SPIRV-Cross/reference/shaders-msl/vert/functions.vert
Bill Hollings 9b4defe202 CompilerMSL support matrices & arrays in stage-in & stage-out.
Support flattening StorageOutput & StorageInput matrices and arrays.
No longer move matrix & array inputs to separate buffer.
Add separate SPIRFunction::fixup_statements_in & SPIRFunction::fixup_statements_out
instead of just  SPIRFunction::fixup_statements.
Emit SPIRFunction::fixup_statements at beginning of functions.
CompilerMSL track vars_needing_early_declaration.
Pass global output variables as variables to functions that access them.
Sort input structs by location, same as output structs.
Emit struct declarations in order output, input, uniforms.
Regenerate reference shaders to new formats defined by above.
2018-06-12 11:41:35 -04:00

120 lines
4.3 KiB
GLSL

#pragma clang diagnostic ignored "-Wmissing-prototypes"
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
struct UBO
{
float4x4 uMVP;
float3 rotDeg;
float3 rotRad;
int2 bits;
};
struct main0_out
{
float3 vNormal [[user(locn0)]];
float3 vRotDeg [[user(locn1)]];
float3 vRotRad [[user(locn2)]];
int2 vLSB [[user(locn3)]];
int2 vMSB [[user(locn4)]];
float4 gl_Position [[position]];
};
struct main0_in
{
float4 aVertex [[attribute(0)]];
float3 aNormal [[attribute(1)]];
};
// Implementation of the GLSL radians() function
template<typename T>
T radians(T d)
{
return d * T(0.01745329251);
}
// Implementation of the GLSL degrees() function
template<typename T>
T degrees(T r)
{
return r * T(57.2957795131);
}
// Implementation of the GLSL findLSB() function
template<typename T>
T findLSB(T x)
{
return select(ctz(x), T(-1), x == T(0));
}
// Implementation of the signed GLSL findMSB() function
template<typename T>
T findSMSB(T x)
{
T v = select(x, T(-1) - x, x < T(0));
return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));
}
// Returns the determinant of a 2x2 matrix.
inline float spvDet2x2(float a1, float a2, float b1, float b2)
{
return a1 * b2 - b1 * a2;
}
// Returns the determinant of a 3x3 matrix.
inline float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
{
return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3);
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
float4x4 spvInverse4x4(float4x4 m)
{
float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]);
adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]);
adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]);
adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]);
adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]);
adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]);
adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]);
adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
vertex main0_out main0(main0_in in [[stage_in]], constant UBO& _18 [[buffer(0)]])
{
main0_out out = {};
out.gl_Position = spvInverse4x4(_18.uMVP) * in.aVertex;
out.vNormal = in.aNormal;
out.vRotDeg = degrees(_18.rotRad);
out.vRotRad = radians(_18.rotDeg);
out.vLSB = findLSB(_18.bits);
out.vMSB = findSMSB(_18.bits);
return out;
}