Make sure to test everything with scalar as well to catch any weird edge
cases.
Not all opcodes are covered here, just the arithmetic ones. FP64 packing
is also ignored.
This is quite complex since we cannot flush Phi inside the case labels,
we have to do it outside by emitting a lot of manual branches ourselves.
This should be extremely rare, but we need to handle this case.
Buffer objects can contain arbitrary pointers to blocks.
We can also implement ConvertPtrToU and ConvertUToPtr.
The latter can cast a uint64_t to any type as it pleases,
so we will need to generate fake buffer reference blocks to be able to
cast the type.
We made the mistake of registering a dependency on the atomic variable
even if the atomic result was forced to a temporary. There is no need to
register reads from atomic variables like this as we always force atomic
results to a temporary and argument read/writes do not need to be
tracked.
If we generate an access chain in a loop body, and it is consumed in the
loop continue block, we have a problem because we cannot emit a
temporary here holding the access chain reference. Force a complex loop
body to workaround this exceptionally rare case.
-1 (0xffffffff) literal means the component should be undefined.
Since we cannot express undefined directly, just use a 0 literal in the
appropriate type.
In the bizarre case where the ID of a loaded opaque type aliased with a
literal which was used as part of another texturing instruction, we
could end up with a case where domination analysis assumed the loaded
opaque type needed to be moved to a different scope.
Fix the issue by never doing dominance analysis for opaque temporaries,
and be more robust when analyzing texturing instructions.
Also make sure reflection output is deterministic.
This patch slightly alterered output for some unknown reason, but it came from an
unordered_map, so it's fine.
MSL does not support value semantics for arrays (sigh), so we need to
force constant references and deal with copies if we have a different
address space than what we end up guessing.
This is a fairly fundamental change on how IDs are handled.
It serves many purposes:
- Improve performance. We only need to iterate over IDs which are
relevant at any one time.
- Makes sure we iterate through IDs in SPIR-V module declaration order
rather than ID space. IDs don't have to be monotonically increasing,
which was an assumption SPIRV-Cross used to have. It has apparently
never been a problem until now.
- Support LUTs of structs. We do this by interleaving declaration of
constants and struct types in SPIR-V module order.
To support this, the ParsedIR interface needed to change slightly.
Before setting any ID with variant_set<T> we let ParsedIR know
that an ID with a specific type has been added. The surface for change
should be minimal.
ParsedIR will maintain a per-type list of IDs which the cross-compiler
will need to consider for later.
Instead of looping over ir.ids[] (which can be extremely large), we loop
over types now, using:
ir.for_each_typed_id<SPIRVariable>([&](uint32_t id, SPIRVariable &var) {
handle_variable(var);
});
Now we make sure that we're never looking at irrelevant types.
Previously, when generating non-Vulkan GLSL, each use of a spec constant
would be subsituted for its default value and the declaration of the constant
itself would be omitted completely.
This change slightly alters this behavior. The uses of the constant are kept,
as well as the declaration, although the latter is stripped of the layout
qualifier. The declaration is also prepended with the following code:
#ifndef <constant name>_value
#define <constant name> <default constant value>
#endif
and the constant itself now looks like
const <constant type> <constant name> = <constant name>_value;
The rationale for this change is that it gives the user a way to provide
custom values for specialization constants even when the target does not
support them.