This function now checks for side-effects before adding operand
instructions to the dead instruction work list.
Because this fix puts more pressure on IsCombinatorInstruction() to
be correct, this commit adds all OpConstant* and OpType* instructions
to combinator_ops_ set.
Fixes#1341.
When inlining a function call the instructions in the same basic block
as the call get cloned. The clone is added to the set of new blocks
containing the inlined code, and the original instructions are deleted.
This PR will change this so that we simply move the instructions to the
new blocks. This saves on the creation and deletion of the
instructions.
Contributes to #1328.
This change implements instruction folding for arithmetic operations
that are redundant, specifically:
x + 0 = 0 + x = x
x - 0 = x
0 - x = -x
x * 0 = 0 * x = 0
x * 1 = 1 * x = x
0 / x = 0
x / 1 = x
mix(a, b, 0) = a
mix(a, b, 1) = b
Cache ExtInst import id in feature manager
This allows us to avoid string lookups during optimization; for now we
just cache GLSL std450 import id but I can imagine caching more sets as
they become utilized by the optimizer.
Add tests for add/sub/mul/div/mix folding
The tests cover scalar float/double cases, and some vector cases.
Since most of the code for floating point folding is shared, the tests
for vector folding are not as exhaustive as scalar.
To test sub->negate folding I had to implement a custom fixture.
Building the def-use chains is very expensive, so we do not want to
invalidate them it if is not necessary. At the moment, it seems like
most optimizatoins are good at not invalidating the def-use chains, but
simplification does.
This PR get the simlification pass to keep the analysies valid.
Contributes to #1328.
On some shader code we have in our testsuite, Phi insertion is showing
massive compile time slowdowns, particularly during destruction. The
specific shader I was looking at has about 600 variables to keep track
of and around 3200 basic blocks. The algorithm is currently O(var x
blocks), which means maps with around 2M entries. This was taking about
8 minutes of compile time.
This patch changes the tracking of stored variables to be more sparse.
Instead of having every basic block contain all the tracked variables in
the map, they now have only the variables actually stored in that block.
This speeds up deallocation, which brings down compile time to about
1m20s.
Note that this is not the definite fix for this. I will re-write Phi
insertion to use a standard SSA rewriting algorithm
(https://github.com/KhronosGroup/SPIRV-Tools/issues/893).
This contributes to
https://github.com/KhronosGroup/SPIRV-Tools/issues/1328.
I mixed up two cases when folding an OpCompositeExtract that is feed by
and OpCompositeInsert. The specific cases are demonstracted in the new
test. I mixed up the conditions for the cases, and treated one like the
other.
Fixes#1323.
* Now track propagation status and assert on bad statuses
* Added helper methods to access instruction propagation status
* Modified the phi meet operator to properly reflect the paper it is
based on
* Modified SSA edge addition so that all edge are added, but only on
state changes
* Fixed a bug in instruction simulation where interesting conditional
branches would not mark the interesting edge as executed
* Added a test to catch this bug
* Added an ostream operator for SSAPropagator::PropStatus
The simplification pass works better after all of the dead branches are
removed. So swapping them around in the legalization passes. Also
adding the simplification pass to performance passes right after dead
branch elimination.
Added CCP to the legalization passes so we can propagate the constants
into the branchs, and remove as many branches a possible. CCP is
designed to still get opportunities even if the branches are dead, so it
is a good place for it.
Fixes#1118
This change handles all 6 regular comparison types in two variations,
ordered (true if values are ordered *and* comparison is true) and
unordered (true if values are unordered *or* comparison is true).
Ordered comparison matches the default floating-point behavior on host
but we use std::isnan to check ordering explicitly anyway.
This change also slightly reworks the floating-point folding support
code to make it possible to define a folding operation that returns
boolean instead of floating point.
These tests exhaustively test ordered/unordered comparisons for
float/double.
Since for NaN inputs the comparison result doesn't depend on the
comparison function, we just test == and !=; NaN inputs result in true
unordered comparisons and false ordered comparisons.
Registering a constant in constant manager establishes a relation
between instruction that defined it and constant object. On complex
shaders this could result in the constant definition getting removed as
part of one of the DCE pass, and a subsequent simplification pass trying
to use the defining instruction for the constant.
To fix this, we now remove associated constant entries from constant
manager when killing constant instructions; the constant object is still
registered and can be remapped to a new instruction later.
GetDefiningInstruction shouldn't ever return nullptr after this change
so add an assertion to check for that.
In dead branch elimination, we already recognize unreachable continue
blocks, and update OpPhi instruction accordingly. This change adds an
extra check: if the head block has exactly 1 other incoming edge, then
replace the OpPhi with the value from that edge.
Fixes#1314.
unordered_map is not POD. Using it as static may cause problems
when operator new() and operator delete() is customized.
Also changed some function signatures to use const char* instead
of std::string, which will give caller the flexibility to avoid
creating a std::string.
We can fold OpSelect into one of the operands in two cases:
- condition is constant
- both results are the same
Even if the original shader doesn't have either of these, if-conversion
pass sometimes ends up generating instructions like
%7127 = OpSelect %int %3220 %7058 %7058
And this optimization cleans them up.
Adding a map from an id to it set of OpName and OpMemberName
instructions. This will be used in KillNameAndDecorates to kill the
names for the ids that are being removed.
In my test, the compile time for 50 shaders went from 1m57s to 55s.
This was on linux using the release build.
Fixes#1290.
This patch adds initial support for loop unrolling in the form of a
series of utility classes which perform the unrolling. The pass can
be run with the command spirv-opt --loop-unroll. This will unroll
loops within the module which have the unroll hint set. The unroller
imposes a number of requirements on the loops it can unroll. These are
documented in the comments for the LoopUtils::CanPerformUnroll method in
loop_utils.h. Some of the restrictions will be lifted in future patches.
There seems to only be a single location where the def-use manager is
used. It is to get information about a type. We can do that with the
type manager instead.
Fixes#1285
Implementation of the simplification pass.
- Create pass that calls the instruction folder on each instruction and
propagate instructions that fold to a copy. This will do copy
propagation as well.
- Did not use the propagator engine because I want to modify the instruction
as we go along.
- Change folding to not allocate new instructions, but make changes in
place. This change had a big impact on compile time.
- Add simplification pass to the legalization passes in place of
insert-extract elimination.
- Added test cases for new folding rules.
- Added tests for the simplification pass
- Added a method to the CFG to apply a function to the basic blocks in
reverse post order.
Contributes to #1164.
Add pkg-config file for shared libraries
Properly build SPIRV-Tools DLL
Test C interface with shared library
Set PATH to shared library file for c_interface_shared test
Otherwise, the test won't find SPIRV-Tools-shared.dll.
Do not use private functions when testing with shared library
Make all symbols hidden by default for shared library target
* Added TypeManager::RebuildType
* rebuilds the type and its constituent types in terms of memory owned
by the manager.
* Used by TypeManager::RegisterType to properly allocate memory
* Adding an unit test to expose the issue
* Added some tests to provide coverage of RebuildType
* Added an accessor to the target pointer for a forward pointer
The combinator initialization was only looking at the capabilities
in the shader and not the inferred capabilities. Geometry and tessellation
shaders were not setting the Shader capability which is inferred. So the
combinator set was not initialized correctly causing problems for ADCE.
Create the folding engine that will
1) attempt to fold an instruction.
2) iterates on the folding so small folding rules can be easily combined.
3) insert new instructions when needed.
I've added the minimum number of rules needed to test the features above.