MSL generally emits the aliases, which means we cannot always place the
master type first, unlike GLSL and HLSL. The logic fix is just to
reorder after we have tagged types with packing information, rather than
doing it in the parser fixup.
Change aux buffer to swizzle buffer.
There is no good reason to expand the aux buffer, so name it
appropriately.
Make the code cleaner by emitting a straight pointer to uint rather than
a dummy struct which only contains a single unsized array member anyways.
This will also end up being very similar to how we implement swizzle
buffers for argument buffers.
Do not use implied binding if it overflows int32_t.
Some support for subgroups is present starting in Metal 2.0 on both iOS
and macOS. macOS gains more complete support in 10.14 (Metal 2.1).
Some restrictions are present. On iOS and on macOS 10.13, the
implementation of `OpGroupNonUniformElect` is incorrect: if thread 0 has
already terminated or is not executing a conditional branch, the first
thread that *is* will falsely believe itself not to be. Unfortunately,
this operation is part of the "basic" feature set; without it, subgroups
cannot be supported at all.
The `SubgroupSize` and `SubgroupLocalInvocationId` builtins are only
available in compute shaders (and, by extension, tessellation control
shaders), despite SPIR-V making them available in all stages. This
limits the usefulness of some of the subgroup operations in fragment
shaders.
Although Metal on macOS supports some clustered, inclusive, and
exclusive operations, it does not support them all. In particular,
inclusive and exclusive min, max, and, or, and xor; as well as cluster
sizes other than 4 are not supported. If this becomes a problem, they
could be emulated, but at a significant performance cost due to the need
for non-uniform operations.
MSL does not seem to have a qualifier for this, but HLSL SM 5.1 does.
glslangValidator for HLSL does not support this, so skip any validation,
but it passes in FXC.
Buffer objects can contain arbitrary pointers to blocks.
We can also implement ConvertPtrToU and ConvertUToPtr.
The latter can cast a uint64_t to any type as it pleases,
so we will need to generate fake buffer reference blocks to be able to
cast the type.
We made the mistake of registering a dependency on the atomic variable
even if the atomic result was forced to a temporary. There is no need to
register reads from atomic variables like this as we always force atomic
results to a temporary and argument read/writes do not need to be
tracked.