SPIRV-Tools/include/util/hex_float.h

548 lines
18 KiB
C
Raw Normal View History

// Copyright (c) 2015 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#ifndef _LIBSPIRV_UTIL_HEX_FLOAT_H_
#define _LIBSPIRV_UTIL_HEX_FLOAT_H_
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <limits>
#include "bitutils.h"
namespace spvutils {
template <typename T>
struct FloatProxyTraits {
typedef void uint_type;
};
template <>
struct FloatProxyTraits<float> {
typedef uint32_t uint_type;
};
template <>
struct FloatProxyTraits<double> {
typedef uint64_t uint_type;
};
// Since copying a floating point number (especially if it is NaN)
// does not guarantee that bits are preserved, this class lets us
// store the type and use it as a float when necessary.
template <typename T>
class FloatProxy {
public:
using uint_type = typename FloatProxyTraits<T>::uint_type;
// Since this is to act similar to the normal floats,
// do not initialize the data by default.
FloatProxy() = default;
// Intentionally non-explicit. This is a proxy type so
// implicit conversions allow us to use it more transparently.
FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
// Intentionally non-explicit. This is a proxy type so
// implicit conversions allow us to use it more transparently.
FloatProxy(uint_type val) { data_ = val; }
// This is helpful to have and is guaranteed not to stomp bits.
FloatProxy<T> operator-() const {
return data_ ^ (uint_type(0x1) << (sizeof(T) * 8 - 1));
}
// Returns the data as a floating point value.
T getAsFloat() const { return BitwiseCast<T>(data_); }
// Returns the raw data.
uint_type data() const { return data_; }
// Returns true if the value represents any type of NaN.
bool isNan() { return std::isnan(getAsFloat()); }
private:
uint_type data_;
};
template <typename T>
bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
return first.data() == second.data();
}
// Reads a FloatProxy value as a normal float from a stream.
template <typename T>
std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
T float_val;
is >> float_val;
value = FloatProxy<T>(float_val);
return is;
}
// This is an example traits. It is not meant to be used in practice, but will
// be the default for any non-specialized type.
template <typename T>
struct HexFloatTraits {
// Integer type that can store this hex-float.
typedef void uint_type;
// Signed integer type that can store this hex-float.
typedef void int_type;
// The number of bits that are actually relevant in the uint_type.
// This allows us to deal with, for example, 24-bit values in a 32-bit
// integer.
static const uint32_t num_used_bits = 0;
// Number of bits that represent the exponent.
static const uint32_t num_exponent_bits = 0;
// Number of bits that represent the fractional part.
static const uint32_t num_fraction_bits = 0;
// The bias of the exponent. (How much we need to subtract from the stored
// value to get the correct value.)
static const uint32_t exponent_bias = 0;
};
// Traits for IEEE float.
// 1 sign bit, 8 exponent bits, 23 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<float>> {
typedef uint32_t uint_type;
typedef int32_t int_type;
static const uint_type num_used_bits = 32;
static const uint_type num_exponent_bits = 8;
static const uint_type num_fraction_bits = 23;
static const uint_type exponent_bias = 127;
};
// Traits for IEEE double.
// 1 sign bit, 11 exponent bits, 52 fractional bits.
template <>
struct HexFloatTraits<FloatProxy<double>> {
typedef uint64_t uint_type;
typedef int64_t int_type;
static const uint_type num_used_bits = 64;
static const uint_type num_exponent_bits = 11;
static const uint_type num_fraction_bits = 52;
static const uint_type exponent_bias = 1023;
};
// Template class that houses a floating pointer number.
// It exposes a number of constants based on the provided traits to
// assist in interpreting the bits of the value.
template <typename T, typename Traits = HexFloatTraits<T>>
class HexFloat {
public:
using uint_type = typename Traits::uint_type;
using int_type = typename Traits::int_type;
explicit HexFloat(T f) : value_(f) {}
T value() const { return value_; }
void set_value(T f) { value_ = f; }
// These are all written like this because it is convenient to have
// compile-time constants for all of these values.
// Pass-through values to save typing.
static const uint32_t num_used_bits = Traits::num_used_bits;
static const uint32_t exponent_bias = Traits::exponent_bias;
static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
// Number of bits to shift left to set the highest relevant bit.
static const uint32_t top_bit_left_shift = num_used_bits - 1;
// How many nibbles (hex characters) the fractional part takes up.
static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
// If the fractional part does not fit evenly into a hex character (4-bits)
// then we have to left-shift to get rid of leading 0s. This is the amount
// we have to shift (might be 0).
static const uint32_t num_overflow_bits =
fraction_nibbles * 4 - num_fraction_bits;
// The representation of the fraction, not the actual bits. This
// includes the leading bit that is usually implicit.
static const uint_type fraction_represent_mask =
2015-11-02 20:19:18 +00:00
spvutils::SetBits<uint_type, 0,
num_fraction_bits + num_overflow_bits>::get;
// The topmost bit in the fraction. (The first non-implicit bit).
static const uint_type fraction_top_bit =
uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
// The mask for the encoded fraction. It does not include the
// implicit bit.
static const uint_type fraction_encode_mask =
spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
// The bit that is used as a sign.
static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
// The bits that represent the exponent.
static const uint_type exponent_mask =
spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
// How far left the exponent is shifted.
static const uint32_t exponent_left_shift = num_fraction_bits;
// How far from the right edge the fraction is shifted.
static const uint32_t fraction_right_shift =
(sizeof(uint_type) * 8) - num_fraction_bits;
private:
T value_;
static_assert(num_used_bits ==
Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
"The number of bits do not fit");
};
// Returns 4 bits represented by the hex character.
inline uint8_t get_nibble_from_character(char character) {
const char* dec = "0123456789";
const char* lower = "abcdef";
const char* upper = "ABCDEF";
if (auto p = strchr(dec, character)) return p - dec;
if (auto p = strchr(lower, character)) return p - lower + 0xa;
if (auto p = strchr(upper, character)) return p - upper + 0xa;
assert(false && "This was called with a non-hex character");
return 0;
}
// Outputs the given HexFloat to the stream.
template <typename T, typename Traits>
std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
using HF = HexFloat<T, Traits>;
using uint_type = typename HF::uint_type;
using int_type = typename HF::int_type;
static_assert(HF::num_used_bits != 0,
"num_used_bits must be non-zero for a valid float");
static_assert(HF::num_exponent_bits != 0,
"num_exponent_bits must be non-zero for a valid float");
static_assert(HF::num_fraction_bits != 0,
"num_fractin_bits must be non-zero for a valid float");
const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
const char* const sign = (bits & HF::sign_mask) ? "-" : "";
const uint_type exponent =
(bits & HF::exponent_mask) >> HF::num_fraction_bits;
uint_type fraction = (bits & HF::fraction_encode_mask)
<< HF::num_overflow_bits;
const bool is_zero = exponent == 0 && fraction == 0;
const bool is_denorm = exponent == 0 && !is_zero;
// exponent contains the biased exponent we have to convert it back into
// the normal range.
int_type int_exponent = static_cast<int_type>(exponent) - HF::exponent_bias;
// If the number is all zeros, then we actually have to NOT shift the
// exponent.
int_exponent = is_zero ? 0 : int_exponent;
// If we are denorm, then start shifting, and decreasing the exponent until
// our leading bit is 1.
if (is_denorm) {
while ((fraction & HF::fraction_top_bit) == 0) {
fraction <<= 1;
int_exponent -= 1;
}
// Since this is denormalized, we have to consume the leading 1 since it
// will end up being implicit.
fraction <<= 1; // eat the leading 1
fraction &= HF::fraction_represent_mask;
}
uint_type fraction_nibbles = HF::fraction_nibbles;
// We do not have to display any trailing 0s, since this represents the
// fractional part.
while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
// Shift off any trailing values;
fraction >>= 4;
--fraction_nibbles;
}
os << sign << "0x" << (is_zero ? '0' : '1');
if (fraction_nibbles) {
// Make sure to keep the leading 0s in place, since this is the fractional
// part.
os << "." << std::setw(fraction_nibbles) << std::setfill('0') << std::hex
<< fraction;
}
os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
return os;
}
template <typename T, typename Traits>
inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
HexFloat<T, Traits>& value) {
T val;
is >> val;
if (negate_value) {
val = -val;
}
value.set_value(val);
return is;
}
// Reads a HexFloat from the given stream.
// If the float is not encoded as a hex-float then it will be parsed
// as a regular float.
// This may fail if your stream does not support at least one unget.
// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
// This would normally overflow a float and round to
// infinity but this special pattern is the exact representation for a NaN,
// and therefore is actually encoded as the correct NaN. To encode inf,
// either 0x0p+exponent_bias can be specified or any exponent greater than
// exponent_bias.
// Examples using IEEE 32-bit float encoding.
// 0x1.0p+128 (+inf)
// -0x1.0p-128 (-inf)
//
// 0x1.1p+128 (+Nan)
// -0x1.1p+128 (-Nan)
//
// 0x1p+129 (+inf)
// -0x1p+129 (-inf)
template <typename T, typename Traits>
std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
using HF = HexFloat<T, Traits>;
using uint_type = typename HF::uint_type;
using int_type = typename HF::int_type;
value.set_value(T(0.f));
if (is.flags() & std::ios::skipws) {
// If the user wants to skip whitespace , then we should obey that.
while (std::isspace(is.peek())) {
is.get();
}
}
char next_char = is.peek();
bool negate_value = false;
if (next_char != '-' && next_char != '0') {
return ParseNormalFloat(is, negate_value, value);
}
if (next_char == '-') {
negate_value = true;
is.get();
next_char = is.peek();
}
if (next_char == '0') {
is.get(); // We may have to unget this.
char maybe_hex_start = is.peek();
if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
is.unget();
return ParseNormalFloat(is, negate_value, value);
} else {
is.get(); // Throw away the 'x';
}
} else {
return ParseNormalFloat(is, negate_value, value);
}
// This "looks" like a hex-float so treat it as one.
bool seen_p = false;
bool seen_dot = false;
uint_type fraction_index = 0;
uint_type fraction = 0;
int_type exponent = HF::exponent_bias;
// Strip off leading zeros so we don't have to special-case them later.
while ((next_char = is.peek()) == '0') {
is.get();
}
bool is_denorm =
true; // Assume denorm "representation" until we hear otherwise.
// NB: This does not mean the value is actually denorm,
// it just means that it was written 0.
bool bits_written = false; // Stays false until we write a bit.
while (!seen_p && !seen_dot) {
// Handle characters that are left of the fractional part.
if (next_char == '.') {
seen_dot = true;
} else if (next_char == 'p') {
seen_p = true;
} else if (::isxdigit(next_char)) {
// We know this is not denormalized since we have stripped all leading
// zeroes and we are not a ".".
is_denorm = false;
uint8_t number = get_nibble_from_character(next_char);
for (int i = 0; i < 4; ++i, number <<= 1) {
uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
if (bits_written) {
// If we are here the bits represented belong in the fractional
// part of the float, and we have to adjust the exponent accordingly.
fraction |= write_bit << (HF::top_bit_left_shift - fraction_index++);
exponent += 1;
}
bits_written |= write_bit != 0;
}
} else {
// We have not found our exponent yet, so we have to fail.
is.setstate(std::ios::failbit);
return is;
}
is.get();
next_char = is.peek();
}
bits_written = false;
while (seen_dot && !seen_p) {
// Handle only fractional parts now.
if (next_char == 'p') {
seen_p = true;
} else if (::isxdigit(next_char)) {
int number = get_nibble_from_character(next_char);
for (int i = 0; i < 4; ++i, number <<= 1) {
uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
bits_written |= write_bit != 0;
if (is_denorm && !bits_written) {
// Handle modifying the exponent here this way we can handle
// an arbitrary number of hex values without overflowing our
// integer.
exponent -= 1;
} else {
fraction |= write_bit << (HF::top_bit_left_shift - fraction_index++);
}
}
} else {
// We still have not found our 'p' exponent yet, so this is not a valid
// hex-float.
is.setstate(std::ios::failbit);
return is;
}
is.get();
next_char = is.peek();
}
bool seen_sign = false;
int8_t exponent_sign = 1;
int_type written_exponent = 0;
while (true) {
if ((next_char == '-' || next_char == '+')) {
if (seen_sign) {
is.setstate(std::ios::failbit);
return is;
}
seen_sign = true;
exponent_sign = (next_char == '-') ? -1 : 1;
} else if (::isdigit(next_char)) {
// Hex-floats express their exponent as decimal.
written_exponent *= 10;
written_exponent += next_char - '0';
} else {
break;
}
is.get();
next_char = is.peek();
}
written_exponent *= exponent_sign;
exponent += written_exponent;
bool is_zero = is_denorm && (fraction == 0);
if (is_denorm && !is_zero) {
fraction <<= 1;
exponent -= 1;
} else if (is_zero) {
exponent = 0;
}
if (exponent <= 0 && !is_zero) {
fraction >>= 1;
fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
}
fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
const uint_type max_exponent =
SetBits<uint_type, 0, HF::num_exponent_bits>::get;
// Handle actual denorm numbers
while (exponent < 0 && !is_zero) {
fraction >>= 1;
exponent += 1;
fraction &= HF::fraction_encode_mask;
if (fraction == 0) {
// We have underflowed our fraction. We should clamp to zero.
is_zero = true;
exponent = 0;
}
}
// We have overflowed so we should be inf/-inf.
if (exponent > max_exponent) {
exponent = max_exponent;
fraction = 0;
}
uint_type output_bits = static_cast<uint_type>(negate_value ? 1 : 0)
<< HF::top_bit_left_shift;
output_bits |= fraction;
output_bits |= (exponent << HF::exponent_left_shift) & HF::exponent_mask;
T output_float = spvutils::BitwiseCast<T>(output_bits);
value.set_value(output_float);
return is;
}
// Writes a FloatProxy value to a stream.
// Zero and normal numbers are printed in the usual notation, but with
// enough digits to fully reproduce the value. Other values (subnormal,
// NaN, and infinity) are printed as a hex float.
template <typename T>
std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
auto float_val = value.getAsFloat();
switch (std::fpclassify(float_val)) {
case FP_ZERO:
case FP_NORMAL: {
auto saved_precision = os.precision();
os.precision(std::numeric_limits<T>::digits10);
os << float_val;
os.precision(saved_precision);
} break;
default:
os << HexFloat<FloatProxy<T>>(value);
break;
}
return os;
}
}
#endif // _LIBSPIRV_UTIL_HEX_FLOAT_H_