* Add SpirvTools::IsValid().
Add a method to determine if a SpirvTools object was successfully
constructed and can be used. It might not be depending on the parameter
to the constructor.
This is something a fuzzer wants to know before trying to use an
SpirvTools object constructed with a fuzzed parameter.
Upgrade to VulkanKHR memory model
* Converts Logical GLSL450 memory model to Logical VulkanKHR
* Adds extension and capability
* Removes deprecated decorations and replaces them with appropriate
flags on downstream instructions
* Support for Workgroup upgrades
* Support for copy memory
* Adding support for image functions
* Adding barrier upgrades and tests
* Use QueueFamilyKHR scope instead of device
Fixes https://crbug.com/906669
* Don't free diagnostics in spvBinaryParse
* When invoking the parser we wish to ignore the error messages from,
instead create a hijacked context and replace the message consumer with
a null consumer
Adds validator option to specify scalar block layout rules.
Both VK_KHR_relax_block_layout and VK_EXT_scalar_block_layout can be
enabled at the same time. But scalar block layout is as permissive
as relax block layout.
Also, scalar block layout does not require padding at the end of a
struct.
Add test for scalar layout testing ArrayStride 12 on array of vec3s
Cleanup: The internal getSize method does not need a round-up argument,
so remove it.
These are bookend passes designed to help preserve line information
across passes which delete, move and clone instructions. The propagation
pass attaches a debug line instruction to every instruction based on
SPIR-V line propagation rules. It should be performed before optimization.
The redundant line elimination pass eliminates all line instructions
which match the previous line instruction. This pass should be performed
at the end of optimization to reduce physical SPIR-V file size.
Fixes#2027.
* Add base and core bindless validation instrumentation classes
* Fix formatting.
* Few more formatting fixes
* Fix build failure
* More build fixes
* Need to call non-const functions in order.
Specifically, these are functions which call TakeNextId(). These need to
be called in a specific order to guarantee that tests which do exact
compares will work across all platforms. c++ pretty much does not
guarantee order of evaluation of operands, so any such functions need to
be called separately in individual statements to guarantee order.
* More ordering.
* And more ordering.
* And more formatting.
* Attempt to fix NDK build
* Another attempt to address NDK build problem.
* One more attempt at NDK build failure
* Add instrument.hpp to BUILD.gn
* Some name improvement in instrument.hpp
* Change all types in instrument.hpp to int.
* Improve documentation in instrument.hpp
* Format fixes
* Comment clean up in instrument.hpp
* imageInst -> image_inst
* Fix GetLabel() issue.
* Validate the id bound.
Validates that the id bound for the module is not larger than the max id
bound. Also adds an option to set the max id bound. Allows the
optimizer option to set the max id bound to also set the id bound for
the validation run done by the optimizer.
Fixes#2030.
When building C code with gcc and the
-Wstrict-prototypes option, function declarations
and definitions that don't specify their argument
types generate warnings. Functions that don't
take parameters need to specify (void) as their
parameter list, rather than leaving it empty.
Note this only applies to C, so only the functions
exported in C-compatible headers need fixing. In
C++ functions can't be declared/defined without a
parameter list, so C++ can safely allow an empty
parameter list to imply (void).
* Create a new entry point for the optimizer
Creates a new struct to hold the options for the optimizer, and creates
an entry point that take the optimizer options as a parameter.
The old entry point that takes validator options are now deprecated.
The validator options will be one of the optimizer options.
Part of the optimizer options will also be the upper bound on the id bound.
* Add a command line option to set the max value for the id bound. The default is 0x3FFFFF.
* Modify `TakeNextIdBound` to return 0 when the limit is reached.
* Run the validator in the optimization fuzzers.
The optimizers assumes that the input to the optimizer is valid. Since
the fuzzers do not check that the input is valid before passing the
spir-v to the optimizer, we are getting a few errors.
The solution is to run the validator in the optimizer to validate the
input.
For the legalization passes, we need to add an extra option to the
validator to accept certain types of variable pointers, even if the
capability is not given. At the same time, we changed the option
"--legalize-hlsl" to relax the validator in the same way instead of
turning it off.
* Combines OpAccessChain, OpInBoundsAccessChain, OpPtrAccessChain and
OpInBoundsPtrAccessChain
* New folding rule to fold add with 0 for integers
* Converts to a bitcast if the result type does not match the operand
type
V
This re-implements the -Oconfig=<file> flag to use a new API that takes
a list of command-line flags representing optimization passes.
This moves the processing of flags that create new optimization passes
out of spirv-opt and into the library API. Useful for other tools that
want to incorporate a facility similar to -Oconfig.
The main changes are:
1- Add a new public function Optimizer::RegisterPassesFromFlags. This
takes a vector of strings. Each string is assumed to have the form
'--pass_name[=pass_args]'. It creates and registers into the pass
manager all the passes specified in the vector. Each pass is
validated internally. Failure to create a pass instance causes the
function to return false and a diagnostic is emitted to the
registered message consumer.
2- Re-implements -Oconfig in spirv-opt to use the new API.
Fixes#937
Stop std140/430 validation when runtime array is encountered.
Check for standard uniform/storage buffer layout instead of std140/430.
Added validator command line switch to skip block layout checking.
Validate structs decorated as Block/BufferBlock only when they
are used as variable with storage class of uniform or push
constant.
Expose --relax-block-layout to command line.
dneto0 modification:
- Use integer arithmetic instead of floor.
Add SPV_ENV_WEBGPU_0 for work-in-progress WebGPU.
val: Disallow OpUndef in WebGPU env
Silence unused variable warnings when !defined(SPIRV_EFFCE)
Limit visibility of validate_instruction.cpp's symbols
Only InstructionPass needs to be visible so all other functions are put
in an anonymous namespace inside the libspirv namespace.
Currently it's impossible for external code to register a pass because
the only source file that can create pass tokens is optimizer.cpp. This
makes it hard to add passes that can't be upstreamed since you can't run
them from the usual pass sequence without reimplementing Optimizer.
This change adds a PassToken constructor that takes unique_ptr to
opt::Pass; if out-of-tree code implements opt::Pass it can register a
custom pass without having to add it to SPIRV-Tools source code.
Removes the limit on scalar replacement for the lagalization passes.
This is done by adding an option to the pass (and command line option)
to set the limit on maximum size of the composite that scalar
replacement is willing to divide.
Fixes#1494.
We have already disabled common uniform elimination because it created
sequences of loads an entire uniform object, then we extract just a
single element. This caused problems in some drivers, and is just
generally slow because it loads more memory than needed.
However, there are other way to get into this situation, so I've added
a pass that looks specifically for this pattern and removes it when only
a portion of the load is used.
Fixes#1547.
This pass will look for adjacent loops that are compatible and legal to
be fused.
Loops are compatible if:
- they both have one induction variable
- they have the same upper and lower bounds
- same initial value
- same condition
- they have the same update step
- they are adjacent
- there are no break/continue in either of them
Fusion is legal if:
- fused loops do not have any dependencies with dependence distance
greater than 0 that did not exist in the original loops.
- there are no function calls in the loops (could have side-effects)
- there are no barriers in the loops
It will fuse all such loops as long as the number of registers used for
the fused loop stays under the threshold defined by
max_registers_per_loop.
Adds support for spliting loops whose register pressure exceeds a user
provided level. This pass will split a loop into two or more loops given
that the loop is a top level loop and that spliting the loop is legal.
Control flow is left intact for dead code elimination to remove.
This pass is enabled with the --loop-fission flag to spirv-opt.
Introduce a pass that does a DCE type analysis for vector elements
instead of the whole vector as a single element.
It will then rewrite instructions that are not used with something else.
For example, an instruction whose value are not used, even though it is
referenced, is replaced with an OpUndef.
For each loop in a function, the pass walks the loops from inner to outer most loop
and tries to peel loop for which a certain amount of iteration can be done before or after the loop.
To limit code growth, peeling will not happen if the growth in code size goes above a configurable threshold.
When building C code with gcc and the
-Wstrict-prototypes option, function declarations
and definitions that don't specify their argument
types generate warnings. Functions that don't
take parameters need to specify (void) as their
parameter list, rather than leaving it empty.
Note this only applies to C, so only the functions
exported in C-compatible headers need fixing. In
C++ functions can't be declared/defined without a
parameter list, so C++ can safely allow an empty
parameter list to imply (void).
The sprir-v generated from HLSL code contain many copyies of very large
arrays. Not only are these time consumming, but they also cause
problems for drivers because they require too much space.
To work around this, we will implement an array copy propagation. Note
that we will not implement a complete array data flow analysis in order
to implement this. We will be looking for very simple cases:
1) The source must never be stored to.
2) The target must be stored to exactly once.
3) The store to the target must be a store to the entire array, and be a
copy of the entire source.
4) All loads of the target must be dominated by the store.
The hard part is keeping all of the types correct. We do not want to
have to do too large a search to update everything, which may not be
possible, do we give up if we see any instruction that might be hard to
update.
Also in types.h, the element decorations are not stored in an std::map.
This change was done so the hashing algorithm for a Struct is
consistent. With the std::unordered_map, the traversal order was
non-deterministic leading to the same type getting hashed to different
values. See |Struct::GetExtraHashWords|.
Contributes to #1416.
This patch adds a new option --time-report to spirv-opt. For each pass
executed by spirv-opt, the flag prints resource utilization for the pass
(CPU time, wall time, RSS and page faults)
This fixes issue #1378
This pass replaces the load/store elimination passes. It implements the
SSA re-writing algorithm proposed in
Simple and Efficient Construction of Static Single Assignment Form.
Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
In: Jhala R., De Bosschere K. (eds)
Compiler Construction. CC 2013.
Lecture Notes in Computer Science, vol 7791.
Springer, Berlin, Heidelberg
https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
In contrast to common eager algorithms based on dominance and dominance
frontier information, this algorithm works backwards from load operations.
When a target variable is loaded, it queries the variable's reaching
definition. If the reaching definition is unknown at the current location,
it searches backwards in the CFG, inserting Phi instructions at join points
in the CFG along the way until it finds the desired store instruction.
The algorithm avoids repeated lookups using memoization.
For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
this algorithm is proven to produce minimal SSA. That is, it inserts the
minimal number of Phi instructions required to ensure the SSA property, but
some Phi instructions may be dead
(https://en.wikipedia.org/wiki/Static_single_assignment_form).
We are seeing shaders that have multiple returns in a functions. These
functions must get inlined for legalization purposes; however, the
inliner does not know how to inline functions that have multiple
returns.
The solution we will go with it to improve the merge return pass to
handle structured control flow.
Note that the merge return pass will assume the cfg has been cleanedup
by dead branch elimination.
Fixes#857.
Previously we keep a separate static grammar table for opcodes/
operands per SPIR-V version. This commit changes that to use a
single unified static grammar table for opcodes/operands.
This essentially changes how grammar facts are queried against
a certain target environment. There are only limited filtering
according to the desired target environment; a symbol is
considered as available as long as:
1. The target environment satisfies the minimal requirement of
the symbol; or
2. There is at least one extension enabling this symbol.
Note that the second rule assumes the extension enabling the
symbol is indeed requested in the SPIR-V code; checking that
should be the validator's work.
Also fixed a few grammar related issues:
* Rounding mode capability requirements are moved to client APIs.
* Reserved symbols not available in any extension is no longer
recognized by assembler.
Strips reflection info. This is limited to decorations and
decoration instructions related to the SPV_GOOGLE_hlsl_functionality1
extension.
It will remove the OpExtension for SPV_GOOGLE_hlsl_functionality1.
It will also remove the OpExtension for SPV_GOOGLE_decorate_string
if there are no further remaining uses of OpDecorateStringGOOGLE.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1398
The default target is SPIR-V 1.3.
For example, spirv-as will generate a SPIR-V 1.3 binary by default.
Use command line option "--target-env spv1.0" if you want to make a SPIR-V
1.0 binary or validate against SPIR-V 1.0 rules.
Example:
# Generate a SPIR-V 1.0 binary instead of SPIR-V 1.3
spirv-as --target-env spv1.0 a.spvasm -o a.spv
spirv-as --target-env vulkan1.0 a.spvasm -o a.spv
# Validate as SPIR-V 1.0.
spirv-val --target-env spv1.0 a.spv
# Validate as Vulkan 1.0
spirv-val --target-env vulkan1.0 a.spv
It moves all conditional branching and switch whose conditions are loop
invariant and uniform. Before performing the loop unswitch we check that
the loop does not contain any instruction that would prevent it
(barriers, group instructions etc.).
This patch adds initial support for loop unrolling in the form of a
series of utility classes which perform the unrolling. The pass can
be run with the command spirv-opt --loop-unroll. This will unroll
loops within the module which have the unroll hint set. The unroller
imposes a number of requirements on the loops it can unroll. These are
documented in the comments for the LoopUtils::CanPerformUnroll method in
loop_utils.h. Some of the restrictions will be lifted in future patches.
Implementation of the simplification pass.
- Create pass that calls the instruction folder on each instruction and
propagate instructions that fold to a copy. This will do copy
propagation as well.
- Did not use the propagator engine because I want to modify the instruction
as we go along.
- Change folding to not allocate new instructions, but make changes in
place. This change had a big impact on compile time.
- Add simplification pass to the legalization passes in place of
insert-extract elimination.
- Added test cases for new folding rules.
- Added tests for the simplification pass
- Added a method to the CFG to apply a function to the basic blocks in
reverse post order.
Contributes to #1164.
Add pkg-config file for shared libraries
Properly build SPIRV-Tools DLL
Test C interface with shared library
Set PATH to shared library file for c_interface_shared test
Otherwise, the test won't find SPIRV-Tools-shared.dll.
Do not use private functions when testing with shared library
Make all symbols hidden by default for shared library target
Creates a pass that will remove instructions that are invalid for the
current shader stage. For the instruction to be considered for replacement
1) The opcode must be valid for a shader modules.
2) The opcode must be invalid for the current shader stage.
3) All entry points to the module must be for the same shader stage.
4) The function containing the instruction must be reachable from an entry point.
Fixes#1247.
* Handles simple cases only
* Identifies phis in blocks with two predecessors and attempts to
convert the phi to an select
* does not perform code motion currently so the converted values must
dominate the join point (e.g. can't be defined in the branches)
* limited for now to two predecessors, but can be extended to handle
more cases
* Adding if conversion to -O and -Os