This class implements a generic value propagation algorithm based on the
conditional constant propagation algorithm proposed in
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
The implementation is based on
A Propagation Engine for GCC
Diego Novillo, GCC Summit 2005
http://ols.fedoraproject.org/GCC/Reprints-2005/novillo-Reprint.pdf
The purpose of this implementation is to act as a common framework for any
transformation that needs to propagate values from statements producing new
values to statements using those values.
Re-formatted the source tree with the command:
$ /usr/bin/clang-format -style=file -i \
$(find include source tools test utils -name '*.cpp' -or -name '*.h')
This required a fix to source/val/decoration.h. It was not including
spirv.h, which broke builds when the #include headers were re-ordered by
clang-format.
Replaced representation of uses
* Changed uses from unordered_map<uint32_t, UseList> to
set<pairInstruction*, Instruction*>>
* Replaced GetUses with ForEachUser and ForEachUse functions
* updated passes to use new functions
* partially updated tests
* lots of cleanup still todo
Adding an unique id to Instruction generated by IRContext
Each instruction is given an unique id that can be used for ordering
purposes. The ids are generated via the IRContext.
Major changes:
* Instructions now contain a uint32_t for unique id and a cached context
pointer
* Most constructors have been modified to take a context as input
* unfortunately I cannot remove the default and copy constructors, but
developers should avoid these
* Added accessors to parents of basic block and function
* Removed the copy constructors for BasicBlock and Function and replaced
them with Clone functions
* Reworked BuildModule to return an IRContext owning the built module
* Since all instructions require a context, the context now becomes the
basic unit for IR
* Added a constructor to context to create an owned module internally
* Replaced uses of Instruction's copy constructor with Clone whereever I
found them
* Reworked the linker functionality to perform clones into a different
context instead of moves
* Updated many tests to be consistent with the above changes
* Still need to add new tests to cover added functionality
* Added comparison operators to Instruction
Adding tests for Instruction, IRContext and IR loading
Fixed some header comments for BuildModule
Fixes to get tests passing again
* Reordered two linker steps to avoid use/def problems
* Fixed def/use manager uses in merge return pass
* Added early return for GetAnnotations
* Changed uses of Instruction::ToNop in passes to IRContext::KillInst
Simplifying the uses for some contexts in passes
Creates a pass that removes redundant instructions within the same basic
block. This will be implemented using a hash based value numbering
algorithm.
Added a number of functions that check for the Vulkan descriptor types.
These are used to determine if we are variables are read-only or not.
Implemented a function to check if loads and variables are read-only.
Implemented kernel specific and shader specific versions.
A big change is that the Combinator analysis in ADCE is factored out
into the IRContext as an analysis. This was done because it is being
reused in the value number table.
Each instruction is given an unique id that can be used for ordering
purposes. The ids are generated via the IRContext.
Major changes:
* Instructions now contain a uint32_t for unique id and a cached context
pointer
* Most constructors have been modified to take a context as input
* unfortunately I cannot remove the default and copy constructors, but
developers should avoid these
* Added accessors to parents of basic block and function
* Removed the copy constructors for BasicBlock and Function and replaced
them with Clone functions
* Reworked BuildModule to return an IRContext owning the built module
* Since all instructions require a context, the context now becomes the
basic unit for IR
* Added a constructor to context to create an owned module internally
* Replaced uses of Instruction's copy constructor with Clone whereever I
found them
* Reworked the linker functionality to perform clones into a different
context instead of moves
* Updated many tests to be consistent with the above changes
* Still need to add new tests to cover added functionality
* Added comparison operators to Instruction
* Added an internal option to LinkerOptions to verify merged ids are
unique
* Added a test for the linker to verify merged ids are unique
* Updated MergeReturnPass to supply a context
* Updated DecorationManager to supply a context for cloned decorations
* Reworked several portions of the def use tests in anticipation of next
set of changes
If SPIRV-Tools is used as an external project and have
googletest being kept in the same directory as it, we
won't have gmock-matchers.h in external/. This will
result in a compilation error.
Use gmock.h instead.
To make the decoration manger available everywhere, and to reduce the
number of times it needs to be build, I add one the IRContext.
As the same time, I move code that modifies decoration instruction into
the IRContext from mempass and the decoration manager. This will make
it easier to keep everything up to date.
This should take care of issue #928.
Works with current DefUseManager infrastructure.
Added merge return to the standard opts.
Added validation to passes.
Disabled pass for shader capabilty.
This analysis builds a map from instructions to the basic block that
contains them. It is accessed via get_instr_block(). Once built, it is kept
up-to-date by the IRContext, as long as instructions are removed via
KillInst.
I have not yet marked passes that preserve this analysis. I will do it
in a separate change.
Other changes:
- Add documentation about analysis values requirement to be powers of 2.
- Force a re-build of the def-use manager in tests.
- Fix AllPreserveFirstOnlyAfterPassWithChange to use the
DummyPassPreservesFirst pass.
- Fix sentinel value for IRContext::Analysis enum.
- Fix logic for checking if the instr<->block mapping is valid in KillInst.
Fixes issue #728. Currently the inliner is not generating decorations for
inlined code which corresponds to function code which has decorations. An
example of decorations that are relevant: RelaxedPrecision, NoContraction.
The solution is to replicate the decoration during inlining.
Add Effcee as an optional dependency for use in tests. In future it will
be a required dependency.
Effcee is a stateful pattern matcher that has much of the functionality
of LLVM's FileCheck, except in library form. Effcee makes it much easier
to write tests for optimization passes.
Demonstrate its use in a test for the strength-reduction pass.
Update README.md with example commands of how to get sources.
Update Appveyor and Travis-CI build rules.
Also: Include test libraries if not SPIRV_SKIP_TESTS
- SPIRV_SKIP_TESTS is implied by SPIRV_SKIP_EXECUTABLES
This change will move the instances of the def-use manager to the
IRContext. This allows it to persists across optimization, and does
not have to be rebuilt multiple times.
Added test to ensure that the IRContext is validating and invalidating
the analyses correctly.
This is the first part of adding the IRContext. This class is meant to
hold the extra data that is build on top of the module that it
owns.
The first part will simply create the IRContext class and get it passed
to the passes in place of the module. For now it does not have any
functionality of its own, but it acts more as a wrapper for the module.
The functions that I added to the IRContext are those that either
traverse the headers or add to them. I did this because we may decide
to have other ways of dealing with these sections (for example adding a
type pool, or use the decoration manager).
I also added the function that add to the header because the IRContext
needs to know when an instruction is added to update other data
structures appropriately.
Note that there is still lots of work that needs to be done. There are
still many places that change the module, and do not inform the context.
That will be the next step.
Mark structured conditional branches live only if one or more instructions
in their associated construct is marked live. After closure, replace dead
structured conditional branches with a branch to its merge and remove
dead blocks.
ADCE: Dead If Elim: Remove duplicate StructuredOrder code
Also generalize ComputeStructuredOrder so that the caller can specify the
root block for the order. Phi insertion uses pseudo_entry_block and adce and
dead branch elim use the first block of the function.
ADCE: Dead If Elim: Pull redundant code out of InsertPhiInstructions
ADCE: Dead If Elim: Encapsulate CFG Cleanup Initialization
ADCE: Dead If Elim: Remove redundant code from ADCE initialization
ADCE: Dead If: Use CFGCleanup to eliminate newly dead blocks
Moved bulk of CFG Cleanup code into MemPass.
This change will replace a number of the
std::vector<std::unique_ptr<Instruction>> member of the module to
InstructionList. This is for consistency and to make it easier to
delete instructions that are no longer needed.
There does not seem to be any pass that remove global variables. I
think we could use one. This pass will look specifically for global
variables that are not referenced and are not exported. Any decoration
associated with the variable will also be removed. However, this could
cause types or constants to become unreferenced. They will not be
removed. Another pass will have to be called to remove those.
This is the first step in replacing the std::vector of Instruction
pointers to using and intrusive linked list.
To this end, we created the InstructionList class. It inherites from
the IntrusiveList class, but add the extra concept of ownership. An
InstructionList owns the instruction that are in it. This is to be
consistent with the current ownership rules where the vector owns the
instruction that are in it.
The other larger change is that the inst_ member of the BasicBlock class
was changed to using the InstructionList class.
Added test for the InsertBefore functions, and making sure that the
InstructionList destructor will delete the elements that it contains.
I've also add extra comments to explain ownership a little better.
- Adds a new pass CFGCleanupPass. This serves as an umbrella pass to
remove unnecessary cruft from a CFG.
- Currently, the only cleanup operation done is the removal of
unreachable basic blocks.
- Adds unit tests.
- Adds a flag to spirvopt to execute the pass (--cfg-cleanup).
Expands dead branch elimination to eliminate dead switch cases. It also
changes dbe to eliminate orphaned merge blocks and recursively eliminate
any blocks thereby orphaned.
Add extra iterators for ir::Module's sections
Add extra getters to ir::Function
Add a const version of BasicBlock::GetLabelInst()
Use the max of all inputs' version as version
Split debug in debug1 and debug2
- Debug1 instructions have to be placed before debug2 instructions.
Error out if different addressing or memory models are found
Exit early if no binaries were given
Error out if entry points are redeclared
Implement copy ctors for Function and BasicBlock
- Visual Studio ends up generating copy constructors that call deleted
functions while compiling the linker code, while GCC and clang do not.
So explicitly write those functions to avoid Visual Studio messing up.
Move removing duplicate capabilities to its own pass
Add functions running on all IDs present in an instruction
Remove duplicate SpvOpExtInstImport
Give default options value for link functions
Remove linkage capability if not making a library
Check types before allowing to link
Detect if two types/variables/functions have different decorations
Remove decorations of imported variables/functions and their types
Add a DecorationManager
Add a method for removing all decorations of id
Add methods for removing operands from instructions
Error out if one of the modules has a non-zero schema
Update README.md to talk about the linker
Do not freak out if an imported built-in variable has no export
Creates a pass called eliminate dead functions that looks for functions
that could never be called, and deletes them from the module.
To support this change a new function was added to the Pass class to
traverse the call trees from diffent starting points.
Includes a test to ensure that annotations are removed when deleting a
dead function. They were not, so fixed that up as well.
Did some cleanup of the assembly for the test in pass_test.cpp. Trying
to make them smaller and easier to read.
Create a new optimization pass, strength reduction, which will replace
integer multiplication by a constant power of 2 with an equivalent bit
shift. More changes could be added later.
- Does not duplicate constants
- Adds vector |Concat| utility function to a common test header.
This adapts the fix for the single-block loop. Split the loop like
before. But when we move the OpLoopMerge back to the loop header,
redirect the continue target only when the original loop was a single
block loop.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/800
If the caller block is a single-block loop and inlining will
replace the caller block by several blocks, then:
- The original OpLoopMerge instruction will end up in the *last*
such block. That's the wrong place to put it.
- Move it back to the end of the first block.
- Update its Continue Target ID to point to the last block
We also have to take care of cases where the inlined code
begins with a structured header block. In this case
we need to ensure the restored OpLoopMerge does not appear
in the same block as the merge instruction from the callee's
first block.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/787
- DeadBranchElim: Make sure to mark orphan'd merge blocks and continue
targets as live.
- Add test with loop in dead branch
- Add test that orphan'd merge block is handled.
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/776
Only inline calls to functions with opaque params or return
TODO: Handle parameter type or return type where the opqaue
type is buried within an array.
Includes code to deal correctly with OpFunctionParameter. This
is needed by opaque propagation which may not exhaustively inline
entry point functions.
Adds ProcessEntryPointCallTree: a method to do work on the
functions in the entry point call trees in a deterministic order.
ADCE will now generate correct code in the presence of function calls.
This is needed for opaque type optimization needed by glslang. Currently
all function calls are marked as live. TODO: mark calls live only if they
write a non-local.
- UniformElim: Only process reachable blocks
- UniformElim: Don't reuse loads of samplers and images across blocks.
Added a second phase which only reuses loads within a block for samplers
and images.
- UniformElim: Upgrade CopyObject skipping in GetPtr
- UniformElim: Add extensions whitelist
Currently disallowing SPV_KHR_variable_pointers because it doesn't
handle extended pointer forms.
- UniformElim: Do not process shaders with GroupDecorate
- UniformElim: Bail on shaders with non-32-bit ints.
- UniformElim: Document support for only single index and add TODO.