Changed a couple small parts of the algorithm to reduce time to build
the dominator trees. There should be no visible changes.
Add a depth first search algorithm that does not run a function on
backedges. The check if an edge is a back edge is time consuming, and
pointless if the function run on it is a nop.
Fixes https://crbug.com/oss-fuzz48578
* Adds structural reachability to basic blocks
* calculated in same manner as reachability, but using structural
successors
* Change structured CFG validation to use structural reachability
instead of reachability
* Fix some invalid reducer cases
* ANGLE builds with -Werror,-Wunreachable-code-loop-increment which had
a problem with grabbing the first construct in a loop
* Change the code to just use begin instead
* Structural dominance introduced in SPIR-V 1.6 rev2
* Changes the structured cfg validation to use structural dominance
* structural dominance is based on a cfg where merge and continue
declarations are counted as graph edges
* Basic blocks now track structural predecessors and structural
successors
* Add validation for entry into a loop
* Fixed an issue with inlining a single block loop
* The continue target needs to be moved to the latch block
* Simplify the calculation of structured exits
* no longer requires block depth
* Update many invalid tests
We currently build the structured order for all nodes reachable from the
loop header when unrolling a loop. However, unrolling only needs the
nodes in the loop and possibly the merge node.
To avoid needless computation, I have implemented a search that will
stop at the merge node.
Fixes#4827
A std::set is used instead of std::vector, where the elements are
ordered by member index first. Decorations for fields are now looked up
by going over the range of decorations for the member only, instead of
the whole set.
In an ANGLE test that generates a struct with 4096 members, validation
goes down from ~140ms to ~90ms. On debug builds, the difference is more
pronounced, going down from ~2.5s to ~600ms.
- Add assembler/disassembler support
- Add validator support
Signed-off-by: Kevin Petit <kevin.petit@arm.com>
Change-Id: Iffcedd5d5e636a0e128a5906ffe634dd85727de1
For a shader input/output interface variable of structure type:
If the structure has BuiltIn members, then the structure type
must be Block decorated.
Otherwise, the variable, or the struct members must have locations,
but nothing can have both a location be a BuiltIn.
Implements validation needed to reject the example in
https://github.com/KhronosGroup/SPIRV-Registry/issues/134
* Basic support for SPIR-V 1.6
* Update SPIRV-Headers deps
* Add new environment enum for SPIR-V 1.6
* Make default environment 1.6 for most tools
* Update tests
* Disallow conditional branch with duplicate labels
* Disallow Dim=Buffer with sampled images
* Do not require the non-semantic extension after SPIR-V 1.5
* Fix endianness of string literals
To get correct and consistent encoding and decoding of string literals
on big-endian platforms, use spvtools::utils::MakeString and MakeVector
(or wrapper functions) consistently for handling string literals.
- add variant of MakeVector that encodes a string literal into an
existing vector of words
- add variants of MakeString
- add a wrapper spvDecodeLiteralStringOperand in source/
- fix wrapper Operand::AsString to use MakeString (source/opt)
- remove Operand::AsCString as broken and unused
- add a variant of GetOperandAs for string literals (source/val)
... and apply those wrappers throughout the code.
Fixes #149
* Extend round trip test for StringLiterals to flip word order
In the encoding/decoding roundtrip tests for string literals, include
a case that flips byte order in words after encoding and then checks for
successful decoding. That is, on a little-endian host flip to big-endian
byte order and then decode, and vice versa.
* BinaryParseTest.InstructionWithStringOperand: also flip byte order
Test binary parsing of string operands both with the host's and with the
reversed byte order.
Fixes#4469
* Checks that decorations only usable with structure members are not
used by OpDecorate or OpDecorateId
* Checks that decorations not allowed on structure members are not used
with OpMemberDecorate
* Checks decoration targets for most core decorations
* Performs some Vulkan specific validation on deorations
In #3404 a logical && was replaced with a bitwise & to ensure that
both side-effecting arguments were evaluated. However, this leads to
warnings from some compilers (leading to the OSS-Fuzz build breaking,
in particular).
This change reworks the relevant code so that both arguments to the
logical && are evaluated into temporaries.
When checking the OpBranchConditional for selection headers,
we intend to register both the true and false targets.
Short circuiting was getting in the way.
Co-authored-by: Steven Perron <stevenperron@google.com>
* Account for strided components in arrays
Fixes#4567
* If the element type of an array takes less than a location in size,
calculate the location usage in a strided manner
* formatting
Debug[No]Line are tracked and optimized using the same mechanism that tracks
and optimizes Op[No]Line.
Also:
- Fix missing DebugScope at top of block.
- Allow scalar replacement of access chain in DebugDeclare
Includes:
- Shift to use of spirv-header extinst.nonsemantic.shader grammar.json
- Remove extinst.nonsemantic.vulkan.debuginfo.100.grammar.json
- Enable all optimizations for Shader.DebugInfo
Also fixes scalar replacement to only insert DebugValue after all
OpVariables. This is not necessary for OpenCL.DebugInfo, but it is
for Shader.DebugInfo.
Likewise, fixes Private-to-Local to insert DebugDeclare after all
OpVariables.
Also fixes inlining to handle FunctionDefinition which can show up
after first block if early return processing happens.
Co-authored-by: baldurk <baldurk@baldurk.org>
* Fix infinite loop in validation
Fixes https://crbug.com/38548
* Fixes an issue in structured exit checking where an invalid merge
could result in an infinite traversal
* formatting
The validation state contained feature bits for scalar block layout and
workgroup memory scalar block layout which were never used (the
command-line option is used in every case).
Allow LocalSizeId as a way of sizing compute workgroups where the
environment allows it. A command-line switch is also added to force
acceptance even where the environment would not otherwise allow it.
* Disallow loading a runtime-sized array
Fixes#4472
* Disallow loading a runtime-sized array or a composite containing one
* Refactor type traversal into a separate function used by both runtime
array checks and sized int/float checks
* Update invalid tests