Metal doesn't support broadcasting or shuffling boolean values, but we
can work around that by casting it to `ushort`, then casting it back to
`bool`. I used `ushort` instead of `uint` because 16-bit values give
better throughput on Apple GPUs.
Only the least *n* bits are significant, where *n* is the subgroup size.
The Vulkan CTS actually checks this.
The `FindLSB` tests weren't actually failing, but I masked that anyway,
in case there's some corner case the CTS is missing.
`SubgroupEqMask` had a fencepost error that gave wrong values for
invocation ID 32.
For `SubgroupGeMask` and `SubgroupGtMask`, I forgot to shift the values
from `extract_bits()` up so that the mask is in the correct position.
Using `insert_bits()` instead should fold these two operations into one.
`SubgroupLtMask` and `SubgroupLeMask` were already correct.
`half` cannot be bitcasted to `float`, because the two types are not the
same size. Use an expanding cast instead.
We were already doing this for stores to the tessellation levels; why I
didn't also do this for loads is beyond me.
Fix reversed coordinates: `y` should be used to calculate the row
address. Align row address to the row stride.
I've made the row alignment a function constant; this makes it possible
to override it at pipeline compile time.
Honestly, I don't know how this worked at all for Epic. It definitely
didn't work in the CTS prior to this.
MSL 2.3 has everything needed to support this extension on all
platforms. The existing `discard_fragment()` function was given demote
semantics, similar to Direct3D, and the `simd_is_helper_thread()`
function was finally added to iOS.
I've left the old test alone. Should I remove it in favor of these?
In some cases, we need to get a literal value from a spec constant op.
Mostly relevant when emitting buffers, so implement a 32-bit integer
scalar subset of the evaluator. Can be extended as needed to support
evaluating any specialization constant operation.
These need to use arrayed texture types, or Metal will complain when
binding the resource. The target layer is addressed relative to the
Layer output by the vertex pipeline, or to the ViewIndex if in a
multiview pipeline. Unlike with the s/t coordinates, Vulkan does not
forbid non-zero layer coordinates here, though this cannot be expressed
in Vulkan GLSL.
Supporting 3D textures will require additional work. Part of the problem
is that Metal does not allow texture views to subset a 3D texture, so we
need some way to pass the base depth to the shader.