2016-03-02 17:09:16 +00:00
/*
2021-01-14 15:07:49 +00:00
* Copyright 2015 - 2021 Arm Limited
2021-05-08 08:47:48 +00:00
* SPDX - License - Identifier : Apache - 2.0 OR MIT
2016-03-02 17:09:16 +00:00
*
* Licensed under the Apache License , Version 2.0 ( the " License " ) ;
* you may not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* http : //www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an " AS IS " BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
*/
2020-11-25 14:22:08 +00:00
/*
* At your option , you may choose to accept this material under either :
* 1. The Apache License , Version 2.0 , found at < http : //www.apache.org/licenses/LICENSE-2.0>, or
* 2. The MIT License , found at < http : //opensource.org/licenses/MIT>.
*/
2016-04-04 07:36:04 +00:00
# ifndef SPIRV_CROSS_HPP
# define SPIRV_CROSS_HPP
2016-03-02 17:09:16 +00:00
2022-05-02 13:27:09 +00:00
# ifndef SPV_ENABLE_UTILITY_CODE
# define SPV_ENABLE_UTILITY_CODE
# endif
2016-03-02 17:09:16 +00:00
# include "spirv.hpp"
2018-07-04 15:26:53 +00:00
# include "spirv_cfg.hpp"
2018-10-05 09:30:57 +00:00
# include "spirv_cross_parsed_ir.hpp"
2016-03-02 17:09:16 +00:00
2019-03-29 09:29:44 +00:00
namespace SPIRV_CROSS_NAMESPACE
2016-03-02 17:09:16 +00:00
{
2016-05-05 07:33:18 +00:00
struct Resource
{
2024-08-17 18:00:14 +00:00
// Resources are identified with their SPIR-V ID.
// This is the ID of the OpVariable.
ID id ;
// The type ID of the variable which includes arrays and all type modifications.
// This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general
// since these modifications typically happen on the base_type_id.
TypeID type_id ;
// The base type of the declared resource.
// This type is the base type which ignores pointers and arrays of the type_id.
// This is mostly useful to parse decorations of the underlying type.
// base_type_id can also be obtained with get_type(get_type(type_id).self).
TypeID base_type_id ;
// The declared name (OpName) of the resource.
// For Buffer blocks, the name actually reflects the externally
// visible Block name.
//
// This name can be retrieved again by using either
// get_name(id) or get_name(base_type_id) depending if it's a buffer block or not.
//
// This name can be an empty string in which case get_fallback_name(id) can be
// used which obtains a suitable fallback identifier for an ID.
std : : string name ;
2016-05-05 07:33:18 +00:00
} ;
2021-04-16 11:32:37 +00:00
struct BuiltInResource
{
2024-08-17 18:00:14 +00:00
// This is mostly here to support reflection of builtins such as Position/PointSize/CullDistance/ClipDistance.
// This needs to be different from Resource since we can collect builtins from blocks.
// A builtin present here does not necessarily mean it's considered an active builtin,
// since variable ID "activeness" is only tracked on OpVariable level, not Block members.
// For that, update_active_builtins() -> has_active_builtin() can be used to further refine the reflection.
spv : : BuiltIn builtin ;
// This is the actual value type of the builtin.
// Typically float4, float, array<float, N> for the gl_PerVertex builtins.
// If the builtin is a control point, the control point array type will be stripped away here as appropriate.
TypeID value_type_id ;
// This refers to the base resource which contains the builtin.
// If resource is a Block, it can hold multiple builtins, or it might not be a block.
// For advanced reflection scenarios, all information in builtin/value_type_id can be deduced,
// it's just more convenient this way.
Resource resource ;
2021-04-16 11:32:37 +00:00
} ;
2016-05-05 07:33:18 +00:00
struct ShaderResources
{
2024-08-17 18:00:14 +00:00
SmallVector < Resource > uniform_buffers ;
SmallVector < Resource > storage_buffers ;
SmallVector < Resource > stage_inputs ;
SmallVector < Resource > stage_outputs ;
SmallVector < Resource > subpass_inputs ;
SmallVector < Resource > storage_images ;
SmallVector < Resource > sampled_images ;
SmallVector < Resource > atomic_counters ;
SmallVector < Resource > acceleration_structures ;
SmallVector < Resource > gl_plain_uniforms ;
// There can only be one push constant block,
// but keep the vector in case this restriction is lifted in the future.
SmallVector < Resource > push_constant_buffers ;
SmallVector < Resource > shader_record_buffers ;
// For Vulkan GLSL and HLSL source,
// these correspond to separate texture2D and samplers respectively.
SmallVector < Resource > separate_images ;
SmallVector < Resource > separate_samplers ;
SmallVector < BuiltInResource > builtin_inputs ;
SmallVector < BuiltInResource > builtin_outputs ;
2016-05-05 07:33:18 +00:00
} ;
2016-09-10 11:56:36 +00:00
struct CombinedImageSampler
{
2024-08-17 18:00:14 +00:00
// The ID of the sampler2D variable.
VariableID combined_id ;
// The ID of the texture2D variable.
VariableID image_id ;
// The ID of the sampler variable.
VariableID sampler_id ;
2016-09-10 11:56:36 +00:00
} ;
2016-09-17 13:16:07 +00:00
struct SpecializationConstant
{
2024-08-17 18:00:14 +00:00
// The ID of the specialization constant.
ConstantID id ;
// The constant ID of the constant, used in Vulkan during pipeline creation.
uint32_t constant_id ;
2016-05-05 07:33:18 +00:00
} ;
struct BufferRange
{
2024-08-17 18:00:14 +00:00
unsigned index ;
size_t offset ;
size_t range ;
2016-05-05 07:33:18 +00:00
} ;
2017-10-10 08:12:27 +00:00
enum BufferPackingStandard
{
2024-08-17 18:00:14 +00:00
BufferPackingStd140 ,
BufferPackingStd430 ,
BufferPackingStd140EnhancedLayout ,
BufferPackingStd430EnhancedLayout ,
BufferPackingHLSLCbuffer ,
BufferPackingHLSLCbufferPackOffset ,
BufferPackingScalar ,
BufferPackingScalarEnhancedLayout
2017-10-10 08:12:27 +00:00
} ;
2018-03-01 13:00:04 +00:00
struct EntryPoint
{
2024-08-17 18:00:14 +00:00
std : : string name ;
spv : : ExecutionModel execution_model ;
2018-03-01 13:00:04 +00:00
} ;
2016-05-05 07:33:18 +00:00
class Compiler
{
public :
2024-08-17 18:00:14 +00:00
friend class CFG ;
friend class DominatorBuilder ;
2016-11-11 17:04:14 +00:00
2024-08-17 18:00:14 +00:00
// The constructor takes a buffer of SPIR-V words and parses it.
// It will create its own parser, parse the SPIR-V and move the parsed IR
// as if you had called the constructors taking ParsedIR directly.
explicit Compiler ( std : : vector < uint32_t > ir ) ;
Compiler ( const uint32_t * ir , size_t word_count ) ;
// This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy.
// With copy, we can reuse the same parsed IR for multiple Compiler instances.
explicit Compiler ( const ParsedIR & ir ) ;
explicit Compiler ( ParsedIR & & ir ) ;
2018-10-05 09:30:57 +00:00
2024-08-17 18:00:14 +00:00
virtual ~ Compiler ( ) = default ;
// After parsing, API users can modify the SPIR-V via reflection and call this
// to disassemble the SPIR-V into the desired langauage.
// Sub-classes actually implement this.
virtual std : : string compile ( ) ;
// Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned.
const std : : string & get_name ( ID id ) const ;
// Applies a decoration to an ID. Effectively injects OpDecorate.
void set_decoration ( ID id , spv : : Decoration decoration , uint32_t argument = 0 ) ;
void set_decoration_string ( ID id , spv : : Decoration decoration , const std : : string & argument ) ;
// Overrides the identifier OpName of an ID.
// Identifiers beginning with underscores or identifiers which contain double underscores
// are reserved by the implementation.
void set_name ( ID id , const std : : string & name ) ;
// Gets a bitmask for the decorations which are applied to ID.
// I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar)
const Bitset & get_decoration_bitset ( ID id ) const ;
// Returns whether the decoration has been applied to the ID.
bool has_decoration ( ID id , spv : : Decoration decoration ) const ;
// Gets the value for decorations which take arguments.
// If the decoration is a boolean (i.e. spv::DecorationNonWritable),
// 1 will be returned.
// If decoration doesn't exist or decoration is not recognized,
// 0 will be returned.
uint32_t get_decoration ( ID id , spv : : Decoration decoration ) const ;
const std : : string & get_decoration_string ( ID id , spv : : Decoration decoration ) const ;
// Removes the decoration for an ID.
void unset_decoration ( ID id , spv : : Decoration decoration ) ;
// Gets the SPIR-V type associated with ID.
// Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource.
const SPIRType & get_type ( TypeID id ) const ;
// Gets the SPIR-V type of a variable.
const SPIRType & get_type_from_variable ( VariableID id ) const ;
// Gets the underlying storage class for an OpVariable.
spv : : StorageClass get_storage_class ( VariableID id ) const ;
// If get_name() is an empty string, get the fallback name which will be used
// instead in the disassembled source.
virtual const std : : string get_fallback_name ( ID id ) const ;
// If get_name() of a Block struct is an empty string, get the fallback name.
// This needs to be per-variable as multiple variables can use the same block type.
virtual const std : : string get_block_fallback_name ( VariableID id ) const ;
// Given an OpTypeStruct in ID, obtain the identifier for member number "index".
// This may be an empty string.
const std : : string & get_member_name ( TypeID id , uint32_t index ) const ;
// Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index".
uint32_t get_member_decoration ( TypeID id , uint32_t index , spv : : Decoration decoration ) const ;
const std : : string & get_member_decoration_string ( TypeID id , uint32_t index , spv : : Decoration decoration ) const ;
// Sets the member identifier for OpTypeStruct ID, member number "index".
void set_member_name ( TypeID id , uint32_t index , const std : : string & name ) ;
// Returns the qualified member identifier for OpTypeStruct ID, member number "index",
// or an empty string if no qualified alias exists
const std : : string & get_member_qualified_name ( TypeID type_id , uint32_t index ) const ;
// Gets the decoration mask for a member of a struct, similar to get_decoration_mask.
const Bitset & get_member_decoration_bitset ( TypeID id , uint32_t index ) const ;
// Returns whether the decoration has been applied to a member of a struct.
bool has_member_decoration ( TypeID id , uint32_t index , spv : : Decoration decoration ) const ;
// Similar to set_decoration, but for struct members.
void set_member_decoration ( TypeID id , uint32_t index , spv : : Decoration decoration , uint32_t argument = 0 ) ;
void set_member_decoration_string ( TypeID id , uint32_t index , spv : : Decoration decoration ,
const std : : string & argument ) ;
// Unsets a member decoration, similar to unset_decoration.
void unset_member_decoration ( TypeID id , uint32_t index , spv : : Decoration decoration ) ;
// Gets the fallback name for a member, similar to get_fallback_name.
virtual const std : : string get_fallback_member_name ( uint32_t index ) const
{
return join ( " _ " , index ) ;
}
// Returns a vector of which members of a struct are potentially in use by a
// SPIR-V shader. The granularity of this analysis is per-member of a struct.
// This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks.
// ID is the Resource::id obtained from get_shader_resources().
SmallVector < BufferRange > get_active_buffer_ranges ( VariableID id ) const ;
// Returns the effective size of a buffer block.
size_t get_declared_struct_size ( const SPIRType & struct_type ) const ;
// Returns the effective size of a buffer block, with a given array size
// for a runtime array.
// SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size.
// This is not very helpful for applications which might need to know the array stride of its last member.
// This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function
// to query the size of the buffer, assuming that the last member has a certain size.
// If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as
// get_declared_struct_size().
// To get the array stride of the last member, something like:
// get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work.
size_t get_declared_struct_size_runtime_array ( const SPIRType & struct_type , size_t array_size ) const ;
// Returns the effective size of a buffer block struct member.
size_t get_declared_struct_member_size ( const SPIRType & struct_type , uint32_t index ) const ;
// Returns a set of all global variables which are statically accessed
// by the control flow graph from the current entry point.
// Only variables which change the interface for a shader are returned, that is,
// variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter
// storage classes are returned.
//
// To use the returned set as the filter for which variables are used during compilation,
// this set can be moved to set_enabled_interface_variables().
std : : unordered_set < VariableID > get_active_interface_variables ( ) const ;
// Sets the interface variables which are used during compilation.
// By default, all variables are used.
// Once set, compile() will only consider the set in active_variables.
void set_enabled_interface_variables ( std : : unordered_set < VariableID > active_variables ) ;
// Query shader resources, use ids with reflection interface to modify or query binding points, etc.
ShaderResources get_shader_resources ( ) const ;
// Query shader resources, but only return the variables which are part of active_variables.
// E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically
// accessed.
ShaderResources get_shader_resources ( const std : : unordered_set < VariableID > & active_variables ) const ;
// Remapped variables are considered built-in variables and a backend will
// not emit a declaration for this variable.
// This is mostly useful for making use of builtins which are dependent on extensions.
void set_remapped_variable_state ( VariableID id , bool remap_enable ) ;
bool get_remapped_variable_state ( VariableID id ) const ;
// For subpassInput variables which are remapped to plain variables,
// the number of components in the remapped
// variable must be specified as the backing type of subpass inputs are opaque.
void set_subpass_input_remapped_components ( VariableID id , uint32_t components ) ;
uint32_t get_subpass_input_remapped_components ( VariableID id ) const ;
// All operations work on the current entry point.
// Entry points can be swapped out with set_entry_point().
// Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point.
// Resource reflection also depends on the entry point.
// By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module.
// Some shader languages restrict the names that can be given to entry points, and the
// corresponding backend will automatically rename an entry point name, during the call
// to compile() if it is illegal. For example, the common entry point name main() is
// illegal in MSL, and is renamed to an alternate name by the MSL backend.
// Given the original entry point name contained in the SPIR-V, this function returns
// the name, as updated by the backend during the call to compile(). If the name is not
// illegal, and has not been renamed, or if this function is called before compile(),
// this function will simply return the same name.
// New variants of entry point query and reflection.
// Names for entry points in the SPIR-V module may alias if they belong to different execution models.
// To disambiguate, we must pass along with the entry point names the execution model.
SmallVector < EntryPoint > get_entry_points_and_stages ( ) const ;
void set_entry_point ( const std : : string & entry , spv : : ExecutionModel execution_model ) ;
// Renames an entry point from old_name to new_name.
// If old_name is currently selected as the current entry point, it will continue to be the current entry point,
// albeit with a new name.
// get_entry_points() is essentially invalidated at this point.
void rename_entry_point ( const std : : string & old_name , const std : : string & new_name ,
spv : : ExecutionModel execution_model ) ;
const SPIREntryPoint & get_entry_point ( const std : : string & name , spv : : ExecutionModel execution_model ) const ;
SPIREntryPoint & get_entry_point ( const std : : string & name , spv : : ExecutionModel execution_model ) ;
const std : : string & get_cleansed_entry_point_name ( const std : : string & name ,
spv : : ExecutionModel execution_model ) const ;
// Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader.
void update_active_builtins ( ) ;
bool has_active_builtin ( spv : : BuiltIn builtin , spv : : StorageClass storage ) const ;
// Query and modify OpExecutionMode.
const Bitset & get_execution_mode_bitset ( ) const ;
void unset_execution_mode ( spv : : ExecutionMode mode ) ;
void set_execution_mode ( spv : : ExecutionMode mode , uint32_t arg0 = 0 , uint32_t arg1 = 0 , uint32_t arg2 = 0 ) ;
// Gets argument for an execution mode (LocalSize, Invocations, OutputVertices).
// For LocalSize or LocalSizeId, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2).
// For execution modes which do not have arguments, 0 is returned.
// LocalSizeId query returns an ID. If LocalSizeId execution mode is not used, it returns 0.
// LocalSize always returns a literal. If execution mode is LocalSizeId,
// the literal (spec constant or not) is still returned.
uint32_t get_execution_mode_argument ( spv : : ExecutionMode mode , uint32_t index = 0 ) const ;
spv : : ExecutionModel get_execution_model ( ) const ;
bool is_tessellation_shader ( ) const ;
bool is_tessellating_triangles ( ) const ;
// In SPIR-V, the compute work group size can be represented by a constant vector, in which case
// the LocalSize execution mode is ignored.
//
// This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector.
// To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified
// directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified.
//
// To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly.
// Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation.
// NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize,
// while in this interface, LocalSize is only ignored for specialization constants.
//
// The specialization constant will be written to x, y and z arguments.
// If the component is not a specialization constant, a zeroed out struct will be written.
// The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful
// for most use cases.
// If LocalSizeId is used, there is no uvec3 value representing the workgroup size, so the return value is 0,
// but x, y and z are written as normal if the components are specialization constants.
uint32_t get_work_group_size_specialization_constants ( SpecializationConstant & x , SpecializationConstant & y ,
SpecializationConstant & z ) const ;
// Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where
// said instruction is used without a combined image sampler.
// GLSL targets do not support the use of texelFetch without a sampler.
// To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of
// texelFetch as necessary.
//
// This must be called before build_combined_image_samplers().
// build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero.
// The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object
// is required.
//
// If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile().
// Calling this function also invalidates get_active_interface_variables(), so this should be called
// before that function.
VariableID build_dummy_sampler_for_combined_images ( ) ;
// Analyzes all separate image and samplers used from the currently selected entry point,
// and re-routes them all to a combined image sampler instead.
// This is required to "support" separate image samplers in targets which do not natively support
// this feature, like GLSL/ESSL.
//
// This must be called before compile() if such remapping is desired.
// This call will add new sampled images to the SPIR-V,
// so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers.
//
// If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output,
// but will still appear in reflection.
//
// The resulting samplers will be void of any decorations like name, descriptor sets and binding points,
// so this can be added before compile() if desired.
//
// Combined image samplers originating from this set are always considered active variables.
// Arrays of separate samplers are not supported, but arrays of separate images are supported.
// Array of images + sampler -> Array of combined image samplers.
2024-08-18 16:53:11 +00:00
void build_combined_image_samplers ( bool bPreserve = false ) ;
2024-08-17 18:00:14 +00:00
// Gets a remapping for the combined image samplers.
const SmallVector < CombinedImageSampler > & get_combined_image_samplers ( ) const
{
return combined_image_samplers ;
}
// Set a new variable type remap callback.
// The type remapping is designed to allow global interface variable to assume more special types.
// A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported
// directly by SPIR-V.
//
// In compile() while emitting code,
// for every variable that is declared, including function parameters, the callback will be called
// and the API user has a chance to change the textual representation of the type used to declare the variable.
// The API user can detect special patterns in names to guide the remapping.
void set_variable_type_remap_callback ( VariableTypeRemapCallback cb )
{
variable_remap_callback = std : : move ( cb ) ;
}
// API for querying which specialization constants exist.
// To modify a specialization constant before compile(), use get_constant(constant.id),
// then update constants directly in the SPIRConstant data structure.
// For composite types, the subconstants can be iterated over and modified.
// constant_type is the SPIRType for the specialization constant,
// which can be queried to determine which fields in the unions should be poked at.
SmallVector < SpecializationConstant > get_specialization_constants ( ) const ;
SPIRConstant & get_constant ( ConstantID id ) ;
const SPIRConstant & get_constant ( ConstantID id ) const ;
uint32_t get_current_id_bound ( ) const
{
return uint32_t ( ir . ids . size ( ) ) ;
}
// API for querying buffer objects.
// The type passed in here should be the base type of a resource, i.e.
// get_type(resource.base_type_id)
// as decorations are set in the basic Block type.
// The type passed in here must have these decorations set, or an exception is raised.
// Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set.
uint32_t type_struct_member_offset ( const SPIRType & type , uint32_t index ) const ;
uint32_t type_struct_member_array_stride ( const SPIRType & type , uint32_t index ) const ;
uint32_t type_struct_member_matrix_stride ( const SPIRType & type , uint32_t index ) const ;
// Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary.
// The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary.
// Note that adding or removing decorations using the reflection API will not change the behavior of this function.
// If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true,
// otherwise, returns false.
// If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false.
bool get_binary_offset_for_decoration ( VariableID id , spv : : Decoration decoration , uint32_t & word_offset ) const ;
// HLSL counter buffer reflection interface.
// Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where
// one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter.
// To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier
// which lets us link the two buffers together.
// Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object.
// If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
// Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
// only return true if OpSource was reported HLSL.
// To rely on this functionality, ensure that the SPIR-V module is not stripped.
bool buffer_is_hlsl_counter_buffer ( VariableID id ) const ;
// Queries if a buffer object has a neighbor "counter" buffer.
// If so, the ID of that counter buffer will be returned in counter_id.
// If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module.
// Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will
// only return true if OpSource was reported HLSL.
// To rely on this functionality, ensure that the SPIR-V module is not stripped.
bool buffer_get_hlsl_counter_buffer ( VariableID id , uint32_t & counter_id ) const ;
// Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module.
const SmallVector < spv : : Capability > & get_declared_capabilities ( ) const ;
// Gets the list of all SPIR-V extensions which were declared in the SPIR-V module.
const SmallVector < std : : string > & get_declared_extensions ( ) const ;
// When declaring buffer blocks in GLSL, the name declared in the GLSL source
// might not be the same as the name declared in the SPIR-V module due to naming conflicts.
// In this case, SPIRV-Cross needs to find a fallback-name, and it might only
// be possible to know this name after compiling to GLSL.
// This is particularly important for HLSL input and UAVs which tends to reuse the same block type
// for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself
// because it might be unique. Instead, you can use this interface to check after compilation which
// name was actually used if your input SPIR-V tends to have this problem.
// For other names like remapped names for variables, etc, it's generally enough to query the name of the variables
// after compiling, block names are an exception to this rule.
// ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type.
//
// This also applies to HLSL cbuffers.
std : : string get_remapped_declared_block_name ( VariableID id ) const ;
// For buffer block variables, get the decorations for that variable.
// Sometimes, decorations for buffer blocks are found in member decorations instead
// of direct decorations on the variable itself.
// The most common use here is to check if a buffer is readonly or writeonly.
Bitset get_buffer_block_flags ( VariableID id ) const ;
// Returns whether the position output is invariant
bool is_position_invariant ( ) const
{
return position_invariant ;
}
2021-01-28 21:13:20 +00:00
2016-05-05 07:33:18 +00:00
protected :
2024-08-17 18:00:14 +00:00
const uint32_t * stream ( const Instruction & instr ) const
{
// If we're not going to use any arguments, just return nullptr.
// We want to avoid case where we return an out of range pointer
// that trips debug assertions on some platforms.
if ( ! instr . length )
return nullptr ;
if ( instr . is_embedded ( ) )
{
auto & embedded = static_cast < const EmbeddedInstruction & > ( instr ) ;
assert ( embedded . ops . size ( ) = = instr . length ) ;
return embedded . ops . data ( ) ;
}
else
{
if ( instr . offset + instr . length > ir . spirv . size ( ) )
SPIRV_CROSS_THROW ( " Compiler::stream() out of range. " ) ;
return & ir . spirv [ instr . offset ] ;
}
}
uint32_t * stream_mutable ( const Instruction & instr ) const
{
return const_cast < uint32_t * > ( stream ( instr ) ) ;
}
ParsedIR ir ;
// Marks variables which have global scope and variables which can alias with other variables
// (SSBO, image load store, etc)
SmallVector < uint32_t > global_variables ;
SmallVector < uint32_t > aliased_variables ;
SPIRFunction * current_function = nullptr ;
SPIRBlock * current_block = nullptr ;
uint32_t current_loop_level = 0 ;
std : : unordered_set < VariableID > active_interface_variables ;
bool check_active_interface_variables = false ;
void add_loop_level ( ) ;
void set_initializers ( SPIRExpression & e )
{
e . emitted_loop_level = current_loop_level ;
}
template < typename T >
void set_initializers ( const T & )
{
}
// If our IDs are out of range here as part of opcodes, throw instead of
// undefined behavior.
template < typename T , typename . . . P >
T & set ( uint32_t id , P & & . . . args )
{
ir . add_typed_id ( static_cast < Types > ( T : : type ) , id ) ;
auto & var = variant_set < T > ( ir . ids [ id ] , std : : forward < P > ( args ) . . . ) ;
var . self = id ;
set_initializers ( var ) ;
return var ;
}
template < typename T >
T & get ( uint32_t id )
{
return variant_get < T > ( ir . ids [ id ] ) ;
}
template < typename T >
T * maybe_get ( uint32_t id )
{
if ( id > = ir . ids . size ( ) )
return nullptr ;
else if ( ir . ids [ id ] . get_type ( ) = = static_cast < Types > ( T : : type ) )
return & get < T > ( id ) ;
else
return nullptr ;
}
template < typename T >
const T & get ( uint32_t id ) const
{
return variant_get < T > ( ir . ids [ id ] ) ;
}
template < typename T >
const T * maybe_get ( uint32_t id ) const
{
if ( id > = ir . ids . size ( ) )
return nullptr ;
else if ( ir . ids [ id ] . get_type ( ) = = static_cast < Types > ( T : : type ) )
return & get < T > ( id ) ;
else
return nullptr ;
}
// Gets the id of SPIR-V type underlying the given type_id, which might be a pointer.
uint32_t get_pointee_type_id ( uint32_t type_id ) const ;
// Gets the SPIR-V type underlying the given type, which might be a pointer.
const SPIRType & get_pointee_type ( const SPIRType & type ) const ;
// Gets the SPIR-V type underlying the given type_id, which might be a pointer.
const SPIRType & get_pointee_type ( uint32_t type_id ) const ;
// Gets the ID of the SPIR-V type underlying a variable.
uint32_t get_variable_data_type_id ( const SPIRVariable & var ) const ;
// Gets the SPIR-V type underlying a variable.
SPIRType & get_variable_data_type ( const SPIRVariable & var ) ;
// Gets the SPIR-V type underlying a variable.
const SPIRType & get_variable_data_type ( const SPIRVariable & var ) const ;
// Gets the SPIR-V element type underlying an array variable.
SPIRType & get_variable_element_type ( const SPIRVariable & var ) ;
// Gets the SPIR-V element type underlying an array variable.
const SPIRType & get_variable_element_type ( const SPIRVariable & var ) const ;
// Sets the qualified member identifier for OpTypeStruct ID, member number "index".
void set_member_qualified_name ( uint32_t type_id , uint32_t index , const std : : string & name ) ;
void set_qualified_name ( uint32_t id , const std : : string & name ) ;
// Returns if the given type refers to a sampled image.
bool is_sampled_image_type ( const SPIRType & type ) ;
const SPIREntryPoint & get_entry_point ( ) const ;
SPIREntryPoint & get_entry_point ( ) ;
static bool is_tessellation_shader ( spv : : ExecutionModel model ) ;
virtual std : : string to_name ( uint32_t id , bool allow_alias = true ) const ;
bool is_builtin_variable ( const SPIRVariable & var ) const ;
bool is_builtin_type ( const SPIRType & type ) const ;
bool is_hidden_variable ( const SPIRVariable & var , bool include_builtins = false ) const ;
bool is_immutable ( uint32_t id ) const ;
bool is_member_builtin ( const SPIRType & type , uint32_t index , spv : : BuiltIn * builtin ) const ;
bool is_scalar ( const SPIRType & type ) const ;
bool is_vector ( const SPIRType & type ) const ;
bool is_matrix ( const SPIRType & type ) const ;
bool is_array ( const SPIRType & type ) const ;
bool is_pointer ( const SPIRType & type ) const ;
bool is_physical_pointer ( const SPIRType & type ) const ;
bool is_physical_pointer_to_buffer_block ( const SPIRType & type ) const ;
static bool is_runtime_size_array ( const SPIRType & type ) ;
uint32_t expression_type_id ( uint32_t id ) const ;
const SPIRType & expression_type ( uint32_t id ) const ;
bool expression_is_lvalue ( uint32_t id ) const ;
bool variable_storage_is_aliased ( const SPIRVariable & var ) ;
SPIRVariable * maybe_get_backing_variable ( uint32_t chain ) ;
void register_read ( uint32_t expr , uint32_t chain , bool forwarded ) ;
void register_write ( uint32_t chain ) ;
inline bool is_continue ( uint32_t next ) const
{
return ( ir . block_meta [ next ] & ParsedIR : : BLOCK_META_CONTINUE_BIT ) ! = 0 ;
}
inline bool is_single_block_loop ( uint32_t next ) const
{
auto & block = get < SPIRBlock > ( next ) ;
return block . merge = = SPIRBlock : : MergeLoop & & block . continue_block = = ID ( next ) ;
}
inline bool is_break ( uint32_t next ) const
{
return ( ir . block_meta [ next ] &
( ParsedIR : : BLOCK_META_LOOP_MERGE_BIT | ParsedIR : : BLOCK_META_MULTISELECT_MERGE_BIT ) ) ! = 0 ;
}
inline bool is_loop_break ( uint32_t next ) const
{
return ( ir . block_meta [ next ] & ParsedIR : : BLOCK_META_LOOP_MERGE_BIT ) ! = 0 ;
}
inline bool is_conditional ( uint32_t next ) const
{
return ( ir . block_meta [ next ] &
( ParsedIR : : BLOCK_META_SELECTION_MERGE_BIT | ParsedIR : : BLOCK_META_MULTISELECT_MERGE_BIT ) ) ! = 0 ;
}
// Dependency tracking for temporaries read from variables.
void flush_dependees ( SPIRVariable & var ) ;
void flush_all_active_variables ( ) ;
void flush_control_dependent_expressions ( uint32_t block ) ;
void flush_all_atomic_capable_variables ( ) ;
void flush_all_aliased_variables ( ) ;
void register_global_read_dependencies ( const SPIRBlock & func , uint32_t id ) ;
void register_global_read_dependencies ( const SPIRFunction & func , uint32_t id ) ;
std : : unordered_set < uint32_t > invalid_expressions ;
void update_name_cache ( std : : unordered_set < std : : string > & cache , std : : string & name ) ;
// A variant which takes two sets of names. The secondary is only used to verify there are no collisions,
// but the set is not updated when we have found a new name.
// Used primarily when adding block interface names.
void update_name_cache ( std : : unordered_set < std : : string > & cache_primary ,
const std : : unordered_set < std : : string > & cache_secondary , std : : string & name ) ;
bool function_is_pure ( const SPIRFunction & func ) ;
bool block_is_pure ( const SPIRBlock & block ) ;
bool function_is_control_dependent ( const SPIRFunction & func ) ;
bool block_is_control_dependent ( const SPIRBlock & block ) ;
bool execution_is_branchless ( const SPIRBlock & from , const SPIRBlock & to ) const ;
bool execution_is_direct_branch ( const SPIRBlock & from , const SPIRBlock & to ) const ;
bool execution_is_noop ( const SPIRBlock & from , const SPIRBlock & to ) const ;
SPIRBlock : : ContinueBlockType continue_block_type ( const SPIRBlock & continue_block ) const ;
void force_recompile ( ) ;
void force_recompile_guarantee_forward_progress ( ) ;
void clear_force_recompile ( ) ;
bool is_forcing_recompilation ( ) const ;
bool is_force_recompile = false ;
bool is_force_recompile_forward_progress = false ;
bool block_is_noop ( const SPIRBlock & block ) const ;
bool block_is_loop_candidate ( const SPIRBlock & block , SPIRBlock : : Method method ) const ;
bool types_are_logically_equivalent ( const SPIRType & a , const SPIRType & b ) const ;
void inherit_expression_dependencies ( uint32_t dst , uint32_t source ) ;
void add_implied_read_expression ( SPIRExpression & e , uint32_t source ) ;
void add_implied_read_expression ( SPIRAccessChain & e , uint32_t source ) ;
void add_active_interface_variable ( uint32_t var_id ) ;
// For proper multiple entry point support, allow querying if an Input or Output
// variable is part of that entry points interface.
bool interface_variable_exists_in_entry_point ( uint32_t id ) const ;
SmallVector < CombinedImageSampler > combined_image_samplers ;
void remap_variable_type_name ( const SPIRType & type , const std : : string & var_name , std : : string & type_name ) const
{
if ( variable_remap_callback )
variable_remap_callback ( type , var_name , type_name ) ;
}
void set_ir ( const ParsedIR & parsed ) ;
void set_ir ( ParsedIR & & parsed ) ;
void parse_fixup ( ) ;
// Used internally to implement various traversals for queries.
struct OpcodeHandler
{
virtual ~ OpcodeHandler ( ) = default ;
// Return true if traversal should continue.
// If false, traversal will end immediately.
virtual bool handle ( spv : : Op opcode , const uint32_t * args , uint32_t length ) = 0 ;
virtual bool handle_terminator ( const SPIRBlock & )
{
return true ;
}
virtual bool follow_function_call ( const SPIRFunction & )
{
return true ;
}
virtual void set_current_block ( const SPIRBlock & )
{
}
// Called after returning from a function or when entering a block,
// can be called multiple times per block,
// while set_current_block is only called on block entry.
virtual void rearm_current_block ( const SPIRBlock & )
{
}
virtual bool begin_function_scope ( const uint32_t * , uint32_t )
{
return true ;
}
virtual bool end_function_scope ( const uint32_t * , uint32_t )
{
return true ;
}
} ;
struct BufferAccessHandler : OpcodeHandler
{
BufferAccessHandler ( const Compiler & compiler_ , SmallVector < BufferRange > & ranges_ , uint32_t id_ )
: compiler ( compiler_ )
, ranges ( ranges_ )
, id ( id_ )
{
}
bool handle ( spv : : Op opcode , const uint32_t * args , uint32_t length ) override ;
const Compiler & compiler ;
SmallVector < BufferRange > & ranges ;
uint32_t id ;
std : : unordered_set < uint32_t > seen ;
} ;
struct InterfaceVariableAccessHandler : OpcodeHandler
{
InterfaceVariableAccessHandler ( const Compiler & compiler_ , std : : unordered_set < VariableID > & variables_ )
: compiler ( compiler_ )
, variables ( variables_ )
{
}
bool handle ( spv : : Op opcode , const uint32_t * args , uint32_t length ) override ;
const Compiler & compiler ;
std : : unordered_set < VariableID > & variables ;
} ;
struct CombinedImageSamplerHandler : OpcodeHandler
{
CombinedImageSamplerHandler ( Compiler & compiler_ )
: compiler ( compiler_ )
{
}
bool handle ( spv : : Op opcode , const uint32_t * args , uint32_t length ) override ;
bool begin_function_scope ( const uint32_t * args , uint32_t length ) override ;
bool end_function_scope ( const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
// Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to.
std : : stack < std : : unordered_map < uint32_t , uint32_t > > parameter_remapping ;
std : : stack < SPIRFunction * > functions ;
uint32_t remap_parameter ( uint32_t id ) ;
void push_remap_parameters ( const SPIRFunction & func , const uint32_t * args , uint32_t length ) ;
void pop_remap_parameters ( ) ;
void register_combined_image_sampler ( SPIRFunction & caller , VariableID combined_id , VariableID texture_id ,
VariableID sampler_id , bool depth ) ;
} ;
struct DummySamplerForCombinedImageHandler : OpcodeHandler
{
DummySamplerForCombinedImageHandler ( Compiler & compiler_ )
: compiler ( compiler_ )
{
}
bool handle ( spv : : Op opcode , const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
bool need_dummy_sampler = false ;
} ;
struct ActiveBuiltinHandler : OpcodeHandler
{
ActiveBuiltinHandler ( Compiler & compiler_ )
: compiler ( compiler_ )
{
}
bool handle ( spv : : Op opcode , const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
void handle_builtin ( const SPIRType & type , spv : : BuiltIn builtin , const Bitset & decoration_flags ) ;
void add_if_builtin ( uint32_t id ) ;
void add_if_builtin_or_block ( uint32_t id ) ;
void add_if_builtin ( uint32_t id , bool allow_blocks ) ;
} ;
bool traverse_all_reachable_opcodes ( const SPIRBlock & block , OpcodeHandler & handler ) const ;
bool traverse_all_reachable_opcodes ( const SPIRFunction & block , OpcodeHandler & handler ) const ;
// This must be an ordered data structure so we always pick the same type aliases.
SmallVector < uint32_t > global_struct_cache ;
ShaderResources get_shader_resources ( const std : : unordered_set < VariableID > * active_variables ) const ;
VariableTypeRemapCallback variable_remap_callback ;
bool get_common_basic_type ( const SPIRType & type , SPIRType : : BaseType & base_type ) ;
std : : unordered_set < uint32_t > forced_temporaries ;
std : : unordered_set < uint32_t > forwarded_temporaries ;
std : : unordered_set < uint32_t > suppressed_usage_tracking ;
std : : unordered_set < uint32_t > hoisted_temporaries ;
std : : unordered_set < uint32_t > forced_invariant_temporaries ;
Bitset active_input_builtins ;
Bitset active_output_builtins ;
uint32_t clip_distance_count = 0 ;
uint32_t cull_distance_count = 0 ;
bool position_invariant = false ;
void analyze_parameter_preservation (
SPIRFunction & entry , const CFG & cfg ,
const std : : unordered_map < uint32_t , std : : unordered_set < uint32_t > > & variable_to_blocks ,
const std : : unordered_map < uint32_t , std : : unordered_set < uint32_t > > & complete_write_blocks ) ;
// If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler.
// SPIR-V does not support this distinction, so we must keep track of this information outside the type system.
// There might be unrelated IDs found in this set which do not correspond to actual variables.
// This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs.
// Similar is implemented for images, as well as if subpass inputs are needed.
std : : unordered_set < uint32_t > comparison_ids ;
bool need_subpass_input = false ;
bool need_subpass_input_ms = false ;
// In certain backends, we will need to use a dummy sampler to be able to emit code.
// GLSL does not support texelFetch on texture2D objects, but SPIR-V does,
// so we need to workaround by having the application inject a dummy sampler.
uint32_t dummy_sampler_id = 0 ;
void analyze_image_and_sampler_usage ( ) ;
struct CombinedImageSamplerDrefHandler : OpcodeHandler
{
CombinedImageSamplerDrefHandler ( Compiler & compiler_ )
: compiler ( compiler_ )
{
}
bool handle ( spv : : Op opcode , const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
std : : unordered_set < uint32_t > dref_combined_samplers ;
} ;
struct CombinedImageSamplerUsageHandler : OpcodeHandler
{
CombinedImageSamplerUsageHandler ( Compiler & compiler_ ,
const std : : unordered_set < uint32_t > & dref_combined_samplers_ )
: compiler ( compiler_ )
, dref_combined_samplers ( dref_combined_samplers_ )
{
}
bool begin_function_scope ( const uint32_t * args , uint32_t length ) override ;
bool handle ( spv : : Op opcode , const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
const std : : unordered_set < uint32_t > & dref_combined_samplers ;
std : : unordered_map < uint32_t , std : : unordered_set < uint32_t > > dependency_hierarchy ;
std : : unordered_set < uint32_t > comparison_ids ;
void add_hierarchy_to_comparison_ids ( uint32_t ids ) ;
bool need_subpass_input = false ;
bool need_subpass_input_ms = false ;
void add_dependency ( uint32_t dst , uint32_t src ) ;
} ;
void build_function_control_flow_graphs_and_analyze ( ) ;
std : : unordered_map < uint32_t , std : : unique_ptr < CFG > > function_cfgs ;
const CFG & get_cfg_for_current_function ( ) const ;
const CFG & get_cfg_for_function ( uint32_t id ) const ;
struct CFGBuilder : OpcodeHandler
{
explicit CFGBuilder ( Compiler & compiler_ ) ;
bool follow_function_call ( const SPIRFunction & func ) override ;
bool handle ( spv : : Op op , const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
std : : unordered_map < uint32_t , std : : unique_ptr < CFG > > function_cfgs ;
} ;
struct AnalyzeVariableScopeAccessHandler : OpcodeHandler
{
AnalyzeVariableScopeAccessHandler ( Compiler & compiler_ , SPIRFunction & entry_ ) ;
bool follow_function_call ( const SPIRFunction & ) override ;
void set_current_block ( const SPIRBlock & block ) override ;
void notify_variable_access ( uint32_t id , uint32_t block ) ;
bool id_is_phi_variable ( uint32_t id ) const ;
bool id_is_potential_temporary ( uint32_t id ) const ;
bool handle ( spv : : Op op , const uint32_t * args , uint32_t length ) override ;
bool handle_terminator ( const SPIRBlock & block ) override ;
Compiler & compiler ;
SPIRFunction & entry ;
std : : unordered_map < uint32_t , std : : unordered_set < uint32_t > > accessed_variables_to_block ;
std : : unordered_map < uint32_t , std : : unordered_set < uint32_t > > accessed_temporaries_to_block ;
std : : unordered_map < uint32_t , uint32_t > result_id_to_type ;
std : : unordered_map < uint32_t , std : : unordered_set < uint32_t > > complete_write_variables_to_block ;
std : : unordered_map < uint32_t , std : : unordered_set < uint32_t > > partial_write_variables_to_block ;
std : : unordered_set < uint32_t > access_chain_expressions ;
// Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers.
// This is also relevant when forwarding opaque objects since we cannot lower these to temporaries.
std : : unordered_map < uint32_t , std : : unordered_set < uint32_t > > rvalue_forward_children ;
const SPIRBlock * current_block = nullptr ;
} ;
struct StaticExpressionAccessHandler : OpcodeHandler
{
StaticExpressionAccessHandler ( Compiler & compiler_ , uint32_t variable_id_ ) ;
bool follow_function_call ( const SPIRFunction & ) override ;
bool handle ( spv : : Op op , const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
uint32_t variable_id ;
uint32_t static_expression = 0 ;
uint32_t write_count = 0 ;
} ;
struct PhysicalBlockMeta
{
uint32_t alignment = 0 ;
} ;
struct PhysicalStorageBufferPointerHandler : OpcodeHandler
{
explicit PhysicalStorageBufferPointerHandler ( Compiler & compiler_ ) ;
bool handle ( spv : : Op op , const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
std : : unordered_set < uint32_t > non_block_types ;
std : : unordered_map < uint32_t , PhysicalBlockMeta > physical_block_type_meta ;
std : : unordered_map < uint32_t , PhysicalBlockMeta * > access_chain_to_physical_block ;
void mark_aligned_access ( uint32_t id , const uint32_t * args , uint32_t length ) ;
PhysicalBlockMeta * find_block_meta ( uint32_t id ) const ;
bool type_is_bda_block_entry ( uint32_t type_id ) const ;
void setup_meta_chain ( uint32_t type_id , uint32_t var_id ) ;
uint32_t get_minimum_scalar_alignment ( const SPIRType & type ) const ;
void analyze_non_block_types_from_block ( const SPIRType & type ) ;
uint32_t get_base_non_block_type_id ( uint32_t type_id ) const ;
} ;
void analyze_non_block_pointer_types ( ) ;
SmallVector < uint32_t > physical_storage_non_block_pointer_types ;
std : : unordered_map < uint32_t , PhysicalBlockMeta > physical_storage_type_to_alignment ;
void analyze_variable_scope ( SPIRFunction & function , AnalyzeVariableScopeAccessHandler & handler ) ;
void find_function_local_luts ( SPIRFunction & function , const AnalyzeVariableScopeAccessHandler & handler ,
bool single_function ) ;
bool may_read_undefined_variable_in_block ( const SPIRBlock & block , uint32_t var ) ;
// Finds all resources that are written to from inside the critical section, if present.
// The critical section is delimited by OpBeginInvocationInterlockEXT and
// OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written
// while inside the critical section must be placed in a raster order group.
struct InterlockedResourceAccessHandler : OpcodeHandler
{
InterlockedResourceAccessHandler ( Compiler & compiler_ , uint32_t entry_point_id )
: compiler ( compiler_ )
{
call_stack . push_back ( entry_point_id ) ;
}
bool handle ( spv : : Op op , const uint32_t * args , uint32_t length ) override ;
bool begin_function_scope ( const uint32_t * args , uint32_t length ) override ;
bool end_function_scope ( const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
bool in_crit_sec = false ;
uint32_t interlock_function_id = 0 ;
bool split_function_case = false ;
bool control_flow_interlock = false ;
bool use_critical_section = false ;
bool call_stack_is_interlocked = false ;
SmallVector < uint32_t > call_stack ;
void access_potential_resource ( uint32_t id ) ;
} ;
struct InterlockedResourceAccessPrepassHandler : OpcodeHandler
{
InterlockedResourceAccessPrepassHandler ( Compiler & compiler_ , uint32_t entry_point_id )
: compiler ( compiler_ )
{
call_stack . push_back ( entry_point_id ) ;
}
void rearm_current_block ( const SPIRBlock & block ) override ;
bool handle ( spv : : Op op , const uint32_t * args , uint32_t length ) override ;
bool begin_function_scope ( const uint32_t * args , uint32_t length ) override ;
bool end_function_scope ( const uint32_t * args , uint32_t length ) override ;
Compiler & compiler ;
uint32_t interlock_function_id = 0 ;
uint32_t current_block_id = 0 ;
bool split_function_case = false ;
bool control_flow_interlock = false ;
SmallVector < uint32_t > call_stack ;
} ;
void analyze_interlocked_resource_usage ( ) ;
// The set of all resources written while inside the critical section, if present.
std : : unordered_set < uint32_t > interlocked_resources ;
bool interlocked_is_complex = false ;
void make_constant_null ( uint32_t id , uint32_t type ) ;
std : : unordered_map < uint32_t , std : : string > declared_block_names ;
bool instruction_to_result_type ( uint32_t & result_type , uint32_t & result_id , spv : : Op op , const uint32_t * args ,
uint32_t length ) ;
Bitset combined_decoration_for_member ( const SPIRType & type , uint32_t index ) const ;
static bool is_desktop_only_format ( spv : : ImageFormat format ) ;
bool is_depth_image ( const SPIRType & type , uint32_t id ) const ;
void set_extended_decoration ( uint32_t id , ExtendedDecorations decoration , uint32_t value = 0 ) ;
uint32_t get_extended_decoration ( uint32_t id , ExtendedDecorations decoration ) const ;
bool has_extended_decoration ( uint32_t id , ExtendedDecorations decoration ) const ;
void unset_extended_decoration ( uint32_t id , ExtendedDecorations decoration ) ;
void set_extended_member_decoration ( uint32_t type , uint32_t index , ExtendedDecorations decoration ,
uint32_t value = 0 ) ;
uint32_t get_extended_member_decoration ( uint32_t type , uint32_t index , ExtendedDecorations decoration ) const ;
bool has_extended_member_decoration ( uint32_t type , uint32_t index , ExtendedDecorations decoration ) const ;
void unset_extended_member_decoration ( uint32_t type , uint32_t index , ExtendedDecorations decoration ) ;
bool check_internal_recursion ( const SPIRType & type , std : : unordered_set < uint32_t > & checked_ids ) ;
bool type_contains_recursion ( const SPIRType & type ) ;
bool type_is_array_of_pointers ( const SPIRType & type ) const ;
bool type_is_block_like ( const SPIRType & type ) const ;
bool type_is_top_level_block ( const SPIRType & type ) const ;
bool type_is_opaque_value ( const SPIRType & type ) const ;
bool reflection_ssbo_instance_name_is_significant ( ) const ;
std : : string get_remapped_declared_block_name ( uint32_t id , bool fallback_prefer_instance_name ) const ;
bool flush_phi_required ( BlockID from , BlockID to ) const ;
uint32_t evaluate_spec_constant_u32 ( const SPIRConstantOp & spec ) const ;
uint32_t evaluate_constant_u32 ( uint32_t id ) const ;
bool is_vertex_like_shader ( ) const ;
// Get the correct case list for the OpSwitch, since it can be either a
// 32 bit wide condition or a 64 bit, but the type is not embedded in the
// instruction itself.
const SmallVector < SPIRBlock : : Case > & get_case_list ( const SPIRBlock & block ) const ;
2020-09-28 12:09:39 +00:00
2018-03-01 13:00:04 +00:00
private :
2024-08-17 18:00:14 +00:00
// Used only to implement the old deprecated get_entry_point() interface.
const SPIREntryPoint & get_first_entry_point ( const std : : string & name ) const ;
SPIREntryPoint & get_first_entry_point ( const std : : string & name ) ;
2016-05-05 07:33:18 +00:00
} ;
2019-04-02 09:19:03 +00:00
} // namespace SPIRV_CROSS_NAMESPACE
2016-03-02 17:09:16 +00:00
# endif