SPIRV-Tools/test/val/val_data_test.cpp

834 lines
27 KiB
C++
Raw Normal View History

// Copyright (c) 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Validation tests for Data Rules.
#include <sstream>
#include <string>
#include <utility>
#include "gmock/gmock.h"
#include "test/unit_spirv.h"
#include "test/val/val_fixtures.h"
namespace spvtools {
namespace val {
namespace {
using ::testing::HasSubstr;
using ::testing::MatchesRegex;
using ValidateData = spvtest::ValidateBase<std::pair<std::string, bool>>;
std::string HeaderWith(std::string cap) {
return std::string("OpCapability Shader OpCapability Linkage OpCapability ") +
cap + " OpMemoryModel Logical GLSL450 ";
}
std::string header = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
)";
std::string header_with_addresses = R"(
OpCapability Addresses
OpCapability Kernel
OpCapability GenericPointer
OpCapability Linkage
OpMemoryModel Physical32 OpenCL
)";
std::string header_with_vec16_cap = R"(
OpCapability Shader
OpCapability Vector16
OpCapability Linkage
OpMemoryModel Logical GLSL450
)";
std::string header_with_int8 = R"(
OpCapability Shader
OpCapability Linkage
OpCapability Int8
OpMemoryModel Logical GLSL450
)";
std::string header_with_int16 = R"(
OpCapability Shader
OpCapability Linkage
OpCapability Int16
OpMemoryModel Logical GLSL450
)";
std::string header_with_int64 = R"(
OpCapability Shader
OpCapability Linkage
OpCapability Int64
OpMemoryModel Logical GLSL450
)";
std::string header_with_float16 = R"(
OpCapability Shader
OpCapability Linkage
OpCapability Float16
OpMemoryModel Logical GLSL450
)";
std::string header_with_float16_buffer = R"(
OpCapability Shader
OpCapability Linkage
OpCapability Float16Buffer
OpMemoryModel Logical GLSL450
)";
std::string header_with_float64 = R"(
OpCapability Shader
OpCapability Linkage
OpCapability Float64
OpMemoryModel Logical GLSL450
)";
std::string invalid_comp_error = "Illegal number of components";
std::string missing_cap_error = "requires the Vector16 capability";
std::string missing_int8_cap_error = "requires the Int8 capability";
std::string missing_int16_cap_error =
"requires the Int16 capability,"
" or an extension that explicitly enables 16-bit integers.";
std::string missing_int64_cap_error = "requires the Int64 capability";
std::string missing_float16_cap_error =
"requires the Float16 or Float16Buffer capability,"
" or an extension that explicitly enables 16-bit floating point.";
std::string missing_float64_cap_error = "requires the Float64 capability";
std::string invalid_num_bits_error = "Invalid number of bits";
TEST_F(ValidateData, vec0) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 0
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(invalid_comp_error));
}
TEST_F(ValidateData, vec1) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 1
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(invalid_comp_error));
}
TEST_F(ValidateData, vec2) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 2
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, vec3) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 3
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, vec4) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 4
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, vec5) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 5
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(invalid_comp_error));
}
TEST_F(ValidateData, vec8) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 8
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(missing_cap_error));
}
TEST_F(ValidateData, vec8_with_capability) {
std::string str = header_with_vec16_cap + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 8
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, vec16) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 8
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(missing_cap_error));
}
TEST_F(ValidateData, vec16_with_capability) {
std::string str = header_with_vec16_cap + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 16
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, vec15) {
std::string str = header + R"(
%1 = OpTypeFloat 32
%2 = OpTypeVector %1 15
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(invalid_comp_error));
}
TEST_F(ValidateData, int8_good) {
std::string str = header_with_int8 + "%2 = OpTypeInt 8 0";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, int8_bad) {
std::string str = header + "%2 = OpTypeInt 8 1";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(missing_int8_cap_error));
}
TEST_F(ValidateData, int8_with_storage_buffer_8bit_access_good) {
std::string str = HeaderWith(
"StorageBuffer8BitAccess "
"OpExtension \"SPV_KHR_8bit_storage\"") +
" %2 = OpTypeInt 8 0";
CompileSuccessfully(str.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions()) << getDiagnosticString();
}
TEST_F(ValidateData, int8_with_uniform_and_storage_buffer_8bit_access_good) {
std::string str = HeaderWith(
"UniformAndStorageBuffer8BitAccess "
"OpExtension \"SPV_KHR_8bit_storage\"") +
" %2 = OpTypeInt 8 0";
CompileSuccessfully(str.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions()) << getDiagnosticString();
}
TEST_F(ValidateData, int8_with_storage_push_constant_8_good) {
std::string str = HeaderWith(
"StoragePushConstant8 "
"OpExtension \"SPV_KHR_8bit_storage\"") +
" %2 = OpTypeInt 8 0";
CompileSuccessfully(str.c_str());
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions()) << getDiagnosticString();
}
TEST_F(ValidateData, int16_good) {
std::string str = header_with_int16 + "%2 = OpTypeInt 16 1";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, storage_uniform_buffer_block_16_good) {
std::string str = HeaderWith(
"StorageUniformBufferBlock16 "
"OpExtension \"SPV_KHR_16bit_storage\"") +
"%2 = OpTypeInt 16 1 %3 = OpTypeFloat 16";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, storage_uniform_16_good) {
std::string str =
HeaderWith("StorageUniform16 OpExtension \"SPV_KHR_16bit_storage\"") +
"%2 = OpTypeInt 16 1 %3 = OpTypeFloat 16";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, storage_push_constant_16_good) {
std::string str = HeaderWith(
"StoragePushConstant16 "
"OpExtension \"SPV_KHR_16bit_storage\"") +
"%2 = OpTypeInt 16 1 %3 = OpTypeFloat 16";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, storage_input_output_16_good) {
std::string str = HeaderWith(
"StorageInputOutput16 "
"OpExtension \"SPV_KHR_16bit_storage\"") +
"%2 = OpTypeInt 16 1 %3 = OpTypeFloat 16";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, amd_gpu_shader_half_float_fetch_16_good) {
std::string str = R"(
OpCapability Shader
OpCapability Linkage
OpExtension "SPV_AMD_gpu_shader_half_float_fetch"
OpMemoryModel Logical GLSL450
%2 = OpTypeFloat 16)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, int16_bad) {
std::string str = header + "%2 = OpTypeInt 16 1";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(missing_int16_cap_error));
}
TEST_F(ValidateData, int64_good) {
std::string str = header_with_int64 + "%2 = OpTypeInt 64 1";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, int64_bad) {
std::string str = header + "%2 = OpTypeInt 64 1";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(missing_int64_cap_error));
}
// Number of bits in an integer may be only one of: {8,16,32,64}
TEST_F(ValidateData, int_invalid_num_bits) {
std::string str = header + "%2 = OpTypeInt 48 1";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(invalid_num_bits_error));
}
TEST_F(ValidateData, float16_good) {
std::string str = header_with_float16 + "%2 = OpTypeFloat 16";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, float16_buffer_good) {
std::string str = header_with_float16_buffer + "%2 = OpTypeFloat 16";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, float16_bad) {
std::string str = header + "%2 = OpTypeFloat 16";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(missing_float16_cap_error));
}
TEST_F(ValidateData, float64_good) {
std::string str = header_with_float64 + "%2 = OpTypeFloat 64";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, float64_bad) {
std::string str = header + "%2 = OpTypeFloat 64";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(missing_float64_cap_error));
}
// Number of bits in a float may be only one of: {16,32,64}
TEST_F(ValidateData, float_invalid_num_bits) {
std::string str = header + "%2 = OpTypeFloat 48";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(), HasSubstr(invalid_num_bits_error));
}
TEST_F(ValidateData, matrix_data_type_float) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%vec3 = OpTypeVector %f32 3
%mat33 = OpTypeMatrix %vec3 3
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, ids_should_be_validated_before_data) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%mat33 = OpTypeMatrix %vec3 3
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Operand 3[%3] requires a previous definition"));
}
TEST_F(ValidateData, matrix_bad_column_type) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%mat33 = OpTypeMatrix %f32 3
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Columns in a matrix must be of type vector"));
}
TEST_F(ValidateData, matrix_data_type_int) {
std::string str = header + R"(
%int32 = OpTypeInt 32 1
%vec3 = OpTypeVector %int32 3
%mat33 = OpTypeMatrix %vec3 3
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("can only be parameterized with floating-point types"));
}
TEST_F(ValidateData, matrix_data_type_bool) {
std::string str = header + R"(
%boolt = OpTypeBool
%vec3 = OpTypeVector %boolt 3
%mat33 = OpTypeMatrix %vec3 3
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("can only be parameterized with floating-point types"));
}
TEST_F(ValidateData, matrix_with_0_columns) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%vec3 = OpTypeVector %f32 3
%mat33 = OpTypeMatrix %vec3 0
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("can only be parameterized as having only 2, 3, or 4 columns"));
}
TEST_F(ValidateData, matrix_with_1_column) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%vec3 = OpTypeVector %f32 3
%mat33 = OpTypeMatrix %vec3 1
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("can only be parameterized as having only 2, 3, or 4 columns"));
}
TEST_F(ValidateData, matrix_with_2_columns) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%vec3 = OpTypeVector %f32 3
%mat33 = OpTypeMatrix %vec3 2
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, matrix_with_3_columns) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%vec3 = OpTypeVector %f32 3
%mat33 = OpTypeMatrix %vec3 3
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, matrix_with_4_columns) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%vec3 = OpTypeVector %f32 3
%mat33 = OpTypeMatrix %vec3 4
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, matrix_with_5_column) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%vec3 = OpTypeVector %f32 3
%mat33 = OpTypeMatrix %vec3 5
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("can only be parameterized as having only 2, 3, or 4 columns"));
}
TEST_F(ValidateData, specialize_int) {
std::string str = header + R"(
%i32 = OpTypeInt 32 1
%len = OpSpecConstant %i32 2)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, specialize_float) {
std::string str = header + R"(
%f32 = OpTypeFloat 32
%len = OpSpecConstant %f32 2)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, specialize_boolean) {
std::string str = header + R"(
%2 = OpTypeBool
%3 = OpSpecConstantTrue %2
%4 = OpSpecConstantFalse %2)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, specialize_boolean_true_to_int) {
std::string str = header + R"(
%2 = OpTypeInt 32 1
%3 = OpSpecConstantTrue %2)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantTrue Result Type <id> '1[%int]' is not "
"a boolean type"));
}
TEST_F(ValidateData, specialize_boolean_false_to_int) {
std::string str = header + R"(
%2 = OpTypeInt 32 1
%4 = OpSpecConstantFalse %2)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("OpSpecConstantFalse Result Type <id> '1[%int]' is not "
"a boolean type"));
}
TEST_F(ValidateData, missing_forward_pointer_decl) {
std::string str = header_with_addresses + R"(
%uintt = OpTypeInt 32 0
%3 = OpTypeStruct %fwd_ptrt %uintt
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Operand 3[%3] requires a previous definition"));
}
TEST_F(ValidateData, missing_forward_pointer_decl_self_reference) {
std::string str = header_with_addresses + R"(
%uintt = OpTypeInt 32 0
%3 = OpTypeStruct %3 %uintt
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Operand 2[%_struct_2] requires a previous definition"));
}
TEST_F(ValidateData, forward_pointer_missing_definition) {
std::string str = header_with_addresses + R"(
OpTypeForwardPointer %_ptr_Generic_struct_A Generic
%uintt = OpTypeInt 32 0
%struct_B = OpTypeStruct %uintt %_ptr_Generic_struct_A
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("forward referenced IDs have not been defined"));
}
TEST_F(ValidateData, forward_ref_bad_type) {
std::string str = header_with_addresses + R"(
OpTypeForwardPointer %_ptr_Generic_struct_A Generic
%uintt = OpTypeInt 32 0
%struct_B = OpTypeStruct %uintt %_ptr_Generic_struct_A
%_ptr_Generic_struct_A = OpTypeFloat 32
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Pointer type in OpTypeForwardPointer is not a pointer "
"type.\n OpTypeForwardPointer %float Generic\n"));
}
TEST_F(ValidateData, forward_ref_points_to_non_struct) {
std::string str = header_with_addresses + R"(
OpTypeForwardPointer %_ptr_Generic_struct_A Generic
%uintt = OpTypeInt 32 0
%struct_B = OpTypeStruct %uintt %_ptr_Generic_struct_A
%_ptr_Generic_struct_A = OpTypePointer Generic %uintt
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Forward pointers must point to a structure"));
}
TEST_F(ValidateData, struct_forward_pointer_good) {
std::string str = header_with_addresses + R"(
OpTypeForwardPointer %_ptr_Generic_struct_A Generic
%uintt = OpTypeInt 32 0
%struct_B = OpTypeStruct %uintt %_ptr_Generic_struct_A
%struct_C = OpTypeStruct %uintt %struct_B
%struct_A = OpTypeStruct %uintt %struct_C
%_ptr_Generic_struct_A = OpTypePointer Generic %struct_C
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateData, ext_16bit_storage_caps_allow_free_fp_rounding_mode) {
for (const char* cap : {"StorageUniform16", "StorageUniformBufferBlock16"}) {
for (const char* mode : {"RTE", "RTZ", "RTP", "RTN"}) {
std::string str = std::string(R"(
OpCapability Shader
OpCapability Linkage
OpCapability )") +
cap + R"(
OpExtension "SPV_KHR_storage_buffer_storage_class"
OpExtension "SPV_KHR_variable_pointers"
OpExtension "SPV_KHR_16bit_storage"
OpMemoryModel Logical GLSL450
OpDecorate %_ FPRoundingMode )" + mode + R"(
%half = OpTypeFloat 16
%float = OpTypeFloat 32
%float_1_25 = OpConstant %float 1.25
%half_ptr = OpTypePointer StorageBuffer %half
%half_ptr_var = OpVariable %half_ptr StorageBuffer
%void = OpTypeVoid
%func = OpTypeFunction %void
%main = OpFunction %void None %func
%main_entry = OpLabel
%_ = OpFConvert %half %float_1_25
OpStore %half_ptr_var %_
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
}
}
TEST_F(ValidateData, vulkan_disallow_free_fp_rounding_mode) {
for (const char* mode : {"RTE", "RTZ"}) {
for (const auto env : {SPV_ENV_VULKAN_1_0, SPV_ENV_VULKAN_1_1}) {
std::string str = std::string(R"(
OpCapability Shader
OpExtension "SPV_KHR_storage_buffer_storage_class"
OpExtension "SPV_KHR_variable_pointers"
OpMemoryModel Logical GLSL450
OpDecorate %_ FPRoundingMode )") +
mode + R"(
%half = OpTypeFloat 16
%float = OpTypeFloat 32
%float_1_25 = OpConstant %float 1.25
%half_ptr = OpTypePointer StorageBuffer %half
%half_ptr_var = OpVariable %half_ptr StorageBuffer
%void = OpTypeVoid
%func = OpTypeFunction %void
%main = OpFunction %void None %func
%main_entry = OpLabel
%_ = OpFConvert %half %float_1_25
OpStore %half_ptr_var %_
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_CAPABILITY, ValidateInstructions(env));
EXPECT_THAT(
getDiagnosticString(),
Support SPIR-V 1.4 (#2550) * SPIR-V 1.4 headers, add SPV_ENV_UNIVERSAL_1_4 * Support --target-env spv1.4 in help for command line tools * Support asm/dis of UniformId decoration * Validate UniformId decoration * Fix version check on instructions and operands Also register decorations used with OpDecorateId * Extension lists can differ between enums that match Example: SubgroupMaskEq vs SubgroupMaskEqKHR * Validate scope value for Uniform decoration, for SPIR-V 1.4 * More unioning of exts * Preserve grammar order within an enum value * 1.4: Validate OpSelect over composites * Tools default to 1.4 * Add asm/dis test for OpCopyLogical * 1.4: asm/dis tests for PtrEqual, PtrNotEqual, PtrDiff * Basic asm/Dis test for OpCopyMemory * Test asm/dis OpCopyMemory with 2-memory access Add asm/dis tests for OpCopyMemorySized Requires grammar update to add second optional memory access operand to OpCopyMemory and OpCopyMemorySized * Validate one or two memory accesses on OpCopyMemory* * Check av/vis on CopyMemory source and target memory access This is a proposed rule. See https://gitlab.khronos.org/spirv/SPIR-V/issues/413 * Validate operation for OpSpecConstantOp * Validate NonWritable decoration Also permit NonWritable on members of UBO and SSBO. * SPIR-V 1.4: NonWrtiable can decorate Function and Private vars * Update optimizer CLI tests for SPIR-V 1.4 * Testing tools: Give expected SPIR-V version in message * SPIR-V 1.4 validation for entry point interfaces * Allow only unique interfaces * Allow all global variables * Check that all statically used global variables are listed * new tests * Add validation fixture CompileFailure * Add 1.4 validation for pointer comparisons * New tests * Validate with image operands SignExtend, ZeroExtend Since we don't actually know the image texel format, we can't fully validate. We need more context. But we can make sure we allow the new image operands in known-good cases. * Validate OpCopyLogical * Recursively checks subtypes * new tests * Add SPIR-V 1.4 tests for NoSignedWrap, NoUnsignedWrap * Allow scalar conditions in 1.4 with OpSelect * Allows scalar conditions with vector operands * new tests * Validate uniform id scope as an execution scope * Validate the values of memory and execution scopes are valid scope values * new test * Remove SPIR-V 1.4 Vulkan 1.0 environment * SPIR-V 1.4 requires Vulkan 1.1 * FIX: include string for spvLog * FIX: validate nonwritable * FIX: test case suite for member decorate string * FIX: test case for hlsl functionality1 * Validation test fixture: ease debugging * Use binary version for SPIR-V 1.4 specific features * Switch checks based on the SPIR-V version from the target environment to instead use the version from the binary * Moved header parsing into the ValidationState_t constructor (where version based features are set) * Added new versions of tests that assemble a 1.3 binary and validate a 1.4 environment * Fix test for update to SPIR-V 1.4 headers * Fix formatting * Ext inst lookup: Add Vulkan 1.1 env with SPIR-V 1.4 * Update spirv-val help * Operand version checks should use module version Use the module version instead of the target environment version. * Fix comment about two-access form of OpCopyMemory
2019-05-07 16:27:18 +00:00
HasSubstr(
"Operand 2 of Decorate requires one of these capabilities: "
"StorageBuffer16BitAccess UniformAndStorageBuffer16BitAccess "
"StoragePushConstant16 StorageInputOutput16"));
}
}
}
TEST_F(ValidateData, void_array) {
std::string str = header + R"(
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_5 = OpConstant %int 5
%array = OpTypeArray %void %int_5
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("OpTypeArray Element Type <id> '1[%void]' is a void type."));
}
TEST_F(ValidateData, void_runtime_array) {
std::string str = header + R"(
%void = OpTypeVoid
%array = OpTypeRuntimeArray %void
)";
CompileSuccessfully(str.c_str());
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"OpTypeRuntimeArray Element Type <id> '1[%void]' is a void type."));
}
TEST_F(ValidateData, vulkan_RTA_array_at_end_of_struct) {
std::string str = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %func "func"
OpExecutionMode %func OriginUpperLeft
OpDecorate %array_t ArrayStride 4
OpMemberDecorate %struct_t 0 Offset 0
OpMemberDecorate %struct_t 1 Offset 4
OpDecorate %struct_t Block
%uint_t = OpTypeInt 32 0
%array_t = OpTypeRuntimeArray %uint_t
%struct_t = OpTypeStruct %uint_t %array_t
%struct_ptr = OpTypePointer StorageBuffer %struct_t
%2 = OpVariable %struct_ptr StorageBuffer
%void = OpTypeVoid
%func_t = OpTypeFunction %void
%func = OpFunction %void None %func_t
%1 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(str.c_str(), SPV_ENV_VULKAN_1_1);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_1));
}
TEST_F(ValidateData, vulkan_RTA_not_at_end_of_struct) {
std::string str = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %func "func"
OpExecutionMode %func OriginUpperLeft
OpDecorate %array_t ArrayStride 4
OpMemberDecorate %struct_t 0 Offset 0
OpMemberDecorate %struct_t 1 Offset 4
OpDecorate %struct_t Block
%uint_t = OpTypeInt 32 0
%array_t = OpTypeRuntimeArray %uint_t
%struct_t = OpTypeStruct %array_t %uint_t
%struct_ptr = OpTypePointer StorageBuffer %struct_t
%2 = OpVariable %struct_ptr StorageBuffer
%void = OpTypeVoid
%func_t = OpTypeFunction %void
%func = OpFunction %void None %func_t
%1 = OpLabel
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(str.c_str(), SPV_ENV_VULKAN_1_1);
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions(SPV_ENV_VULKAN_1_1));
EXPECT_THAT(getDiagnosticString(),
AnyVUID("VUID-StandaloneSpirv-OpTypeRuntimeArray-04680"));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("In Vulkan, OpTypeRuntimeArray must only be used for "
"the last member of an OpTypeStruct\n %_struct_3 = "
"OpTypeStruct %_runtimearr_uint %uint\n"));
}
TEST_F(ValidateData, TypeForwardReference) {
std::string test = R"(
OpCapability Shader
OpCapability PhysicalStorageBufferAddresses
OpCapability Linkage
OpMemoryModel Logical GLSL450
OpTypeForwardPointer %1 PhysicalStorageBuffer
%2 = OpTypeStruct
%3 = OpTypeRuntimeArray %1
%1 = OpTypePointer PhysicalStorageBuffer %2
)";
CompileSuccessfully(test, SPV_ENV_UNIVERSAL_1_5);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_5));
}
TEST_F(ValidateData, VulkanTypeForwardStorageClass) {
std::string test = R"(
OpCapability Shader
OpCapability PhysicalStorageBufferAddresses
OpMemoryModel Logical GLSL450
OpTypeForwardPointer %1 Uniform
%2 = OpTypeStruct
%3 = OpTypeRuntimeArray %1
%1 = OpTypePointer Uniform %2
)";
CompileSuccessfully(test, SPV_ENV_VULKAN_1_2);
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions(SPV_ENV_VULKAN_1_2));
EXPECT_THAT(getDiagnosticString(),
AnyVUID("VUID-StandaloneSpirv-OpTypeForwardPointer-04711"));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("In Vulkan, OpTypeForwardPointer must have "
"a storage class of PhysicalStorageBuffer."));
}
TEST_F(ValidateData, TypeForwardReferenceMustBeForwardPointer) {
std::string test = R"(
OpCapability Shader
OpCapability PhysicalStorageBufferAddresses
OpCapability Linkage
OpMemoryModel Logical GLSL450
%1 = OpTypeStruct
%2 = OpTypeRuntimeArray %3
%3 = OpTypePointer PhysicalStorageBuffer %1
)";
CompileSuccessfully(test, SPV_ENV_UNIVERSAL_1_5);
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions(SPV_ENV_UNIVERSAL_1_5));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Operand 3[%_ptr_PhysicalStorageBuffer__struct_1] "
"requires a previous definition"));
}
} // namespace
} // namespace val
} // namespace spvtools