mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2024-11-27 14:00:10 +00:00
10c687ecd5
- [Feature Adaptive GPU Rendering of Catmull-Clark Surfaces](http://research.microsoft.com/en-us/um/people/cloop/tog2012.pdf). - New API architecture : we are planning to lock on to this new framework as the basis for backward compatibility, which we will enforce from Release 1.0 onward. Subsequent releases of OpenSubdiv should not break client code. - DirectX 11 support - and much more...
476 lines
15 KiB
GLSL
476 lines
15 KiB
GLSL
//
|
|
// Copyright (C) Pixar. All rights reserved.
|
|
//
|
|
// This license governs use of the accompanying software. If you
|
|
// use the software, you accept this license. If you do not accept
|
|
// the license, do not use the software.
|
|
//
|
|
// 1. Definitions
|
|
// The terms "reproduce," "reproduction," "derivative works," and
|
|
// "distribution" have the same meaning here as under U.S.
|
|
// copyright law. A "contribution" is the original software, or
|
|
// any additions or changes to the software.
|
|
// A "contributor" is any person or entity that distributes its
|
|
// contribution under this license.
|
|
// "Licensed patents" are a contributor's patent claims that read
|
|
// directly on its contribution.
|
|
//
|
|
// 2. Grant of Rights
|
|
// (A) Copyright Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free copyright license to reproduce its contribution,
|
|
// prepare derivative works of its contribution, and distribute
|
|
// its contribution or any derivative works that you create.
|
|
// (B) Patent Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free license under its licensed patents to make, have
|
|
// made, use, sell, offer for sale, import, and/or otherwise
|
|
// dispose of its contribution in the software or derivative works
|
|
// of the contribution in the software.
|
|
//
|
|
// 3. Conditions and Limitations
|
|
// (A) No Trademark License- This license does not grant you
|
|
// rights to use any contributor's name, logo, or trademarks.
|
|
// (B) If you bring a patent claim against any contributor over
|
|
// patents that you claim are infringed by the software, your
|
|
// patent license from such contributor to the software ends
|
|
// automatically.
|
|
// (C) If you distribute any portion of the software, you must
|
|
// retain all copyright, patent, trademark, and attribution
|
|
// notices that are present in the software.
|
|
// (D) If you distribute any portion of the software in source
|
|
// code form, you may do so only under this license by including a
|
|
// complete copy of this license with your distribution. If you
|
|
// distribute any portion of the software in compiled or object
|
|
// code form, you may only do so under a license that complies
|
|
// with this license.
|
|
// (E) The software is licensed "as-is." You bear the risk of
|
|
// using it. The contributors give no express warranties,
|
|
// guarantees or conditions. You may have additional consumer
|
|
// rights under your local laws which this license cannot change.
|
|
// To the extent permitted under your local laws, the contributors
|
|
// exclude the implied warranties of merchantability, fitness for
|
|
// a particular purpose and non-infringement.
|
|
//
|
|
|
|
#version 420
|
|
|
|
subroutine void computeKernelType();
|
|
subroutine uniform computeKernelType computeKernel;
|
|
|
|
uniform isamplerBuffer _F0_IT;
|
|
uniform isamplerBuffer _F0_ITa;
|
|
uniform isamplerBuffer _E0_IT;
|
|
uniform isamplerBuffer _V0_IT;
|
|
uniform isamplerBuffer _V0_ITa;
|
|
uniform samplerBuffer _E0_S;
|
|
uniform samplerBuffer _V0_S;
|
|
uniform isamplerBuffer _editIndices;
|
|
uniform samplerBuffer _editValues;
|
|
layout(size1x32) uniform imageBuffer _vertexBufferImage;
|
|
|
|
uniform bool vertexPass;
|
|
uniform int indexOffset = 0; // index offset for the level
|
|
uniform int indexStart = 0; // start index for given batch
|
|
|
|
uniform int F_IT_ofs;
|
|
uniform int F_ITa_ofs;
|
|
uniform int E_IT_ofs;
|
|
uniform int V_IT_ofs;
|
|
uniform int V_ITa_ofs;
|
|
uniform int E_W_ofs;
|
|
uniform int V_W_ofs;
|
|
|
|
/*
|
|
+-----+---------------------------------+-----
|
|
n-1 | Level n |<batch range>| | n+1
|
|
+-----+---------------------------------+-----
|
|
^ ^
|
|
indexOffset |
|
|
indexStart
|
|
*/
|
|
|
|
//--------------------------------------------------------------------------------
|
|
|
|
#define NUM_USER_VERTEX_ELEMENTS (NUM_VERTEX_ELEMENTS-3)
|
|
|
|
struct Vertex
|
|
{
|
|
vec3 position;
|
|
#if NUM_USER_VERTEX_ELEMENTS > 0
|
|
float vertexData[NUM_USER_VERTEX_ELEMENTS];
|
|
#endif
|
|
#if NUM_VARYING_ELEMENTS > 0
|
|
float varyingData[NUM_VARYING_ELEMENTS]; // XXX: should use vec4 and packing
|
|
#endif
|
|
};
|
|
|
|
uniform samplerBuffer vertex; // vec3 position, + vertexdata[NUM_USER_VERTEX_ELEMENTS]
|
|
#if NUM_VARYING_ELEMENTS > 0
|
|
uniform samplerBuffer varyingData; // float[NUM_VARYING_ELEMENTS]
|
|
#endif
|
|
|
|
out vec3 outPosition;
|
|
#if NUM_USER_VERTEX_ELEMENTS > 0
|
|
out float outVertexData[NUM_USER_VERTEX_ELEMENTS];
|
|
#endif
|
|
#if NUM_VARYING_ELEMENTS > 0
|
|
out float outVaryingData[NUM_VARYING_ELEMENTS]; // output feedback (mapped as a subrange of vertices)
|
|
#endif
|
|
|
|
void clear(out Vertex v)
|
|
{
|
|
v.position = vec3(0);
|
|
#if NUM_USER_VERTEX_ELEMENTS > 0
|
|
for (int i = 0; i < NUM_USER_VERTEX_ELEMENTS; i++) {
|
|
v.vertexData[i] = 0;
|
|
}
|
|
#endif
|
|
#if NUM_VARYING_ELEMENTS > 0
|
|
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
|
|
v.varyingData[i] = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
Vertex readVertex(int index)
|
|
{
|
|
// XXX: should be split into two parts for addWithWeight and addVaryingWithWeight
|
|
Vertex v;
|
|
|
|
// unpacking
|
|
v.position.x = texelFetch(vertex, index*NUM_VERTEX_ELEMENTS ).x;
|
|
v.position.y = texelFetch(vertex, index*NUM_VERTEX_ELEMENTS+1).x;
|
|
v.position.z = texelFetch(vertex, index*NUM_VERTEX_ELEMENTS+2).x;
|
|
#if NUM_USER_VERTEX_ELEMENTS > 0
|
|
for(int i = 0; i < NUM_USER_VERTEX_ELEMENTS; i++) {
|
|
v.vertexData[i] = texelFetch(vertex, index*NUM_VERTEX_ELEMENTS+3+i).x;
|
|
}
|
|
#endif
|
|
#if NUM_VARYING_ELEMENTS > 0
|
|
int stride = NUM_VARYING_ELEMENTS;
|
|
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
|
|
v.varyingData[i] = texelFetch(varyingData, index*stride+i).x;
|
|
}
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
void writeVertex(Vertex v)
|
|
{
|
|
// packing
|
|
outPosition = v.position;
|
|
#if NUM_USER_VERTEX_ELEMENTS > 0
|
|
for(int i = 0; i < NUM_USER_VERTEX_ELEMENTS; i++) {
|
|
outVertexData[i] = v.vertexData[i];
|
|
}
|
|
#endif
|
|
#if NUM_VARYING_ELEMENTS > 0
|
|
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
|
|
outVaryingData[i] = v.varyingData[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void writeVertexByImageStore(Vertex v, int index)
|
|
{
|
|
int p = index * NUM_VERTEX_ELEMENTS;
|
|
imageStore(_vertexBufferImage, p, vec4(v.position.x, 0, 0, 0));
|
|
imageStore(_vertexBufferImage, p+1, vec4(v.position.y, 0, 0, 0));
|
|
imageStore(_vertexBufferImage, p+2, vec4(v.position.z, 0, 0, 0));
|
|
#if NUM_USER_VERTEX_ELEMENTS > 0
|
|
for(int i = 0; i < NUM_USER_VERTEX_ELEMENTS; i++) {
|
|
imageStore(_vertexBufferImage, p+3+i, vec4(v.vertexData[i], 0, 0, 0));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void addWithWeight(inout Vertex v, Vertex src, float weight)
|
|
{
|
|
v.position += weight * src.position;
|
|
#if NUM_USER_VERTEX_ELEMENTS > 0
|
|
for(int i = 0; i < NUM_USER_VERTEX_ELEMENTS; i++) {
|
|
v.vertexData[i] += weight * src.vertexData[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void addVaryingWithWeight(inout Vertex v, Vertex src, float weight)
|
|
{
|
|
#if NUM_VARYING_ELEMENTS > 0
|
|
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
|
|
v.varyingData[i] += weight * src.varyingData[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
// Face-vertices compute Kernel
|
|
subroutine(computeKernelType)
|
|
void catmarkComputeFace()
|
|
{
|
|
int i = gl_VertexID + indexStart;
|
|
int h = texelFetch(_F0_ITa, F_ITa_ofs+2*i).x;
|
|
int n = texelFetch(_F0_ITa, F_ITa_ofs+2*i+1).x;
|
|
|
|
float weight = 1.0/n;
|
|
|
|
Vertex dst;
|
|
clear(dst);
|
|
for(int j=0; j<n; ++j){
|
|
int index = texelFetch(_F0_IT, F_IT_ofs+h+j).x;
|
|
addWithWeight(dst, readVertex(index), weight);
|
|
addVaryingWithWeight(dst, readVertex(index), weight);
|
|
}
|
|
writeVertex(dst);
|
|
}
|
|
|
|
// Edge-vertices compute Kernel
|
|
subroutine(computeKernelType)
|
|
void catmarkComputeEdge()
|
|
{
|
|
int i = gl_VertexID + indexStart;
|
|
|
|
Vertex dst;
|
|
clear(dst);
|
|
|
|
#ifdef OPT_E0_IT_VEC4
|
|
ivec4 eidx = texelFetch(_E0_IT, E_IT_ofs/4+i);
|
|
#else
|
|
int eidx0 = texelFetch(_E0_IT, E_IT_ofs+4*i+0).x;
|
|
int eidx1 = texelFetch(_E0_IT, E_IT_ofs+4*i+1).x;
|
|
int eidx2 = texelFetch(_E0_IT, E_IT_ofs+4*i+2).x;
|
|
int eidx3 = texelFetch(_E0_IT, E_IT_ofs+4*i+3).x;
|
|
ivec4 eidx = ivec4(eidx0, eidx1, eidx2, eidx3);
|
|
#endif
|
|
|
|
#ifdef OPT_E0_S_VEC2
|
|
vec2 weight = texelFetch(_E0_S, E_W_ofs/2+i).xy;
|
|
float vertWeight = weight.x;
|
|
#else
|
|
float vertWeight = texelFetch(_E0_S, E_W_ofs+i*2+0).x;
|
|
#endif
|
|
|
|
// Fully sharp edge : vertWeight = 0.5f;
|
|
addWithWeight(dst, readVertex(eidx.x), vertWeight);
|
|
addWithWeight(dst, readVertex(eidx.y), vertWeight);
|
|
|
|
if(eidx.z != -1){
|
|
#ifdef OPT_E0_S_VEC2
|
|
float faceWeight = weight.y;
|
|
#else
|
|
float faceWeight = texelFetch(_E0_S, E_W_ofs+i*2+1).x;
|
|
#endif
|
|
|
|
addWithWeight(dst, readVertex(eidx.z), faceWeight);
|
|
addWithWeight(dst, readVertex(eidx.w), faceWeight);
|
|
}
|
|
|
|
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
|
|
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
|
|
|
|
writeVertex(dst);
|
|
}
|
|
|
|
// Edge-vertices compute Kernel (bilinear scheme)
|
|
subroutine(computeKernelType)
|
|
void bilinearComputeEdge()
|
|
{
|
|
int i = gl_VertexID + indexStart;
|
|
|
|
Vertex dst;
|
|
clear(dst);
|
|
|
|
#ifdef OPT_E0_IT_VEC4
|
|
ivec2 eidx = texelFetch(_E0_IT, E_IT_ofs/2+i).xy;
|
|
#else
|
|
ivec2 eidx = ivec2(texelFetch(_E0_IT, E_IT_ofs+2*i+0).x,
|
|
texelFetch(_E0_IT, E_IT_ofs+2*i+1).x);
|
|
#endif
|
|
|
|
addWithWeight(dst, readVertex(eidx.x), 0.5f);
|
|
addWithWeight(dst, readVertex(eidx.y), 0.5f);
|
|
|
|
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
|
|
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
|
|
|
|
writeVertex(dst);
|
|
}
|
|
|
|
// Vertex-vertices compute Kernel (bilinear scheme)
|
|
subroutine(computeKernelType)
|
|
void bilinearComputeVertex()
|
|
{
|
|
int i = gl_VertexID + indexStart;
|
|
|
|
Vertex dst;
|
|
clear(dst);
|
|
|
|
int p = texelFetch(_V0_ITa, V_ITa_ofs+i).x;
|
|
|
|
addWithWeight(dst, readVertex(p), 1.0f);
|
|
|
|
addVaryingWithWeight(dst, readVertex(p), 1.0f);
|
|
|
|
writeVertex(dst);
|
|
}
|
|
|
|
// Vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
|
|
subroutine(computeKernelType)
|
|
void catmarkComputeVertexA()
|
|
{
|
|
int i = gl_VertexID + indexStart;
|
|
|
|
int n = texelFetch(_V0_ITa, V_ITa_ofs+5*i+1).x;
|
|
int p = texelFetch(_V0_ITa, V_ITa_ofs+5*i+2).x;
|
|
int eidx0 = texelFetch(_V0_ITa, V_ITa_ofs+5*i+3).x;
|
|
int eidx1 = texelFetch(_V0_ITa, V_ITa_ofs+5*i+4).x;
|
|
|
|
float weight = vertexPass
|
|
? texelFetch(_V0_S, V_W_ofs+i).x
|
|
: 1.0 - texelFetch(_V0_S, V_W_ofs+i).x;
|
|
|
|
// In the case of fractional weight, the weight must be inverted since
|
|
// the value is shared with the k_Smooth kernel (statistically the
|
|
// k_Smooth kernel runs much more often than this one)
|
|
if (weight>0.0 && weight<1.0 && n > 0)
|
|
weight=1.0-weight;
|
|
|
|
Vertex dst;
|
|
if(! vertexPass)
|
|
clear(dst);
|
|
else
|
|
dst = readVertex(i + indexOffset);
|
|
|
|
if (eidx0==-1 || (vertexPass==false && (n==-1)) ) {
|
|
addWithWeight(dst, readVertex(p), weight);
|
|
} else {
|
|
addWithWeight(dst, readVertex(p), weight * 0.75f);
|
|
addWithWeight(dst, readVertex(eidx0), weight * 0.125f);
|
|
addWithWeight(dst, readVertex(eidx1), weight * 0.125f);
|
|
}
|
|
if(! vertexPass)
|
|
addVaryingWithWeight(dst, readVertex(p), 1);
|
|
|
|
writeVertex(dst);
|
|
}
|
|
|
|
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
|
|
subroutine(computeKernelType)
|
|
void catmarkComputeVertexB()
|
|
{
|
|
int i = gl_VertexID + indexStart;
|
|
|
|
int h = texelFetch(_V0_ITa, V_ITa_ofs+5*i).x;
|
|
#ifdef OPT_CATMARK_V_IT_VEC2
|
|
int h2 = h/2;
|
|
#endif
|
|
int n = texelFetch(_V0_ITa, V_ITa_ofs+5*i+1).x;
|
|
int p = texelFetch(_V0_ITa, V_ITa_ofs+5*i+2).x;
|
|
|
|
float weight = texelFetch(_V0_S, V_W_ofs+i).x;
|
|
float wp = 1.0/float(n*n);
|
|
float wv = (n-2.0) * n * wp;
|
|
|
|
Vertex dst;
|
|
clear(dst);
|
|
|
|
addWithWeight(dst, readVertex(p), weight * wv);
|
|
|
|
for(int j = 0; j < n; ++j){
|
|
#ifdef OPT_CATMARK_V_IT_VEC2
|
|
ivec2 v0it = texelFetch(_V0_IT, V_IT_ofs/2+h2+j).xy;
|
|
addWithWeight(dst, readVertex(v0it.x), weight * wp);
|
|
addWithWeight(dst, readVertex(v0it.y), weight * wp);
|
|
#else
|
|
addWithWeight(dst, readVertex(texelFetch(_V0_IT, V_IT_ofs+h+j*2).x), weight * wp);
|
|
addWithWeight(dst, readVertex(texelFetch(_V0_IT, V_IT_ofs+h+j*2+1).x), weight * wp);
|
|
#endif
|
|
}
|
|
addVaryingWithWeight(dst, readVertex(p), 1);
|
|
writeVertex(dst);
|
|
}
|
|
|
|
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
|
|
subroutine(computeKernelType)
|
|
void loopComputeVertexB()
|
|
{
|
|
float PI = 3.14159265358979323846264;
|
|
int i = gl_VertexID + indexStart;
|
|
|
|
int h = texelFetch(_V0_ITa, V_ITa_ofs+5*i).x;
|
|
int n = texelFetch(_V0_ITa, V_ITa_ofs+5*i+1).x;
|
|
int p = texelFetch(_V0_ITa, V_ITa_ofs+5*i+2).x;
|
|
|
|
float weight = texelFetch(_V0_S, V_W_ofs+i).x;
|
|
float wp = 1.0/n;
|
|
float beta = 0.25 * cos(PI*2.0f*wp)+0.375f;
|
|
beta = beta * beta;
|
|
beta = (0.625f-beta)*wp;
|
|
|
|
Vertex dst;
|
|
clear(dst);
|
|
|
|
addWithWeight(dst, readVertex(p), weight * (1.0-(beta*n)));
|
|
|
|
for(int j = 0; j < n; ++j){
|
|
addWithWeight(dst, readVertex(texelFetch(_V0_IT, V_IT_ofs+h+j).x), weight * beta);
|
|
}
|
|
addVaryingWithWeight(dst, readVertex(p), 1);
|
|
writeVertex(dst);
|
|
}
|
|
|
|
// vertex edit kernel
|
|
uniform int editIndices_ofs;
|
|
uniform int editValues_ofs;
|
|
uniform int editPrimVarOffset;
|
|
uniform int editPrimVarWidth;
|
|
uniform int editNumVertices;
|
|
|
|
subroutine(computeKernelType)
|
|
void editAdd()
|
|
{
|
|
int i = gl_VertexID;
|
|
|
|
int v = texelFetch(_editIndices, editIndices_ofs+i).x;
|
|
Vertex dst = readVertex(v);
|
|
|
|
// this is tricky. _editValues array contains editPrimVarWidth count of values.
|
|
// i.e. if the vertex edit is just for pos Y, editPrimVarOffset = 1 and
|
|
// editPrimVarWidth = 1, then _editValues will be an one element array.
|
|
// below loops iterate over every elements regardless editing values to be applied or not,
|
|
// so we need to make out-of-range edits ineffective.
|
|
|
|
for (int j = 0; j < 3; ++j) {
|
|
int index = min(j-editPrimVarOffset, editPrimVarWidth-1);
|
|
float editValue = texelFetch(_editValues, editValues_ofs+index).x;
|
|
editValue *= float(j >= editPrimVarOffset);
|
|
editValue *= float(j < (editPrimVarWidth + editPrimVarOffset));
|
|
|
|
if (j == 0) dst.position.x += editValue;
|
|
else if (j == 1) dst.position.y += editValue;
|
|
else if (j == 2) dst.position.z += editValue;
|
|
}
|
|
|
|
// XXX: following code has not been tested.
|
|
#if NUM_USER_VERTEX_ELEMENTS > 0
|
|
for (int j = 0; j < NUM_USER_VERTEX_ELEMENTS; ++j) {
|
|
int index = min(j-editPrimVarOffset, editPrimVarWidth-1);
|
|
float editValue = texelFetch(_editValues, editValues_ofs+index).x;
|
|
editValue *= float((j+3) >= editPrimVarOffset);
|
|
editValue *= float((j+3) < (editPrimVarWidth + editPrimVarOffset));
|
|
dst.vertexData[j] += editValue;
|
|
}
|
|
#endif
|
|
writeVertexByImageStore(dst, v);
|
|
}
|
|
|
|
|
|
void main()
|
|
{
|
|
// call subroutine
|
|
computeKernel();
|
|
}
|