Replace two other, imperfect mechanisms for use-def tracking.
Use ValidationState_t::entry_points to track entry points.
Concentrate undefined-ID diagnostics in a single place.
Move validate_types.h content into validate.h due to increased
inter-dependency.
Track uses of all IDs: TYPE_ID, SCOPE_ID, ...
Also update some blurbs.
Fix entry-point accumulation and move it outside ProcessIds().
Remove validate_types.h from CMakeLists.txt.
Blurb for spvIsIdType.
Remove redundant diagnostics for undefined IDs.
Join "can not" and reformat.
This adds function and block layout checks to the validator. Very
basic CFG code has been added to make sure labels and branches
are correctly ordered.
Also:
* MemoryModel and Variable instruction checks/tests
* Use spvCheckReturn instead of CHECK_RESULT
* Fix invalid SSA tests
* Created libspirv::spvResultToString in diagnostic.h
* Documented various functions and classes
* Fixed error messages
* Fixed using declaration for FunctionDecl enum class
Added additional compilation flags to gcc and clang builds.
Adds -Wall -Wextra -Wno-long-long -Wshadow -Wundef -Wconversion
-WNo-sign-conversion and -Wno-missing-field-initializers
where appropriate.
Does not add -Wundef to tests, because GTEST tests undefined
macros all over the place.
This adds half-precision constants to spirv-tools.
16-bit floats are always disassembled into hex-float format,
but can be assembled from floating point or hex-float inputs.
If we later add a source/ as an -I include directory,
then avoid confusing other headers that want to include the
standard "endian.h" from /usr/include.
Also rename source/endian.cpp to source/spirv_endian.cpp
* Validates module level instructions for logical layout
conformance
* Does not validate:
1. Function logical layout
2. Minor cases with OpVariable
3. Missing MemoryModel instruction in module
4. Order of function definition and function declaration
* 782 unit tests for logical layout
Addressed feedback
Most uses of an ID must occur after the definition
of the ID. Forward references are allowed for
things like OpName, OpDecorate, and various cases
of control-flow instructions such as OpBranch, OpPhi,
and OpFunctionCall.
TODO: Use CFG analysis for SSA checks. In particular,
an ID defined inside a function body is only usable inside
that function body. Also, use dominator info to catch
some failing cases.
Also:
* Validator test cases use (standard) assignment form.
* Update style to more closely follow the Google C++ style guide
* Remove color-diagnostics flag.
This is enabled by default on terminals with color. Prints
hidden ASCII for terminals that can't handle color(Emacs)
* Pass functors to SSAPass to check if the
operand can be forward referenced based on its index value
* Return SPV_ERROR_INVALID_ID for ID related errors
spvBinaryParse returned SPV_ERROR_INVALID_BINARY for all types of
errors. Since spvBinaryParse does some ID validation, this was
returning inappropriate error codes for some tests.
* Common fixture for validation tests.
It only runs certian validation passes.
* Add a SPV_VALIDATE_SSA_BIT for testing purposes
* Fixtures now return error codes
* Add OpName support in diag message and unit tests
* Binary parsing can fail with invalid ID or invalid binary error code
Tests include:
* OpDecorate
* OpName
* OpMemberName
* OpBranchConditional
* OpSelectionMerge
* OpMemberDecorate
* OpGroupDecorate
* OpDeviceEnqueue
* Enable several tests failing in ID validation.
This is a grammar fix. The Decoration operand of OpDecorate (and
OpMemberDecorate) determines the remaining operands. Don't just
allow any number of literal numbers as operands.
(The OperandVariableLiterals operand class as the last member
of the OpDecorate and OpMemberDecorate entries in in opcode.inc is
an artifact of how the spec generates the opcode descriptions. It's
not suitable for parsing those instructions.)
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/34
Covers the case where the string literal is the
last operand.
TODO: Case where one more operand is expected after
the string literal. Occurs only for the LinkageAttributes
decoration. To test that, we need to update the grammar
as well.
Add unit tests for all diagnostics issued by spvBinaryParse.
Handle image format operands in the binary parser and the
disassembler.
Document that the callback function pointers can be null,
in which case they are ignored.
Detect exhaustion of input when parsing an operand,
to avoid buffer overruns on some invalid input cases.
Fix the description strings for some operand types.
Make the diagnostic messages for those operand types
consistent between the assembler and binary parser.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/29
Add a non-zero spv_result_t value SPV_REQUESTED_TERMINATION
which should be used to signal an ok result, but signals
early termination for a process, such as binary parsing.
Tests include:
- correct contents sent to header and instruction callbacks
- non-zero status from a callback should terminate parsing,
but the parser should not generate its own diagnostic.
TODO: Check diagnostics generated by the parser itself.
- Removed dead configuration in CMakeLists.txt.
- Used target_compile_options() instead of CMAKE_{C|CXX}_FLAGS.
- Turned on warnings on tests.
- Fixed various warnings for comparing signed with unsigned values.
- Removed dead code exposed by compiler warnings.
Bits 24-31: 0
Bits 16-23: SPIR-V major number (1)
Bits 8-15: SPIR-V minor number (0)
Bits 0-7: SPIR-V minor number (2)
The assembler will construct the word appropriately,
and the disassemble will print it in major.minor.revision form.
The high 16-bits are a registered generator tool.
These are registered at
https://www.khronos.org/registry/spir-v/api/spir-v.xml
The low 16-bits are tool-specific. It might be a version number,
for example, but is not constrained by the spec or by the registration
process.
The disassembler prints the tool name when we know it.
If we don't, print "Unknown" and then the numeric tool number
in parentheses.
In all cases, the disassembler prints lower 16-bit number on the
same line but after the tool name.
Also add newly registered generators:
6: Khronos LLVM/SPIR-V Translator
7: Khronos SPIR-V Tools Assembler
Decoration Stream depends on it.
GeometryStreams depends on Geometry capability.
Spot check dependence of OpEmitStreamVertex on GeometryStreams.
(Opcode dependencies on capabilities are automatically generated from
opcode.inc)
Previously the opcode table is declared as an global array and we
have spvOpcodeTableInitialize() modifying it. That can result in
race condition. Now spvOpcodeTabelGet() copies the whole underlying
array.