u / (u + v);
G[1] = v / (u + v);
}
if ((v + w) > 0) {
G[2] = v / (v + w);
G[3] = w / (v + w);
}
if ((w + u) > 0) {
G[4] = w / (w + u);
G[5] = u / (w + u);
}
//
// Compute Bezier basis functions and convert, adjusting interior points:
//
if (OSD_OPTIONAL(wP)) {
Osd_evalBezierTriDerivWeights(s, t, 0, 0, BP);
Osd_convertBezierWeightsToGregory(BP, G, wP);
}
if (OSD_OPTIONAL(wDs && wDt)) {
// TBD -- ifdef OPENSUBDIV_GREGORY_EVAL_TRUE_DERIVATIVES
Osd_evalBezierTriDerivWeights(s, t, 1, 0, BDs);
Osd_evalBezierTriDerivWeights(s, t, 0, 1, BDt);
Osd_convertBezierWeightsToGregory(BDs, G, wDs);
Osd_convertBezierWeightsToGregory(BDt, G, wDt);
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
Osd_evalBezierTriDerivWeights(s, t, 2, 0, BDss);
Osd_evalBezierTriDerivWeights(s, t, 1, 1, BDst);
Osd_evalBezierTriDerivWeights(s, t, 0, 2, BDtt);
Osd_convertBezierWeightsToGregory(BDss, G, wDss);
Osd_convertBezierWeightsToGregory(BDst, G, wDst);
Osd_convertBezierWeightsToGregory(BDtt, G, wDtt);
}
}
return 18;
}
// The following functions are low-level internal methods which
// were exposed in earlier releases, but were never intended to
// be part of the supported public API.
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdGetBezierWeights(
OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDP2, 4)) {
Osd_evalBezierCurve(t, wP, wDP, wDP2);
}
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdGetBSplineWeights(
OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDP2, 4)) {
Osd_evalBSplineCurve(t, wP, wDP, wDP2);
}
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdGetBoxSplineWeights(
float s, float t,
OSD_OUT_ARRAY(OSD_REAL, wP, 12)) {
OSD_REAL stMonomials[15];
Osd_evalBivariateMonomialsQuartic(s, t, stMonomials);
if (OSD_OPTIONAL(wP)) {
Osd_evalBoxSplineTriDerivWeights(stMonomials, 0, 0, wP);
}
}
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdAdjustBoundaryWeights(
int boundary,
OSD_INOUT_ARRAY(OSD_REAL, sWeights, 4),
OSD_INOUT_ARRAY(OSD_REAL, tWeights, 4)) {
if ((boundary & 1) != 0) {
tWeights[2] -= tWeights[0];
tWeights[1] += tWeights[0] * 2.0f;
tWeights[0] = 0.0f;
}
if ((boundary & 2) != 0) {
sWeights[1] -= sWeights[3];
sWeights[2] += sWeights[3] * 2.0f;
sWeights[3] = 0.0f;
}
if ((boundary & 4) != 0) {
tWeights[1] -= tWeights[3];
tWeights[2] += tWeights[3] * 2.0f;
tWeights[3] = 0.0f;
}
if ((boundary & 8) != 0) {
sWeights[2] -= sWeights[0];
sWeights[1] += sWeights[0] * 2.0f;
sWeights[0] = 0.0f;
}
}
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdComputeTensorProductPatchWeights(
float dScale, int boundary,
OSD_IN_ARRAY(float, sWeights, 4),
OSD_IN_ARRAY(float, tWeights, 4),
OSD_IN_ARRAY(float, dsWeights, 4),
OSD_IN_ARRAY(float, dtWeights, 4),
OSD_IN_ARRAY(float, dssWeights, 4),
OSD_IN_ARRAY(float, dttWeights, 4),
OSD_OUT_ARRAY(float, wP, 16),
OSD_OUT_ARRAY(float, wDs, 16),
OSD_OUT_ARRAY(float, wDt, 16),
OSD_OUT_ARRAY(float, wDss, 16),
OSD_OUT_ARRAY(float, wDst, 16),
OSD_OUT_ARRAY(float, wDtt, 16)) {
if (OSD_OPTIONAL(wP)) {
// Compute the tensor product weight of the (s,t) basis function
// corresponding to each control vertex:
OsdAdjustBoundaryWeights(boundary, sWeights, tWeights);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wP[4*i+j] = sWeights[j] * tWeights[i];
}
}
}
if (OSD_OPTIONAL(wDs && wDt)) {
// Compute the tensor product weight of the differentiated (s,t) basis
// function corresponding to each control vertex (scaled accordingly):
OsdAdjustBoundaryWeights(boundary, dsWeights, dtWeights);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wDs[4*i+j] = dsWeights[j] * tWeights[i] * dScale;
wDt[4*i+j] = sWeights[j] * dtWeights[i] * dScale;
}
}
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
// Compute the tensor product weight of appropriate differentiated
// (s,t) basis functions for each control vertex (scaled accordingly):
float d2Scale = dScale * dScale;
OsdAdjustBoundaryWeights(boundary, dssWeights, dttWeights);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
wDss[4*i+j] = dssWeights[j] * tWeights[i] * d2Scale;
wDst[4*i+j] = dsWeights[j] * dtWeights[i] * d2Scale;
wDtt[4*i+j] = sWeights[j] * dttWeights[i] * d2Scale;
}
}
}
}
}
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdGetBilinearPatchWeights(
OSD_REAL s, OSD_REAL t, OSD_REAL d1Scale,
OSD_OUT_ARRAY(OSD_REAL, wP, 4),
OSD_OUT_ARRAY(OSD_REAL, wDs, 4),
OSD_OUT_ARRAY(OSD_REAL, wDt, 4),
OSD_OUT_ARRAY(OSD_REAL, wDss, 4),
OSD_OUT_ARRAY(OSD_REAL, wDst, 4),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 4)) {
int nPoints = Osd_EvalBasisLinear(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
if (OSD_OPTIONAL(wDs && wDt)) {
for (int i = 0; i < nPoints; ++i) {
wDs[i] *= d1Scale;
wDt[i] *= d1Scale;
}
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
OSD_REAL d2Scale = d1Scale * d1Scale;
for (int i = 0; i < nPoints; ++i) {
wDss[i] *= d2Scale;
wDst[i] *= d2Scale;
wDtt[i] *= d2Scale;
}
}
}
}
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdGetBSplinePatchWeights(
OSD_REAL s, OSD_REAL t, OSD_REAL d1Scale, int boundary,
OSD_OUT_ARRAY(OSD_REAL, wP, 16),
OSD_OUT_ARRAY(OSD_REAL, wDs, 16),
OSD_OUT_ARRAY(OSD_REAL, wDt, 16),
OSD_OUT_ARRAY(OSD_REAL, wDss, 16),
OSD_OUT_ARRAY(OSD_REAL, wDst, 16),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 16)) {
int nPoints = Osd_EvalBasisBSpline(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
Osd_boundBasisBSpline(boundary, wP, wDs, wDt, wDss, wDst, wDtt);
if (OSD_OPTIONAL(wDs && wDt)) {
for (int i = 0; i < nPoints; ++i) {
wDs[i] *= d1Scale;
wDt[i] *= d1Scale;
}
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
OSD_REAL d2Scale = d1Scale * d1Scale;
for (int i = 0; i < nPoints; ++i) {
wDss[i] *= d2Scale;
wDst[i] *= d2Scale;
wDtt[i] *= d2Scale;
}
}
}
}
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdGetBezierPatchWeights(
OSD_REAL s, OSD_REAL t, OSD_REAL d1Scale,
OSD_OUT_ARRAY(OSD_REAL, wP, 16),
OSD_OUT_ARRAY(OSD_REAL, wDs, 16),
OSD_OUT_ARRAY(OSD_REAL, wDt, 16),
OSD_OUT_ARRAY(OSD_REAL, wDss, 16),
OSD_OUT_ARRAY(OSD_REAL, wDst, 16),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 16)) {
int nPoints = Osd_EvalBasisBezier(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
if (OSD_OPTIONAL(wDs && wDt)) {
for (int i = 0; i < nPoints; ++i) {
wDs[i] *= d1Scale;
wDt[i] *= d1Scale;
}
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
OSD_REAL d2Scale = d1Scale * d1Scale;
for (int i = 0; i < nPoints; ++i) {
wDss[i] *= d2Scale;
wDst[i] *= d2Scale;
wDtt[i] *= d2Scale;
}
}
}
}
// Deprecated -- prefer use of OsdEvaluatePatchBasis() and
// OsdEvaluatePatchBasisNormalized() methods.
OSD_FUNCTION_STORAGE_CLASS
void
OsdGetGregoryPatchWeights(
OSD_REAL s, OSD_REAL t, OSD_REAL d1Scale,
OSD_OUT_ARRAY(OSD_REAL, wP, 20),
OSD_OUT_ARRAY(OSD_REAL, wDs, 20),
OSD_OUT_ARRAY(OSD_REAL, wDt, 20),
OSD_OUT_ARRAY(OSD_REAL, wDss, 20),
OSD_OUT_ARRAY(OSD_REAL, wDst, 20),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 20)) {
int nPoints = Osd_EvalBasisGregory(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
if (OSD_OPTIONAL(wDs && wDt)) {
for (int i = 0; i < nPoints; ++i) {
wDs[i] *= d1Scale;
wDt[i] *= d1Scale;
}
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
OSD_REAL d2Scale = d1Scale * d1Scale;
for (int i = 0; i < nPoints; ++i) {
wDss[i] *= d2Scale;
wDst[i] *= d2Scale;
wDtt[i] *= d2Scale;
}
}
}
}
//
// Higher level basis evaluation functions that deal with parameterization and
// boundary issues (reflected in PatchParam) for all patch types:
//
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
int
OsdEvaluatePatchBasisNormalized(
int patchType, OsdPatchParam param,
OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 20),
OSD_OUT_ARRAY(OSD_REAL, wDs, 20),
OSD_OUT_ARRAY(OSD_REAL, wDt, 20),
OSD_OUT_ARRAY(OSD_REAL, wDss, 20),
OSD_OUT_ARRAY(OSD_REAL, wDst, 20),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 20)) {
int boundaryMask = OsdPatchParamGetBoundary(param);
int nPoints = 0;
if (patchType == OSD_PATCH_DESCRIPTOR_REGULAR) {
#if OSD_ARRAY_ARG_BOUND_OPTIONAL
nPoints = Osd_EvalBasisBSpline(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
if (boundaryMask != 0) {
Osd_boundBasisBSpline(
boundaryMask, wP, wDs, wDt, wDss, wDst, wDtt);
}
#else
OSD_REAL wP16[16], wDs16[16], wDt16[16],
wDss16[16], wDst16[16], wDtt16[16];
nPoints = Osd_EvalBasisBSpline(
s, t, wP16, wDs16, wDt16, wDss16, wDst16, wDtt16);
if (boundaryMask != 0) {
Osd_boundBasisBSpline(
boundaryMask, wP16, wDs16, wDt16, wDss16, wDst16, wDtt16);
}
for (int i=0; i<nPoints; ++i) {
wP[i] = wP16[i];
wDs[i] = wDs16[i]; wDt[i] = wDt16[i];
wDss[i] = wDss16[i]; wDst[i] = wDst16[i]; wDtt[i] = wDtt16[i];
}
#endif
} else if (patchType == OSD_PATCH_DESCRIPTOR_LOOP) {
#if OSD_ARRAY_ARG_BOUND_OPTIONAL
nPoints = Osd_EvalBasisBoxSplineTri(
s, t, wP, wDs, wDt, wDss, wDst, wDtt);
if (boundaryMask != 0) {
Osd_boundBasisBoxSplineTri(
boundaryMask, wP, wDs, wDt, wDss, wDst, wDtt);
}
#else
OSD_REAL wP12[12], wDs12[12], wDt12[12],
wDss12[12], wDst12[12], wDtt12[12];
nPoints = Osd_EvalBasisBoxSplineTri(
s, t, wP12, wDs12, wDt12, wDss12, wDst12, wDtt12);
if (boundaryMask != 0) {
Osd_boundBasisBoxSplineTri(
boundaryMask, wP12, wDs12, wDt12, wDss12, wDst12, wDtt12);
}
for (int i=0; i<nPoints; ++i) {
wP[i] = wP12[i];
wDs[i] = wDs12[i]; wDt[i] = wDt12[i];
wDss[i] = wDss12[i]; wDst[i] = wDst12[i]; wDtt[i] = wDtt12[i];
}
#endif
} else if (patchType == OSD_PATCH_DESCRIPTOR_GREGORY_BASIS) {
nPoints = Osd_EvalBasisGregory(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
} else if (patchType == OSD_PATCH_DESCRIPTOR_GREGORY_TRIANGLE) {
#if OSD_ARRAY_ARG_BOUND_OPTIONAL
nPoints = Osd_EvalBasisGregoryTri(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
#else
OSD_REAL wP18[18], wDs18[18], wDt18[18],
wDss18[18], wDst18[18], wDtt18[18];
nPoints = Osd_EvalBasisGregoryTri(
s, t, wP18, wDs18, wDt18, wDss18, wDst18, wDtt18);
for (int i=0; i<nPoints; ++i) {
wP[i] = wP18[i];
wDs[i] = wDs18[i]; wDt[i] = wDt18[i];
wDss[i] = wDss18[i]; wDst[i] = wDst18[i]; wDtt[i] = wDtt18[i];
}
#endif
} else if (patchType == OSD_PATCH_DESCRIPTOR_QUADS) {
#if OSD_ARRAY_ARG_BOUND_OPTIONAL
nPoints = Osd_EvalBasisLinear(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
#else
OSD_REAL wP4[4], wDs4[4], wDt4[4],
wDss4[4], wDst4[4], wDtt4[4];
nPoints = Osd_EvalBasisLinear(
s, t, wP4, wDs4, wDt4, wDss4, wDst4, wDtt4);
for (int i=0; i<nPoints; ++i) {
wP[i] = wP4[i];
wDs[i] = wDs4[i]; wDt[i] = wDt4[i];
wDss[i] = wDss4[i]; wDst[i] = wDst4[i]; wDtt[i] = wDtt4[i];
}
#endif
} else if (patchType == OSD_PATCH_DESCRIPTOR_TRIANGLES) {
#if OSD_ARRAY_ARG_BOUND_OPTIONAL
nPoints = Osd_EvalBasisLinearTri(s, t, wP, wDs, wDt, wDss, wDst, wDtt);
#else
OSD_REAL wP3[3], wDs3[3], wDt3[3],
wDss3[3], wDst3[3], wDtt3[3];
nPoints = Osd_EvalBasisLinearTri(
s, t, wP3, wDs3, wDt3, wDss3, wDst3, wDtt3);
for (int i=0; i<nPoints; ++i) {
wP[i] = wP3[i];
wDs[i] = wDs3[i]; wDt[i] = wDt3[i];
wDss[i] = wDss3[i]; wDst[i] = wDst3[i]; wDtt[i] = wDtt3[i];
}
#endif
} else {
// assert(0);
}
return nPoints;
}
OSD_FUNCTION_STORAGE_CLASS
// template <typename REAL>
int
OsdEvaluatePatchBasis(
int patchType, OsdPatchParam param,
OSD_REAL s, OSD_REAL t,
OSD_OUT_ARRAY(OSD_REAL, wP, 20),
OSD_OUT_ARRAY(OSD_REAL, wDs, 20),
OSD_OUT_ARRAY(OSD_REAL, wDt, 20),
OSD_OUT_ARRAY(OSD_REAL, wDss, 20),
OSD_OUT_ARRAY(OSD_REAL, wDst, 20),
OSD_OUT_ARRAY(OSD_REAL, wDtt, 20)) {
OSD_REAL derivSign = 1.0f;
if ((patchType == OSD_PATCH_DESCRIPTOR_LOOP) ||
(patchType == OSD_PATCH_DESCRIPTOR_GREGORY_TRIANGLE) ||
(patchType == OSD_PATCH_DESCRIPTOR_TRIANGLES)) {
OSD_REAL uv[2] = OSD_ARRAY_2(OSD_REAL, s, t);
OsdPatchParamNormalizeTriangle(param, uv);
s = uv[0];
t = uv[1];
if (OsdPatchParamIsTriangleRotated(param)) {
derivSign = -1.0f;
}
} else {
OSD_REAL uv[2] = OSD_ARRAY_2(OSD_REAL, s, t);
OsdPatchParamNormalize(param, uv);
s = uv[0];
t = uv[1];
}
int nPoints = OsdEvaluatePatchBasisNormalized(
patchType, param, s, t, wP, wDs, wDt, wDss, wDst, wDtt);
if (OSD_OPTIONAL(wDs && wDt)) {
OSD_REAL d1Scale =
derivSign * OSD_REAL_CAST(1 << OsdPatchParamGetDepth(param));
for (int i = 0; i < nPoints; ++i) {
wDs[i] *= d1Scale;
wDt[i] *= d1Scale;
}
if (OSD_OPTIONAL(wDss && wDst && wDtt)) {
OSD_REAL d2Scale = derivSign * d1Scale * d1Scale;
for (int i = 0; i < nPoints; ++i) {
wDss[i] *= d2Scale;
wDst[i] *= d2Scale;
wDtt[i] *= d2Scale;
}
}
}
return nPoints;
}
#if !defined(OSD_PATCH_BASIS_GLSL) && \
!defined(OSD_PATCH_BASIS_HLSL) && \
!defined(OSD_PATCH_BASIS_CUDA) && \
!defined(OSD_PATCH_BASIS_OPENCL) && \
!defined(OSD_PATCH_BASIS_METAL)
} // end namespace Osd
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif
#endif /* OPENSUBDIV3_OSD_PATCH_BASIS_H */