SPIRV-Cross/reference/shaders-msl/vert/functions.vert
Bill Hollings 1c18078811 Enhancements to MSL compute and entry point naming.
Support Workgroup (threadgroup) variables.
Mark if SPIRConstant is used as an array length, since it cannot be specialized.
Resolve specialized array length constants.
Support passing an array to MSL function.
Support emitting GLSL array assignments in MSL via an array copy function.
Support for memory and control barriers.
Struct packing enhancements, including packing nested structs.
Enhancements to replacing illegal MSL variable and function names.
Add Compiler::get_entry_point_name_map() function to retrieve entry point renamings.
Remove CompilerGLSL::clean_func_name() as obsolete.
Fixes to types in bitcast MSL functions.
Add Variant::get_id() member function.
Add CompilerMSL::Options::msl_version option.
Add numerous MSL compute tests.
2017-11-05 21:34:42 -05:00

120 lines
4.3 KiB
GLSL

#pragma clang diagnostic ignored "-Wmissing-prototypes"
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
struct UBO
{
float4x4 uMVP;
float3 rotDeg;
float3 rotRad;
int2 bits;
};
struct main0_in
{
float3 aNormal [[attribute(1)]];
float4 aVertex [[attribute(0)]];
};
struct main0_out
{
float3 vNormal [[user(locn0)]];
float3 vRotDeg [[user(locn1)]];
float3 vRotRad [[user(locn2)]];
int2 vLSB [[user(locn3)]];
int2 vMSB [[user(locn4)]];
float4 gl_Position [[position]];
};
// Implementation of the GLSL radians() function
template<typename T>
T radians(T d)
{
return d * 0.01745329251;
}
// Implementation of the GLSL degrees() function
template<typename T>
T degrees(T r)
{
return r * 57.2957795131;
}
// Implementation of the GLSL findLSB() function
template<typename T>
T findLSB(T x)
{
return select(ctz(x), T(-1), x == T(0));
}
// Implementation of the signed GLSL findMSB() function
template<typename T>
T findSMSB(T x)
{
T v = select(x, T(-1) - x, x < T(0));
return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));
}
// Returns the determinant of a 2x2 matrix.
inline float spvDet2x2(float a1, float a2, float b1, float b2)
{
return a1 * b2 - b1 * a2;
}
// Returns the determinant of a 3x3 matrix.
inline float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
{
return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3);
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
float4x4 spvInverse4x4(float4x4 m)
{
float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]);
adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]);
adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]);
adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]);
adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]);
adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]);
adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]);
adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
vertex main0_out main0(main0_in in [[stage_in]], constant UBO& _18 [[buffer(0)]])
{
main0_out out = {};
out.gl_Position = spvInverse4x4(_18.uMVP) * in.aVertex;
out.vNormal = in.aNormal;
out.vRotDeg = degrees(_18.rotRad);
out.vRotRad = radians(_18.rotDeg);
out.vLSB = findLSB(_18.bits);
out.vMSB = findSMSB(_18.bits);
return out;
}