When trying to validate buffer sizes, we usually need to bail out when
using SpecConstantOps, but for some very specific cases where we allow
unsized arrays currently, we can safely allow "unknown" sized arrays as
well.
This is probably the best we can do, when we have even more difficult
cases than this, we throw a more sensible error message.
Previously, when generating non-Vulkan GLSL, each use of a spec constant
would be subsituted for its default value and the declaration of the constant
itself would be omitted completely.
This change slightly alters this behavior. The uses of the constant are kept,
as well as the declaration, although the latter is stripped of the layout
qualifier. The declaration is also prepended with the following code:
#ifndef <constant name>_value
#define <constant name> <default constant value>
#endif
and the constant itself now looks like
const <constant type> <constant name> = <constant name>_value;
The rationale for this change is that it gives the user a way to provide
custom values for specialization constants even when the target does not
support them.
- Add new Windows support
- Use CMake/CTest instead of Make + shell scripts
- Use --parallel in CTest
- Fix CTest on Windows
- Cleanups in test_shaders.py
- Force specific commit for SPIRV-Headers
- Fix Inf/NaN odd-ball case by moving to ASM
HLSL just picked the variable name which did not work as expected for
some users. Use the same logic as GLSL and set up declared_block_names,
so the actual name can be queried later.
A lot of changes in spirv-opt output.
Some new invalid SPIR-V was found but most of them were not significant
for SPIRV-Cross, so just marked them as invalid.
Even as of Metal 2.1, MSL still doesn't support arrays of buffers
directly. Therefore, we must manually expand them. In the prologue, we
define arrays holding the argument pointers; these arrays are what the
transpiled code ends up referencing. We might be able to do similar
things for textures and samplers prior to MSL 2.0.
Speaking of which, also enable texture arrays on iOS MSL 1.2.
It'll be useful to have an "auxiliary buffer" for other builtins--e.g.
`DrawIndex` (which should be easier to implement now), or `ViewIndex`
when someone gets around to implementing multiview.
Pass this buffer to leaf functions as well.
Test that we handle this for integer textures as well.
It's intended to be used with MoltenVK to support arbitrary
`VkComponentMapping` settings. The idea is that MoltenVK will pass a
buffer (which it set to some buffer index that isn't being used)
containing packed versions of the `VkComponentMapping` struct, one for
each sampled image.
Yes, this is horribly ugly. It is unfortunately necessary. Much of the
ugliness is to support swizzling gather operations, where we need to
alter the component that the gather operates on--something complicated
by the `gather()` method requiring the passed-in component to be a
constant expression. It doesn't even support swizzling gathers on depth
textures, though I could add that if it turns out we need it.
This requires MSL 2.0+.
Also, force `ViewportIndex` and `Layer` to be defined as the correct
type, which is always `uint` in MSL.
Since Metal doesn't yet have geometry shaders, the vertex shader (or
tessellation evaluation shader == "post-tessellation vertex shader" in
Metal jargon) is the only kind of shader that can set this output. This
currently requires an extension to Vulkan, which causes validation of
the SPIR-V binaries for the test cases to fail. Therefore, the test
cases are marked "invalid", even though they're actually perfectly valid
SPIR-V--they just won't work without the
`SPV_EXT_shader_viewport_index_layer` extension.
Need some pretty hideous ladder variable system, but high level
languages do not support breaking out of a loop. break in switch blocks
and break in loops alias each other.
This is somewhat tricky, because in MSL this value is obtained through a
function, `get_sample_position()`. Since the call expression is an
rvalue, it can't be passed by reference, so functions get a copy
instead.
This was the last piece preventing us from turning on sample-rate
shading support in MoltenVK.
Implement this by flattening outputs and unflattening inputs explicitly.
This allows us to pass down a single struct instead of dealing with the
insanity that would be passing down each flattened member separately.
Remove stage_uniforms_var_id.
Seems to be dead code. Naked uniforms do not exist in SPIR-V for Vulkan,
which this seems to have been intended for. It was also unused elsewhere.
We were passing a constant '1' to `emit_atomic_func_op()`--which caused
us to refer to SPIR-V value `%1`, which is almost certainly not what we
want! What we really want is to add/subtract the literal constant '1'
to/from the memory location.
This only affects the builtin when it is used, and not when it's passed
to a function. It's a lot cleaner than the way I was doing it before.
Remove the `to_expression()` hack.
In SPIR-V, builtin integral vectors can be either signed or unsigned,
but in MSL they're always unsigned. Unfortunately, the MSL spec forbids
implicit conversions between vector types--even if the corresponding
scalar types would implicitly convert. If you try, the result is a
cryptic error message such as:
```
program_source:37:60: error: cannot convert between vector values of different size ('int4' (aka 'vector_int4') and 'vector_uint4' (vector of 4 'unsigned int' values))
float4 r3 = as_type<float4>((as_type<int4>(r0) * gl_LocalInvocationID.xyyy) + as_type<int4>(r2));
~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~
```
Therefore, uses of these builtins must be explicitly cast, since the
rest of the binary likely assumes that the builtin is of its declared
type.