WebGPU requires certain variables to be initialized, whereas there are
known issues with using initializers in Vulkan. This PR is the first
of three implementing a pass to decompose initialized variables into
a variable declaration followed by a store. This has been broken up
into multiple PRs, because there 3 distinct cases that need to be
handled, which require separate implementations.
This first PR implements the basic infrastructure that is needed, and
handling of Function storage class variables. Private and Output will
be handled in future PRs.
This is part of resolving #2388
In WebGPU, the component operand 0xFFFFFFFF is forbidden, but in
Vulkan it is used to indicate a value is undefined. When converting to
WebGPU, 0xFFFFFFFF needs to converted to a legal value, though the
specific one does not matter, since it was used to indicate an
undefined entry in the original code. Choosing to use 0, since the
operands are required to be on [0, N-1], so 0 is guaranteed to always
be valid.
Fixes#2349
Renames the existing flag '--webgpu-mode' to '--vulkan-to-webgpu' for
the Vulkan->WebGPU operation, and adds a new flag '--webgpu-to-vulkan'
for the WebGPU->Vulkan operation.
Currently '--webgpu-to-vulkan' doesn't have any passes associated with
it yet, but further patches will implement them.
Fixes#2495
This pass tries to fix validation error due to a mismatch of storage classes
in instructions. There is no guarantee that all such error will be fixed,
and it is possible that in fixing these errors, it could lead to other
errors.
Fixes#2430.
If SPV_EXT_descriptor_indexing is enabled, add check that for a
descriptor-based reference, the descriptor is initialized. Initialization
data is stored in the debug input buffer, added to the length information
already there. This feature must be seperately enabled on the pass
creation routine. NOTE: Currently just supports image references; buffer
references are still TODO.
Adds an optimization pass to remove usages of AtomicCounterMemory
bit. This bit is ignored in Vulkan environments and outright forbidden
in WebGPU ones.
Fixes#2242
Add a pass that looks for members of structs whose values do not affects
the output of the shader. Those members are then removed and just
treated like padding in the struct.
Upgrade to VulkanKHR memory model
* Converts Logical GLSL450 memory model to Logical VulkanKHR
* Adds extension and capability
* Removes deprecated decorations and replaces them with appropriate
flags on downstream instructions
* Support for Workgroup upgrades
* Support for copy memory
* Adding support for image functions
* Adding barrier upgrades and tests
* Use QueueFamilyKHR scope instead of device
These are bookend passes designed to help preserve line information
across passes which delete, move and clone instructions. The propagation
pass attaches a debug line instruction to every instruction based on
SPIR-V line propagation rules. It should be performed before optimization.
The redundant line elimination pass eliminates all line instructions
which match the previous line instruction. This pass should be performed
at the end of optimization to reduce physical SPIR-V file size.
Fixes#2027.
* Add base and core bindless validation instrumentation classes
* Fix formatting.
* Few more formatting fixes
* Fix build failure
* More build fixes
* Need to call non-const functions in order.
Specifically, these are functions which call TakeNextId(). These need to
be called in a specific order to guarantee that tests which do exact
compares will work across all platforms. c++ pretty much does not
guarantee order of evaluation of operands, so any such functions need to
be called separately in individual statements to guarantee order.
* More ordering.
* And more ordering.
* And more formatting.
* Attempt to fix NDK build
* Another attempt to address NDK build problem.
* One more attempt at NDK build failure
* Add instrument.hpp to BUILD.gn
* Some name improvement in instrument.hpp
* Change all types in instrument.hpp to int.
* Improve documentation in instrument.hpp
* Format fixes
* Comment clean up in instrument.hpp
* imageInst -> image_inst
* Fix GetLabel() issue.
* Create a new entry point for the optimizer
Creates a new struct to hold the options for the optimizer, and creates
an entry point that take the optimizer options as a parameter.
The old entry point that takes validator options are now deprecated.
The validator options will be one of the optimizer options.
Part of the optimizer options will also be the upper bound on the id bound.
* Add a command line option to set the max value for the id bound. The default is 0x3FFFFF.
* Modify `TakeNextIdBound` to return 0 when the limit is reached.
* Run the validator in the optimization fuzzers.
The optimizers assumes that the input to the optimizer is valid. Since
the fuzzers do not check that the input is valid before passing the
spir-v to the optimizer, we are getting a few errors.
The solution is to run the validator in the optimizer to validate the
input.
For the legalization passes, we need to add an extra option to the
validator to accept certain types of variable pointers, even if the
capability is not given. At the same time, we changed the option
"--legalize-hlsl" to relax the validator in the same way instead of
turning it off.
* Combines OpAccessChain, OpInBoundsAccessChain, OpPtrAccessChain and
OpInBoundsPtrAccessChain
* New folding rule to fold add with 0 for integers
* Converts to a bitcast if the result type does not match the operand
type
V
This re-implements the -Oconfig=<file> flag to use a new API that takes
a list of command-line flags representing optimization passes.
This moves the processing of flags that create new optimization passes
out of spirv-opt and into the library API. Useful for other tools that
want to incorporate a facility similar to -Oconfig.
The main changes are:
1- Add a new public function Optimizer::RegisterPassesFromFlags. This
takes a vector of strings. Each string is assumed to have the form
'--pass_name[=pass_args]'. It creates and registers into the pass
manager all the passes specified in the vector. Each pass is
validated internally. Failure to create a pass instance causes the
function to return false and a diagnostic is emitted to the
registered message consumer.
2- Re-implements -Oconfig in spirv-opt to use the new API.
Currently it's impossible for external code to register a pass because
the only source file that can create pass tokens is optimizer.cpp. This
makes it hard to add passes that can't be upstreamed since you can't run
them from the usual pass sequence without reimplementing Optimizer.
This change adds a PassToken constructor that takes unique_ptr to
opt::Pass; if out-of-tree code implements opt::Pass it can register a
custom pass without having to add it to SPIRV-Tools source code.
Removes the limit on scalar replacement for the lagalization passes.
This is done by adding an option to the pass (and command line option)
to set the limit on maximum size of the composite that scalar
replacement is willing to divide.
Fixes#1494.
We have already disabled common uniform elimination because it created
sequences of loads an entire uniform object, then we extract just a
single element. This caused problems in some drivers, and is just
generally slow because it loads more memory than needed.
However, there are other way to get into this situation, so I've added
a pass that looks specifically for this pattern and removes it when only
a portion of the load is used.
Fixes#1547.
This pass will look for adjacent loops that are compatible and legal to
be fused.
Loops are compatible if:
- they both have one induction variable
- they have the same upper and lower bounds
- same initial value
- same condition
- they have the same update step
- they are adjacent
- there are no break/continue in either of them
Fusion is legal if:
- fused loops do not have any dependencies with dependence distance
greater than 0 that did not exist in the original loops.
- there are no function calls in the loops (could have side-effects)
- there are no barriers in the loops
It will fuse all such loops as long as the number of registers used for
the fused loop stays under the threshold defined by
max_registers_per_loop.
Adds support for spliting loops whose register pressure exceeds a user
provided level. This pass will split a loop into two or more loops given
that the loop is a top level loop and that spliting the loop is legal.
Control flow is left intact for dead code elimination to remove.
This pass is enabled with the --loop-fission flag to spirv-opt.
Introduce a pass that does a DCE type analysis for vector elements
instead of the whole vector as a single element.
It will then rewrite instructions that are not used with something else.
For example, an instruction whose value are not used, even though it is
referenced, is replaced with an OpUndef.
For each loop in a function, the pass walks the loops from inner to outer most loop
and tries to peel loop for which a certain amount of iteration can be done before or after the loop.
To limit code growth, peeling will not happen if the growth in code size goes above a configurable threshold.
The sprir-v generated from HLSL code contain many copyies of very large
arrays. Not only are these time consumming, but they also cause
problems for drivers because they require too much space.
To work around this, we will implement an array copy propagation. Note
that we will not implement a complete array data flow analysis in order
to implement this. We will be looking for very simple cases:
1) The source must never be stored to.
2) The target must be stored to exactly once.
3) The store to the target must be a store to the entire array, and be a
copy of the entire source.
4) All loads of the target must be dominated by the store.
The hard part is keeping all of the types correct. We do not want to
have to do too large a search to update everything, which may not be
possible, do we give up if we see any instruction that might be hard to
update.
Also in types.h, the element decorations are not stored in an std::map.
This change was done so the hashing algorithm for a Struct is
consistent. With the std::unordered_map, the traversal order was
non-deterministic leading to the same type getting hashed to different
values. See |Struct::GetExtraHashWords|.
Contributes to #1416.
This patch adds a new option --time-report to spirv-opt. For each pass
executed by spirv-opt, the flag prints resource utilization for the pass
(CPU time, wall time, RSS and page faults)
This fixes issue #1378
This pass replaces the load/store elimination passes. It implements the
SSA re-writing algorithm proposed in
Simple and Efficient Construction of Static Single Assignment Form.
Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
In: Jhala R., De Bosschere K. (eds)
Compiler Construction. CC 2013.
Lecture Notes in Computer Science, vol 7791.
Springer, Berlin, Heidelberg
https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
In contrast to common eager algorithms based on dominance and dominance
frontier information, this algorithm works backwards from load operations.
When a target variable is loaded, it queries the variable's reaching
definition. If the reaching definition is unknown at the current location,
it searches backwards in the CFG, inserting Phi instructions at join points
in the CFG along the way until it finds the desired store instruction.
The algorithm avoids repeated lookups using memoization.
For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
this algorithm is proven to produce minimal SSA. That is, it inserts the
minimal number of Phi instructions required to ensure the SSA property, but
some Phi instructions may be dead
(https://en.wikipedia.org/wiki/Static_single_assignment_form).
We are seeing shaders that have multiple returns in a functions. These
functions must get inlined for legalization purposes; however, the
inliner does not know how to inline functions that have multiple
returns.
The solution we will go with it to improve the merge return pass to
handle structured control flow.
Note that the merge return pass will assume the cfg has been cleanedup
by dead branch elimination.
Fixes#857.
Strips reflection info. This is limited to decorations and
decoration instructions related to the SPV_GOOGLE_hlsl_functionality1
extension.
It will remove the OpExtension for SPV_GOOGLE_hlsl_functionality1.
It will also remove the OpExtension for SPV_GOOGLE_decorate_string
if there are no further remaining uses of OpDecorateStringGOOGLE.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/1398
It moves all conditional branching and switch whose conditions are loop
invariant and uniform. Before performing the loop unswitch we check that
the loop does not contain any instruction that would prevent it
(barriers, group instructions etc.).
This patch adds initial support for loop unrolling in the form of a
series of utility classes which perform the unrolling. The pass can
be run with the command spirv-opt --loop-unroll. This will unroll
loops within the module which have the unroll hint set. The unroller
imposes a number of requirements on the loops it can unroll. These are
documented in the comments for the LoopUtils::CanPerformUnroll method in
loop_utils.h. Some of the restrictions will be lifted in future patches.
Implementation of the simplification pass.
- Create pass that calls the instruction folder on each instruction and
propagate instructions that fold to a copy. This will do copy
propagation as well.
- Did not use the propagator engine because I want to modify the instruction
as we go along.
- Change folding to not allocate new instructions, but make changes in
place. This change had a big impact on compile time.
- Add simplification pass to the legalization passes in place of
insert-extract elimination.
- Added test cases for new folding rules.
- Added tests for the simplification pass
- Added a method to the CFG to apply a function to the basic blocks in
reverse post order.
Contributes to #1164.
Creates a pass that will remove instructions that are invalid for the
current shader stage. For the instruction to be considered for replacement
1) The opcode must be valid for a shader modules.
2) The opcode must be invalid for the current shader stage.
3) All entry points to the module must be for the same shader stage.
4) The function containing the instruction must be reachable from an entry point.
Fixes#1247.
* Handles simple cases only
* Identifies phis in blocks with two predecessors and attempts to
convert the phi to an select
* does not perform code motion currently so the converted values must
dominate the join point (e.g. can't be defined in the branches)
* limited for now to two predecessors, but can be extended to handle
more cases
* Adding if conversion to -O and -Os
We have come across a driver bug where and OpUnreachable inside a loop
is causing the shader to go into an infinite loop. This commit will try
to avoid this bug by turning OpUnreachable instructions that are
contained in a loop into branches to the loop merge block.
This is not added to "-O" and "-Os" because it should only be used if
the driver being targeted has this problem.
Fixes#1209.
Modified ADCE to remove dead globals.
* Entry point and execution mode instructions are marked as alive
* Reachable functions and their parameters are marked as alive
* Instruction deletion now deferred until the end of the pass
* Eliminated dead insts set, added IsDead to calculate that value
instead
* Ported applicable dead variable elimination tests
* Ported dead constant elim tests
Added dead function elimination to ADCE
* ported dead function elim tests
Added handling of decoration groups in ADCE
* Uses a custom sorter to traverse decorations in a specific order
* Simplifies necessary checks
Updated -O and -Os pass lists.
Pass now paints live blocks and fixes constant branches and switches as
it goes. No longer requires structured control flow. It also removes
unreachable blocks as a side effect. It fixes the IR (phis) before doing
any code removal (other than terminator changes).
Added several unit tests for updated/new functionality.
Does not remove dead edge from a phi node:
* Checks that incoming edges are live in order to retain them
* Added BasicBlock::IsSuccessor
* added test
Fixing phi updates in the presence of extra backedge blocks
* Added tests to catch bug
Reworked how phis are updated
* Instead of creating a new Phi and RAUW'ing the old phi with it, I now
replace the phi operands, but maintain the def/use manager correctly.
For unreachable merge:
* When considering unreachable continue blocks the code now properly
checks whether the incoming edge will continue to be live.
Major refactoring for review
* Broke into 4 major functions
* marking live blocks
* marking structured targets
* fixing phis
* deleting blocks
Turn `Linker::Link()` into free functions
As very little information was kept in the Linker class, we can get rid
of the whole class and have the `Link()` as free functions instead; the
environment target as well as the consumer are passed along through an
`spv_context` object.
The resulting linked_binary is passed as a pointer rather than a
reference to follow the Google C++ Style guidelines.
Addresses remaining comments from
https://github.com/KhronosGroup/SPIRV-Tools/pull/693 about the SPIR-V
linker.
Fix variable naming in the linker
Some of the variables were using mixed case, which did not follow the
Google C++ Style guidelines.
Linker: Use EXPECT_EQ when possible and update some test
* Replace occurrences of ASSERT_EQ by EXPECT_EQ when possible;
* Reformulated some of the error messages;
* Added the symbol name in the error message when there is a type or
decoration mismatch between the imported and exported declarations.
Opt: List all duplicates removed by RemoveDuplicatePass in the header
Opt: Make the const version of GetLabelInst() return a pointer
For consistency with the non-const version, as well as other similar
functions.
Opt: Rename function_end to EndInst()
As pointed out by dneto0 the previous name was quite confusing and could
be mistaken with a function returning an end iterator.
Also change the return type of the const version to a pointer rather
than a reference, for consistency.
Opt: Add performance comment to RemoveDuplicateTypes and decorations
This comment was requested during the review of
https://github.com/KhronosGroup/SPIRV-Tools/pull/693.
Opt: Add comments and fix variable naming in RemoveDuplicatePass
* Add missing comments to private functions;
* Rename variables that were using mixed case;
* Add TODO for moving AreTypesEqual out.
Linker: Remove commented out code and add TODOs
Linker: Merged together strings that were too much splitted
Implement a C++ RAII wrapper around spv_context
Adds optimizer API to write disassembly to a given output stream
before each pass, and after the last pass.
Adds spirv-opt --print-all option to write disassembly to stderr
before each pass, and after the last pass.
This implements the conditional constant propagation pass proposed in
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
The main logic resides in CCPPass::VisitInstruction. Instruction that
may produce a constant value are evaluated with the constant folder. If
they produce a new constant, the instruction is considered interesting.
Otherwise, it's considered varying (for unfoldable instructions) or
just not interesting (when not enough operands have a constant value).
The other main piece of logic is in CCPPass::VisitBranch. This
evaluates the selector of the branch. When it's found to be a known
value, it computes the destination basic block and sets it. This tells
the propagator which branches to follow.
The patch required extensions to the constant manager as well. Instead
of hashing the Constant pointers, this patch changes the constant pool
to hash the contents of the Constant. This allows the lookups to be
done using the actual values of the Constant, preventing duplicate
definitions.
A few optimizations are updates to handle code that is suppose to be
using the logical addressing mode, but still has variables that contain
pointers as long as the pointer are to opaque objects. This is called
"relaxed logical addressing".
|Instruction::GetBaseAddress| will check that pointers that are use meet
the relaxed logical addressing rules. Optimization that now handle
relaxed logical addressing instead of logical addressing are:
- aggressive dead-code elimination
- local access chain convert
- local store elimination passes.
When a private variable is used in a single function, it can be
converted to a function scope variable in that function. This adds a
pass that does that. The pass can be enabled using the option
`--private-to-local`.
This transformation allows other transformations to act on these
variables.
Also moved `FindPointerToType` from the inline class to the type manager.