Emit input struct assignment by assigning member by member from stage_in struct.
Map qualified member name from pointer type, not base type.
Add Comiler::expression_type_id() function, similar to expression_type().
Support BuiltInFragDepth.
Emit interface block for StorageClassUniformConstant.
Throw exception when output or fragment input structs contain matrix or array.
Dynamically created interface structs sorted by location number instead of alphabetically.
Add Compiler::is_array() function.
This avoids the need to construct a temporary std::vector on the application side just to create a Compiler instance if application itself doesn't use STL containers.
This is kinda tricky, because if we only conditionally write to a
function parameter variable it is implicitly preserved in SPIR-V, so we must force
an in qualifier on the parameter to get the same behavior in GLSL.
spirv_msl optionally add padding and packing to allow MSL
struct members to align with SPIR-V struct alignments.
spirv_cross add convenience methods for testing Decorations.
spirv_glsl replace member_decl() function with new emit_stuct_member().
Allow struct member types to be marked as packed via DecorationCPacked decoration.
Legacy GLSL targets do not support uniform buffers, and as such require
some sort of emulation. There are two alternatives - one is to represent
a uniform buffer as a uniform struct, and another one is to flatten it
into an array of primitive vector types (vec4).
Uniform struct have two disadvantages that make using them prohibitive
in some applications:
- The location assignment for struct members is arbitrary which means
the application has to set each struct member one by one
- Some Android drivers fail to link shader programs if both vertex and
fragment shader use the same uniform struct
Because of this, we need to support flattening uniform buffers into an
array. This is not just important for legacy GLSL but also is sometimes
useful for ESSL 3.0 where some Android drivers do not have stable UBO
support.
The way flattening works is the entire buffer is represented as a vec4
array; each access chain is rewritten into a combination of array
accesses, swizzles and data type constructors. Specifically:
- Extracting a vector or a scalar requires indexing into the array with
an optional swizzle, for example CB0[13].yz for reading vec2
- Extracting a matrix or a struct requires extracting each individual
vector or struct member and then combining them into the resulting
object
- Extracting arrays is not supported, mostly because the resulting
construct is very inefficient and ESSL 1.0 does not support array
constructors.
Additionally, while we try to constant-fold each individual indexing
operation, there are cases where we have to use dynamic index
computation (specifically for indexing arrays with non-constants); so
the general form of the primitive array extraction expression is:
buffer[stride0*index0+...+strideN*indexN+offset]
Where stride/offset are integer literals and index represents variables.
Make Compiler::OpcodeHandler and Compiler::traverse_all_reachable_opcodes protected
instead of private, for use by subclasses.
Add CompilerMSL::CustomFunctionHandler and traverse_all_reachable_opcodes() to detect
active opcodes that require the output of a custom function.
CompilerMSL::custom_function_ops use std::set to retain ordering to improve testability.