Add the following macros for logging purpose:
* SPIRV_ASSERT
* SPIRV_DEBUG
* SPIRV_UNIMPLEMENTED
* SPIRV_UNREACHABLE
The last two is always turned on, while the first two can only
be turned on in debug build.
The NEW behavior is to not dereference variables or interpret keywords
that have been quoted or bracketed.
For more information, see
https://cmake.org/cmake/help/v3.1/policy/CMP0054.html.
This is to suppress a warning when using CMake 3.1.3+.
Add a high level version number for SPIRV-Tools, beginning
with v2016.0-dev. The README describes the format of the
version number.
The high level version number is extracted from the CHANGES
file. That works around:
- stale-bait for when we don't add tags to the repository
- our inability to add tags to the repository
Option --version causes spirv-as, spirv-dis, and spirv-val to
show the high level version number.
Add spvSoftwareVersionString to return the C-string for
the high level version number.
Add spvSoftwareVersionDetailsString() so that clients can get
more information if they want to.
Also allows us to clean up the uses in the tool executables files,
so now only one file includes build-version.inc.
Move the update-build-version logic to the only
CMakeLists file that needs it.
The update build version script takes a new argument
to name the output file.
For fulfilling this purpose, the |opcode| field in the
|spv_parsed_instruction_t| struct is changed to of type uint16_t.
Also add functions to query the information of a given SPIR-V
target environment.
This patch uses a Python script to parse the JSON grammar file to
generate the opcode table and operand kind tables.
Now we don't need to do the post-processing (from OperandClass
to spv_operand_type_t) and copying of the opcode info table is
not required anymore!
Now we have public headers arranged as follows:
$SPIRV_TOOLS_ROOT/include/spirv-tools/libspirv.h
$SPIRV_TOOLS_ROOT/include/spirv/spirv.h
$SPIRV_TOOLS_ROOT/include/spirv/GLSL.std.450.h
$SPIRV_TOOLS_ROOT/include/spirv/OpenCL.std.h
A project should use -I$SPIRV_TOOLS_ROOT/include
and then #include "spirv-tools/libspirv.h"
The headers from the SPIR-V Registry can be accessed as "spirv/spirv."
for example.
The install target should also install the headers from the SPIR-V
Registry. The libspirv.h header is broken otherwise.
The SPIRV-Tools library depends on the headers from the SPIR-V Registry.
The util/bitutils.h and util/hex_float.h are pulled into the internal
source tree. Those are not part of the public API to SPIRV-Tools.
This showed up in mips and mips64 builds. A combination of templates
and the error reporting were causing gcc to crash. This splits up the
functionality in a way that now successfully compiles.
Allows an enclosing project to have already configured gmock, even
if the developer has placed the googletest sources under this
project's external/googletest directory.
Describe how to enable the tests in the two essential scenarios:
where SPIR-V Tools is standalone, or where SPIR-V Tools is configured
as a part of a larger project.
If a third-party project defines a CMake function with the same
name, by importing that project's CMake configuration, we may end
up overwriting our own copy. Qualify all defined functions to
reduce that probability.
Replace two other, imperfect mechanisms for use-def tracking.
Use ValidationState_t::entry_points to track entry points.
Concentrate undefined-ID diagnostics in a single place.
Move validate_types.h content into validate.h due to increased
inter-dependency.
Track uses of all IDs: TYPE_ID, SCOPE_ID, ...
Also update some blurbs.
Fix entry-point accumulation and move it outside ProcessIds().
Remove validate_types.h from CMakeLists.txt.
Blurb for spvIsIdType.
Remove redundant diagnostics for undefined IDs.
Join "can not" and reformat.
Added additional compilation flags to gcc and clang builds.
Adds -Wall -Wextra -Wno-long-long -Wshadow -Wundef -Wconversion
-WNo-sign-conversion and -Wno-missing-field-initializers
where appropriate.
Does not add -Wundef to tests, because GTEST tests undefined
macros all over the place.
If we later add a source/ as an -I include directory,
then avoid confusing other headers that want to include the
standard "endian.h" from /usr/include.
Also rename source/endian.cpp to source/spirv_endian.cpp
* Validates module level instructions for logical layout
conformance
* Does not validate:
1. Function logical layout
2. Minor cases with OpVariable
3. Missing MemoryModel instruction in module
4. Order of function definition and function declaration
* 782 unit tests for logical layout
Addressed feedback
An enclosing CMake project should be able to set the
off-by-default CMake options in SPIRV-Tools by just doing:
set(SPIRV_SKIP_EXECUTABLES ON)
instead of
set(SPIRV_SKIP_EXECUTABLES ON CACHE BOOL "" FORCE)
Also, fix the SPIRV_WARN_EVERYTHING so it understands which options
to send to Clang vs. GCC.
Note: With SPIRV_WARN_EVERYTHING enabled, the code doesn't
compil with either Clang or GCC.
Most uses of an ID must occur after the definition
of the ID. Forward references are allowed for
things like OpName, OpDecorate, and various cases
of control-flow instructions such as OpBranch, OpPhi,
and OpFunctionCall.
TODO: Use CFG analysis for SSA checks. In particular,
an ID defined inside a function body is only usable inside
that function body. Also, use dominator info to catch
some failing cases.
Also:
* Validator test cases use (standard) assignment form.
* Update style to more closely follow the Google C++ style guide
* Remove color-diagnostics flag.
This is enabled by default on terminals with color. Prints
hidden ASCII for terminals that can't handle color(Emacs)
* Pass functors to SSAPass to check if the
operand can be forward referenced based on its index value
* Return SPV_ERROR_INVALID_ID for ID related errors
spvBinaryParse returned SPV_ERROR_INVALID_BINARY for all types of
errors. Since spvBinaryParse does some ID validation, this was
returning inappropriate error codes for some tests.
* Common fixture for validation tests.
It only runs certian validation passes.
* Add a SPV_VALIDATE_SSA_BIT for testing purposes
* Fixtures now return error codes
* Add OpName support in diag message and unit tests
* Binary parsing can fail with invalid ID or invalid binary error code
Tests include:
* OpDecorate
* OpName
* OpMemberName
* OpBranchConditional
* OpSelectionMerge
* OpMemberDecorate
* OpGroupDecorate
* OpDeviceEnqueue
* Enable several tests failing in ID validation.
Using -frtti caused link failures when both of the following are
in effect:
-DDISABLE_EXCEPTIONS=ON
-DDISABLE_RTTI=ON
The correct fix is to use tip-of-tree googletest.
Specifically, we need a version of googletest with the fix in
https://github.com/google/googletest/pull/612
In particular, it must be later than googletest 1.7.0.
The tests now use mocked methods. This requires runtime type
information for those test classes.
https://github.com/google/googletest/issues/610
This has been fixed recently upstream in googletest. Until we pick
up that fix, add -frtti for the the test executable only.
- Removed dead configuration in CMakeLists.txt.
- Used target_compile_options() instead of CMAKE_{C|CXX}_FLAGS.
- Turned on warnings on tests.
- Fixed various warnings for comparing signed with unsigned values.
- Removed dead code exposed by compiler warnings.
Don't use SYSTEM attribute on include_directories directive
for the SPIR-V standard header files. When you do, object files
are not considered dependent on those headers.
Checked by looking at the dependency file source/disassemble.cpp.o.d,
and by trying to compile after a trivial edit to spirv.h
Fixes https://github.com/KhronosGroup/SPIRV-Tools/issues/7
Also, use "" inclusion instead of <> inclusion for standard SPIR-V
headers.
Reorganize the README, and update its contents to more accurately
reflect the public release.
Remove the incremental "Changes" section.
Rename readme.md to README.md
Rename license.txt to LICENSE
Update the assembler tool to support -h, and make its help look
more consistent with the disassembler.
Change the target and library name to SPIRV-Tools. To better
match the GitHub repo name. Also, it's not SHOUTING.
Previously the opcode table is declared as an global array and we
have spvOpcodeTableInitialize() modifying it. That can result in
race condition. Now spvOpcodeTabelGet() copies the whole underlying
array.
- Concrete operand types are never optional.
Split them to make this so, e.g. add SPV_OPERAND_TYPE_IMAGE
since there was SPV_OPERAND_TYPE_OPTIONAL_IMAGE.
Similarly for SPV_OPERAND_TYPE_MEMORY_ACCESS.
This entails duplicating two operand table entries.
- The above, plus some rearranging of enums, allows us to define
first and last optional operand types, and first and last
variable operand types.
This lets us simplify the code for spvOperandIsOptional, and
spvOperandIsVariable.
- Replace SPV_OPERAND_TYPE_MULTIWORD_LITERAL_NUMBER with the
more accurately named SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER.
Its special characteristic is that the type of the literal
number is determined by some previous operand in the instruction.
This is used for literals in OpSwitch, OpConstant, and OpSpecConstant.
This lets us refactor operand parsing cases in the assembler.
- Remove the special required-thing-in-optional-tuple in favour of
the corresponding concrete operand type:
SPV_OPERAND_TYPE_ID_IN_OPTIONAL_TUPLE
--> SPV_OPERAND_TYPE_ID
SPV_OPERAND_TYPE_INTEGER_LITERAL_IN_OPTIONAL_TUPLE
--> SPV_OPERAND_TYPE_INTEGER_LITERAL
- Constrain spvOpeandTypeStr to only have to work for non-variable
operand types. Add a test for this.
The binary parser has a C API, described in binary.h.
Eventually we will make it public in libspirv.h.
The API is event-driven in the sense that a callback is called
when a valid header is parsed, and for each parsed instruction.
Classify some operand types as "concrete". The binary parser uses
only concrete operand types to describe parsed instructions.
The old disassembler APIs are moved into disassemble.cpp
TODO: Add unit tests for spvBinaryParse.
This begins the refactoring of the disassembler into
two parts: A binary decoder in binary.cpp, and an
event-driven converter to text in disassemble.cpp
Versions 1.2, 2.0, and 2.1 all use the same
extended instruction list.
Updated the source code patch for the SPIR-V doc generator,
so it can both generate the core syntax table, and also the
OpenCL extended instructions table.
Tested the Math and Common functions.
TODO: test the remaining entries.
Except for OpConstant and OpSpecConstant, all other literal number
operands are indeed unsigned integers. So,
* Rename all *LITERAL_NUMBER* operand types to *LITERAL_INTEGER*.
* Expect unsigned integers for *LITERAL_INTEGER* operands.
* Keep MULITPLE_WORD_LITERAL untouched since it is only used by
OpConstant and OpSpecConstant.
And we want to provide the capability to specify floating-point
numbers after !<integer> in the alternate parsing mode. So,
OPTIONAL_LITERAL_NUMBER is reserved for OPTIONAL_CIV.
Use this to shorten error return code in the assembler.
For example, change this:
if (error = something()) {
diagnostic() << " Bad integer literal " << value;
return SPV_ERROR_INVALID_VALUE;
}
to this:
if (error = something())
return diagnostic() << " Bad integer literal " << value;
Also shorten code due to the fact that binaryEncodeU32 and
binaryCodeU64 can't fail (short of failure to expand a std::vector).
Move the definition of spv_instruction_t to an internal
header file, since it now depends on C++ and is not
used by the external interface.
Use a std::vector<uint32_t> in spv_instruction_t
instead of a fixed size array.
Adds a form of spvtest::MakeInstruction which takes two vectors
of operands. That leads to simpler test code.
We can clean up some other test code, in another CL.
Added a new enum for supported assembly syntax formats:
Canonical Assembly Format (CAF) and Assignment Assembly Format (AAF).
Updated assembler interface functions to support choice of assembly
syntax format.
Add text_fixture::TextToBinaryTestBase::CompiledInstructions,
to more easily just examine the generated instructions by skipping
over the header.
Add spvtest::MakeInstruction utility function to easily generate
a vector containing an opcode and its operands.
The assembler and disassembler now use a dynamically adjusted
sequence of expected operand types. (Internally, it is a deque,
for readability.) Both parsers repeatedly pull an expected operand
type from the left of this pattern list, and try to match the next
input token against it.
The expected pattern is adjusted during the parse to accommodate:
- an extended instruction's expected operands, depending on the
extended instruction's index.
- when an operand itself has operands
- to handle sequences of zero or more operands, or pairs of
operands. These are expanded lazily during the parse.
Adds spv::OperandClass from the SPIR-V specification generator.
Modifies spv_operand_desc_t:
- adds hasResult, hasType, and operandClass array to the opcode
description type.
- "wordCount" is replaced with "numTypes", which counts the number
of entries in operandTypes. And each of those describes a
*logical* operand, including the type id for the instruction,
and the result id for the instruction. A logical operand could be
variable-width, such as a literal string.
Adds opcode.inc, an automatically-generated table of operation
descriptions, with one line to describe each core instruction.
Externally, we have modified the SPIR-V spec doc generator to
emit this file.
(We have hacked this copy to use the old semantics for OpLine.)
Inside the assembler, parsing an operand may fail with new
error code SPV_FAIL_MATCH. For an optional operand, this is not
fatal, but should trigger backtracking at a higher level.
The spvTextIsStartOfNewInst checks the case of the third letter
of what might be an opcode. So now, "OpenCL" does not look like
an opcode name.
In assembly, the EntryPoint name field is mandatory, but can be
an empty string.
Adjust tests for changes to:
- OpSampedImage
- OpTypeSampler
Start using GMock: modify CMakeLists, fix googletest URL in readme.
Add useful utilities to the TestFixture class. Also make it conform to
go/gunit recommendations about setup/teardown.
- a single hyphen is a string, not a number.
- a string with more than one period is a string, not a number
- check for string overflow
Add some unit tests