Fixes#4170, by checking the signedness of bitwise operands in
TransformationAddBitInstructionSynonym, to avoid an "Expected Base
Type to be equal to Result Type" validation error.
PR #4118 (d71ac38b8e) let spirv-val report a validation error when we
use offset for an OpImage* instruction instead of ConstantOffset. Since
some compilers like DXC rely on spirv-opt for function inlining or loop
unrolling, the spirv-val change broke some working shaders when the
shader developers disable the optimization (spirv-opt).
For example, DXC recently got this issue from a few users e.g.,
https://github.com/microsoft/DirectXShaderCompiler/issues/3807
Since this error is reported only when the spirv-opt is disabled, it
looks like the exact case that we have to skip spirv-val when
`--before-legalize-hlsl` is given. Moreover, avoiding the error using
`--before-legalize-hlsl` on DXC is exactly what FXC and DXC's DXIL
do (they do not report the error if the offset becomes a constant after
function inlining or loop unrolling).
This change prevents TransformationOutlineFunction from outlining a
region of blocks if some block in the region has an unreachable
predecessor. This avoids a bug whereby the region would be outlined,
and the unreachable predecessors would be left behind, referring to
blocks that are no longer in the function.
The def-use manager was being incorrectly updated in
TransformationPermutePhiOperands, and this was causing future
transformations to go wrong during fuzzing. This change updates the
def-use manager in a correct manner, and adds a test exposing the
previous bug.
Fixes#4300.
Sometimes, you need to change these functions during debugging (e.g.,
figure out why the transformation is inapplicable). When that happens,
you need to recompile the whole fuzzer just because these functions
are in the header file. This PR fixes the situation.
Fixes https://crbug.com/tint/793
* When a loop has an empty loop construct, the loop construct and
continue construct share the same header so don't disallow the loop
header for the continue construct
Fix dangling phi bug from loop-unroll
When unrolling the following loop:
```
%const0 = OpConstant ...
%const1 = OpConstant ...
...
%LoopHeader = OpLabel
%phi0 = OpPhi %float %const0 %PreHeader %phi1 %Latch
%phi1 = OpPhi %float %const1 %PreHeader %x %Latch
...
%LoopBody = OpLabel
%x = OpFSub %float %phi1 %phi0
...
```
the loop-unroll pass sets the value of `%phi0` as `%phi1` for the second
copy of the loop body. For example, the second copy of
`%x = OpFSub %float %phi1 %phi0` will be
`%y = OpFSub %float %x %phi1`.
Since all phi instructions for inductions will are removed after the
loop unrolling, `%phi1` will be a dead dangling phi.
It happens only for the phi values of the first loop iteration. Replacing those
dangling phis with their initial values fixes this issue.
For example, the second copy of `%x = OpFSub %float %phi1 %phi0` should be
`%y = OpFSub %float %x %const1` because the value of `%phi1` from the
first loop iteration is `%const1`.
There are some edge cases where adding livesafe functions does not
succeed, due to loop limiter edges breaking SPIR-V dominance rules. As
these edge cases are rare it does not seem worth implementing complex
additional logic to handle all cases. This change accepts that trying
to add a function in a livesafe manner may not succeed.
This pass converts an internal form of GLSLstd450 Interpolate ops
to the externally valid form. The external form takes the lvalue
of the interpolant. The internal form can do a load of the interpolant.
The pass replaces the load with its pointer. The internal form is
generated by glslang and possibly other frontends for HLSL shaders.
The new pass is called as part of HLSL legalization after all
propagation is complete.
Also adds internal interpolate form to pre-legalization validation
FuzzerPassConstructComposites is adapted to use AvailableInstructions
to manage available instructions, and to use zero constants when
trying to construct a composite for which not all fields can otherwise
be constructed. The change uncovered some cases where we create
structs and arrays with struct fields or components that are
block-decorated; these possibilities have been eliminated.
It is easy to avoid the need to invalidate the def-use analysis and
instruction to block mapping when splitting blocks, and profiling has
revealed that invalidation of def-use in particular is expensive when
splitting many blocks. This change avoids these invalidations.
Profiling has shown that adding large numbers of dead block
transformations can be expensive because each on requires dominator
analysis information, and each one invalidates this information. There
is currently no obvious mechanism for incrementally updating the
dominator analysis. This change restricts the number of these
transformations that a single fuzzer pass will apply, to restrict this
performance bottleneck.
Types should only be added to the module by spirv-fuzz via
transformations, so this change removes the AddType methods from
fuzzerutil, which were only called once each from the appropriate
transformation.
The transformations have been adapted so that they avoid redundantly
invalidating all analyses - they now update the def-use manager and
invalidate only the type manager.
Avoids redundantly searching the whome module when locating an
instruction from its descriptor - instead, only the block containing
the instruction needs to be searched.
The performance of spirv-fuzz is sometimes poor due to analyses being
conservatively invalidated. This can lead to quadratic time algorithms
when a fuzzer pass applies O(N) transformations, and where every
transformation e.g. depends on def-use analysis and invalidates
def-use analysis (because building def-use analysis is O(N)).
This change avoids invalidating analyses for certain transformations.
The fuzzer library depended on CLIMessageConsumer, due to its explicit
use in a function. This change removes that dependency so that,
instead, a message consumer parameter is passed.
This allows the GPU-AV layer to differentiate between errors with
uniform buffers versus storage buffers and map these to the relevant
VUIDs.
This is a resubmit of a previously reverted commit. The revert was
done as someone erroneously attempted to build the latest validation
layers with a TOT spirv-tools. The validation layers must be built with
their known-good glslang and its known-good spirv-tools and spirv-headers.
* Mark module as modified if convert-to-half removes decorations.
If the convert-to-half pass does not change the body of the function,
but removes decorations, it returns that nothing changed. This is
incorrect, and will be fixed.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/4117
* Update comment for RemoveDecorationsFrom
The existing spirv-opt `DebugInfoManager::AddDebugValueForDecl()` sets
the scope and line info of the new added DebugValue using the scope and
line of DebugDeclare. This is wrong because only a single DebugDeclare
must exist under a scope while we have to add DebugValue for all the
places where the variable's value is updated. Therefore, we have to set
the scope and line of DebugValue based on the places of the variable
updates.
This bug makes
https://github.com/google/amber/blob/main/tests/cases/debugger_hlsl_shadowed_vars.amber
fail. This commit fixes the bug.
* Validate SPV_KHR_workgroup_memory_explicit_layout
* Check if SPIR-V is at least 1.4 to use the extension.
* Check if either only Workgroup Blocks or only Workgroup non-Blocks
are used.
* Check that if more than one Workgroup Block is used, variables are
decorated with Aliased.
* Check layout decorations for Workgroup Blocks.
* Implicitly use main capability if the ...8BitAccess or
...16BitAccess are used.
* Allow 8-bit and 16-bit types when ...8BitAccess and ...16BitAccess
are used respectively.
* Update SPIRV-Headers dependency
Bump it to include SPV_KHR_workgroup_memory_explicit_layout.
* Add option to validate Workgroup blocks with scalar layout
Validate the equivalent of scalarBlockLayout for Workgroup storage
class Block variables from SPV_KHR_workgroup_memory_explicit_layout.
Add option to the API and command line tool.
This patch supports new Intel extensions added via
https://github.com/KhronosGroup/SPIRV-Headers/pull/176
SPV_INTEL_fooat_controls2 requires extra support to add
two new operand types:
SPV_OPERAND_TYPE_FPDENORM_MODE
SPV_OPERAND_TYPE_FPOPERATION_MODE
* Work around GCC-9 warning treated as error
```
../source/opt/instruction.h:101:23: error: '*((void*)& operand +32)' may be used uninitialized in this function [-Werror=maybe-uninitialized]
101 | uint64_t result = uint64_t(words[0]);
```
* Migrate all Kokoro build scripts over to use the docker VM image
Required updating the NDK SDK and build scripts, as well as the check_copyright for handling 2021.
Propagating the OpLine/OpNoLine to preserve the debug information
through transformations results in integrity check failures because of
the extra line instructions. This commit lets spirv-opt skip the
integrity check when the code contains OpLine or OpNoLine.
* tools/linker: Error out on unrecognized options
Fixes#4083.
* tools/linker: Use early returns when parsing options
This was already the case for some linker options, and other tools were
doing so for all of their options.
* tools/linker: Rework the usage output
* The new formatting for long options taking a value makes it explicit
that there is no equal sign between the option name and the value.
* The options are sorted by lexicographical order.
* Change the option formatting from 90 columns to 80, to match the other
tools.
* tools/linker: Change the default environment to spv1.5
* tools/linker: Change the default output to spv.out
Instead of writing to the standard output when the "-o" option is not
specified, the resulting linked SPIR-V binary will be written to
"spv.out".
One can still have the output sent to the standard output by specifying
"-o -".
* tools/linker: Update the reported target for --version
Running `spirv-link --version` will now report the currently selected
environment.
* tools/linker: Sort header includes
* linker: Improve module-related error messages
* Use 1-based indexing of modules;
* Say which module could not be built;
* Use the correct total number of input modules in the error message
when one fails to build.
When there is an array of strutured buffers, desc sroa will only split
the array, but not a struct type in the structured buffer. However,
the calcualtion of the number of binding a struct requires does not take
this into consideration. This commit will fix that.
Avoid generating OpPhi on void types, and allow the transformation to
take place on regions that produce pointer and sampled image result
ids if such ids are not used after the region.
Fixes#3787.
* validation: tighter validation of multisampled images
- if MS=1, then Sample image operand is required
- Sampling operations are not permitted when MS=1
Fixes#4057, #4058
* Fail early for multisampled image for sampling, dref, gather
* validate StorageImageMultisampled capability
The StorageImageMultisampled capability is required when declaring
an image type with with Multisampled==1 and it's a storage image (Sampled == 2)
Fixes#4061
* Allow SubpassData with Multisampled and Sampled==2
Similar to [1] DCE should be ran when this extension is enabled to
prevent unused bindings from showing up (in particular atomic counters
attached to buffers).
[1]: https://github.com/KhronosGroup/SPIRV-Tools/pull/4047
The eliminate dead member pass is written assuming that the index to an
OpAccessChain will be a 32-bit integer or 64-bit integer. That is
changed to work for any width 64-bits or less.
Fixes https://crbug.com/1151727
* Add validation for ray tracing builtins
- Remove existing InstanceId testing that was combined with VertexId in awkward ways.
- Rather than adding a new set of functions for each ray tracing builtin, add
an error table that maps the builtin ID to the 3 common VUIDs for each builtin
(I could see this being extended for other builtins in the future).
- add F32 matrix validation function
- augment existing PrimitiveId validation to verify Input storage class for the
RT stages this is accepted in, and correct the list of stages that it is actually
accepted in (only Intersection / Any Hit / Closest Hit)
* add testing for ray tracing builtins
- remove exising InstanceId testing as it was tangled in with VertexId in now weird ways
and combine it with the new tests
- add testing for ray tracing builtins
- builtins accepted in the same stages and of the same types are combined into test functions
- add some new matrix types to the code generator so they can be used for testing
This instruments ImageRead, ImageWrite and ImageFetch when applied to
texel buffers.
Also add new (but not yet generated) buffer OOB error codes differentiated
for VUID classification.
* BuildModule: optionally avoid adding new OpLine instructions
Fixes#4029 for my use case
* Fix formatting
* Create last_line_inst_ only if doing extra line tracking
* Update to final ray tracing extensions
Drop Provisional from ray tracing enums
sed -ie 's/RayQueryProvisionalKHR/RayQueryKHR/g' **/*
sed -ie 's/RayTracingProvisionalKHR/RayTracingKHR/g' **/*
Add terminator support for SpvOpIgnoreIntersectionKHR and SpvOpTerminateRayKHR
Update deps for SPIRV-Headers
* Update capability dependencies for MeshShadingNV
Accommodate https://github.com/KhronosGroup/SPIRV-Headers/pull/180
MeshShadingNV: enables PrimitiveId, Layer, and ViewportIndex
Co-authored-by: Daniel Koch <dkoch@nvidia.com>
Fix buffer oob instrumentation for matrix refs.
Matrix stride decoration is not on matrix type but is a member decoration
on the enclosing struct type. Also correctly apply matrix stride depending
on row or column major.
spirv-opt has a bug that `DebugInfoManager::AddDebugValueWithIndex()` does not
preserve `Indexes` operands of
[DebugValue](https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.DebugInfo.100.html#DebugValue).
It has to preserve all of those `Indexes` operands, but it preserves only the first index
operand.
This PR removes `DebugInfoManager::AddDebugValueWithIndex()` and lets the spirv-opt
use `DebugInfoManager::AddDebugValueForDecl()`.
`DebugInfoManager::AddDebugValueForDecl()` preserves the Indexes operand correctly.
Don't pass a constructed string as an argument to
ValidateNotCalledwithExecutionModel. That method is captured via
std::bind and it ends up using lots of stack space.
Instead, pass in:
- a Vulkan validation unique ID as an integer instead,
(with -1 meaning no VUID), and
- the const char* for the explanator text.
in 3943 the new tests should have failed, but didn't due to the AnyVUID
check not handling case with trailing whitespace. Added trimming to handle
it as easily might happen again in future
The front-end language compiler would simply emit DebugDeclare for
a variable when it is declared, which is effective through the variable's
scope. Since DebugDeclare only maps an OpVariable to a local variable,
the information can be removed when an optimization pass uses the
loaded value of the variable. DebugValue can be used to specify the
value of a variable. For each value update or phi instruction of a variable,
we can add DebugValue to help debugger inspect the variable at any
point of the program execution.
For example,
float a = 3;
... (complicated cfg) ...
foo(a); // <-- variable inspection: debugger can find DebugValue of `float a` in the nearest dominant
For the code with complicated CFG e.g., for-loop, if-statement, we
need help of ssa-rewrite to analyze the effective value of each variable
in each basic block.
If the value update of the variable happens only once and it dominates
all its uses, local-single-store-elim pass conducts the same value update
with ssa-rewrite and we have to let it add DebugValue for the value assignment.
One main issue is that we have to add DebugValue only when the value
update of a variable is visible to DebugDeclare. For example,
```
{ // scope1
%stack = OpVariable %ptr_int %int_3
{ // scope2
DebugDeclare %foo %stack <-- local variable "foo" in high-level language source code is declared as OpVariable "%stack"
// add DebugValue "foo = 3"
...
Store %stack %int_7 <-- foo = 7, add DebugValue "foo = 7"
...
// debugger can inspect the value of "foo"
}
Store %stack %int_11 <-- out of "scope2" i.e., scope of "foo". DO NOT add DebugValue "foo = 11"
}
```
However, the initalization of a variable is an exception.
For example, an argument passing of an inlined function must be done out of
the function's scope, but we must add a DebugValue for it.
```
// in HLSL
bar(float arg) { ... }
...
float foo = 3;
bar(foo);
// in SPIR-V
%arg = OpVariable
OpStore %arg %foo <-- Argument passing. Out of "float arg" scope, but we must add DebugValue for "float arg"
... body of function bar(float arg) ...
```
This PR handles the except case in local-single-store-elim pass. It adds
DebugValue for a store that is considered as an initialization.
The same exception handling code for ssa-rewrite is done by this commit: df4198e50e.
This fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/3873.
In the presence of variable pointers, the reaching definition may be
another pointer. For example, the following fragment:
%2 = OpVariable %_ptr_Input_float Input
%11 = OpVariable %_ptr_Function__ptr_Input_float Function
OpStore %11 %2
%12 = OpLoad %_ptr_Input_float %11
%13 = OpLoad %float %12
corresponds to the pseudo-code:
layout(location = 0) in flat float *%2
float %13;
float *%12;
float **%11;
*%11 = %2;
%12 = *%11;
%13 = *%12;
which ultimately, should correspond to:
%13 = *%2;
During rewriting, the pointer %12 is found to be replaceable by %2.
However, when processing the load %13 = *%12, the type of %12's reaching
definition is another float pointer (%2), instead of a float value.
When this happens, we need to continue looking up the reaching definition
chain until we get to a float value or a non-target var (i.e. a variable
that cannot be SSA replaced, like %2 in this case since it is a function
argument).
Adds some functions that allow a fuzzer pass to check whether it is
spiralling out of control and exit early. The fuzzer pass for adding
bit instruction synonyms now uses this. Also make many methods in
FuzzerContext const.
This PR fixes a bug related to the transformation applicability.
When the OpNot case was implemented, its opcode was not
added to the list of supported bit instructions in IsApplicable.
So, the changes made are the following.
- Add OpNot to the list of supported bit instructions.
- Update the tests.
Removing PropagateLineInfoPass and RedundantLineInfoElimPass from
56d0f5035 makes unit tests of many open source projects fail.
It will happen before submitting this glslang PR
https://github.com/KhronosGroup/glslang/pull/2440. This commit will be
git-reverted after merging the glslang PR.
This commit add support for optimizer to not inline functions with DontInline control flag, so that the [noinline] attribute in HLSL will be useful in DXC SPIR-V generation.
This is part of work of github.com/microsoft/DirectXShaderCompiler/issues/3158
Based on the OpLine spec, an OpLine instruction must be applied to
the instructions physically following it up to the first occurrence
of the next end of block, the next OpLine instruction, or the next
OpNoLine instruction.
```
OpLine %file 0 0
OpNoLine
OpLine %file 1 1
OpStore %foo %int_1
%value = OpLoad %int %foo
OpLine %file 2 2
```
For the above code, the current spirv-opt keeps three line
instructions `OpLine %file 0 0`, `OpNoLine`, and `OpLine %file 1 1`
in `std::vector<Instruction> dbg_line_insts_` of Instruction class
for `OpStore %foo %int_1`. It does not put any line instruction to
`std::vector<Instruction> dbg_line_insts_` of
`%value = OpLoad %int %foo` even though `OpLine %file 1 1` must be
applied to `%value = OpLoad %int %foo` based on the spec.
This results in the missing line information for
`%value = OpLoad %int %foo` while each spirv-opt pass optimizes the
code. We have to put `OpLine %file 1 1` to
`std::vector<Instruction> dbg_line_insts_` of
both `%value = OpLoad %int %foo` and `OpStore %foo %int_1`.
This commit conducts the line instruction propagation and skips
emitting the eliminated line instructions at the end, which are the same
with PropagateLineInfoPass and RedundantLineInfoElimPass. This
commit removes PropagateLineInfoPass and RedundantLineInfoElimPass.
KhronosGroup/glslang#2440 is a related PR that stop using
PropagateLineInfoPass and RedundantLineInfoElimPass from glslang.
When the code in this PR applied, the glslang tests will pass.
If enabled the following targets will be created:
* `${SPIRV_TOOLS}-static` - `STATIC` library. Has full public symbol visibility.
* `${SPIRV_TOOLS}-shared` - `SHARED` library. Has default-hidden symbol visibility.
* `${SPIRV_TOOLS}` - will alias to one of above, based on BUILD_SHARED_LIBS.
If disabled the following targets will be created:
* `${SPIRV_TOOLS}` - either `STATIC` or `SHARED` based on the new `SPIRV_TOOLS_LIBRARY_TYPE` flag. Has full public symbol visibility.
* `${SPIRV_TOOLS}-shared` - `SHARED` library. Has default-hidden symbol visibility.
Defaults to `ON`, matching existing build behavior.
This flag can be used by package maintainers to ensure that all libraries are built as shared objects.
* spirv-val: Allow the ViewportIndex and Layer built-ins when their corresponding SPIR-V 1.5 capabilities are present
* Added tests for OpCapability ShaderViewportIndex and OpCapability ShaderLayer
For some cases, we have DebugDecl invisible to a value assignment, but
the value assignment information is important i.e., debugger cannot inspect
the variable without the information. For example, a parameter of an inlined
function must have its value assignment i.e., argument passing out of its
function scope. If we simply remove DebugDecl because it is invisible to the
argument passing, we cannot inspec the variable.
This PR
- Adds DebugValue for DebugDecl invisible to a value assignment. We use
the value of the variable in the basic block that contains DebugDecl, which is
found by ssa-rewrite. If the value instruction does not dominate DebugDecl,
we use the value of the variable in the immediate dominator of the basic block.
- Checks the visibility of DebugDecl for Phi value assignment based on the
all value operands of the Phi. Since Phi just references multiple values from
multiple basic blocks, scopes of value operands must be regarded as the scope
of the Phi.
The following implementations are introduced:
- Transformation and fuzzer pass for expanding vector reduction.
- Unit tests to cover the instructions with different vector sizes.
Fixes#3768.
This fixes a problem where TransformationInlineFunction could lead to
distinct instructions having identical unique ids. It adds a validity
check to detect this problem in general.
Fixes#3911.
`DebugInfoManager::AddDebugValueIfVarDeclIsVisible()` adds
OpenCL.DebugInfo.100 DebugValue from DebugDeclare only when the
DebugDeclare is visible to the give scope. It helps us correctly
handle a reference variable e.g.,
{ // scope #1.
int foo = /* init */;
{ // scope #2.
int& bar = foo;
...
in the above code, we must not propagate DebugValue of `int& bar` for
store instructions in the scope #1 because it is alive only in
the scope #2.
We have an exception: If the given DebugDeclare is used for a function
parameter, `DebugInfoManager::AddDebugValueIfVarDeclIsVisible()` has
to always add DebugValue instruction regardless
of the scope. It is because the initializer (store instruction) for
the function parameter can be out of the function parameter's scope
(the function) in particular when the function was inlined.
Without this change, the function parameter value information always
disappears whenever we run the function inlining pass and
`DebugInfoManager::AddDebugValueIfVarDeclIsVisible()`.
The validity check during fuzzing and in unit tests is strengthened to
require that every block has its enclosing function as its parent.
TransformationMergeFunctionReturns is fixed so that it ensures parents
are set appropriately.
Fixes#3907.
Currently the validator, when checking an instruction is in the correct
section, always advances the current section. This means if we have an
instruction from a previous section we'll end up reporting it as invalid
in a function definition. This error is confusing.
This CL updates the validator to check if the given opcode is from a
previous layout section before advancing the current section. If it is
from a previous layout section an error is emitted.