mirror of
https://github.com/google/brotli.git
synced 2025-01-15 19:00:06 +00:00
Speedups to brotli quality 11.
* Cluster at most 64 histograms at a time in the first round of clustering. * Use a faster histogram cost estimation function. * Don't compute the log2(total) multiple times in the block splitter.
This commit is contained in:
parent
af09ee7344
commit
667f70adcb
150
enc/bit_cost.h
150
enc/bit_cost.h
@ -49,94 +49,13 @@ static inline double BitsEntropy(const int *population, int size) {
|
||||
return retval;
|
||||
}
|
||||
|
||||
static const int kHuffmanExtraBits[kCodeLengthCodes] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3,
|
||||
};
|
||||
|
||||
static inline int HuffmanTreeBitCost(const int* counts, const uint8_t* depth) {
|
||||
int nbits = 0;
|
||||
for (int i = 0; i < kCodeLengthCodes; ++i) {
|
||||
nbits += counts[i] * (depth[i] + kHuffmanExtraBits[i]);
|
||||
}
|
||||
return nbits;
|
||||
}
|
||||
|
||||
static inline int HuffmanTreeBitCost(
|
||||
const Histogram<kCodeLengthCodes>& histogram,
|
||||
const EntropyCode<kCodeLengthCodes>& entropy) {
|
||||
return HuffmanTreeBitCost(&histogram.data_[0], &entropy.depth_[0]);
|
||||
}
|
||||
|
||||
static inline int HuffmanBitCost(const uint8_t* depth, int length) {
|
||||
int max_depth = 1;
|
||||
int histogram[kCodeLengthCodes] = { 0 };
|
||||
int tail_start = 0;
|
||||
int prev_value = 8;
|
||||
// compute histogram of compacted huffman tree
|
||||
for (int i = 0; i < length;) {
|
||||
const int value = depth[i];
|
||||
if (value > max_depth) {
|
||||
max_depth = value;
|
||||
}
|
||||
int reps = 1;
|
||||
for (int k = i + 1; k < length && depth[k] == value; ++k) {
|
||||
++reps;
|
||||
}
|
||||
i += reps;
|
||||
if (i == length && value == 0)
|
||||
break;
|
||||
if (value == 0) {
|
||||
if (reps < 3) {
|
||||
histogram[0] += reps;
|
||||
} else {
|
||||
reps -= 2;
|
||||
while (reps > 0) {
|
||||
++histogram[17];
|
||||
reps >>= 3;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
tail_start = i;
|
||||
if (value != prev_value) {
|
||||
++histogram[value];
|
||||
--reps;
|
||||
}
|
||||
prev_value = value;
|
||||
if (reps < 3) {
|
||||
histogram[value] += reps;
|
||||
} else {
|
||||
reps -= 2;
|
||||
while (reps > 0) {
|
||||
++histogram[16];
|
||||
reps >>= 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// create huffman tree of huffman tree
|
||||
uint8_t cost[kCodeLengthCodes] = { 0 };
|
||||
CreateHuffmanTree(histogram, kCodeLengthCodes, 7, cost);
|
||||
// account for rle extra bits
|
||||
cost[16] += 2;
|
||||
cost[17] += 3;
|
||||
|
||||
int tree_size = 0;
|
||||
int bits = 18 + 2 * max_depth; // huffman tree of huffman tree cost
|
||||
for (int i = 0; i < kCodeLengthCodes; ++i) {
|
||||
bits += histogram[i] * cost[i]; // huffman tree bit cost
|
||||
tree_size += histogram[i];
|
||||
}
|
||||
return bits;
|
||||
}
|
||||
|
||||
template<int kSize>
|
||||
double PopulationCost(const Histogram<kSize>& histogram) {
|
||||
if (histogram.total_count_ == 0) {
|
||||
return 12;
|
||||
}
|
||||
int count = 0;
|
||||
for (int i = 0; i < kSize && count < 5; ++i) {
|
||||
for (int i = 0; i < kSize; ++i) {
|
||||
if (histogram.data_[i] > 0) {
|
||||
++count;
|
||||
}
|
||||
@ -147,19 +66,66 @@ double PopulationCost(const Histogram<kSize>& histogram) {
|
||||
if (count == 2) {
|
||||
return 20 + histogram.total_count_;
|
||||
}
|
||||
double bits = 0;
|
||||
uint8_t depth[kSize] = { 0 };
|
||||
CreateHuffmanTree(&histogram.data_[0], kSize, 15, depth);
|
||||
int bits = 0;
|
||||
for (int i = 0; i < kSize; ++i) {
|
||||
bits += histogram.data_[i] * depth[i];
|
||||
if (count <= 4) {
|
||||
// For very low symbol count we build the Huffman tree.
|
||||
CreateHuffmanTree(&histogram.data_[0], kSize, 15, depth);
|
||||
for (int i = 0; i < kSize; ++i) {
|
||||
bits += histogram.data_[i] * depth[i];
|
||||
}
|
||||
return count == 3 ? bits + 28 : bits + 37;
|
||||
}
|
||||
if (count == 3) {
|
||||
bits += 28;
|
||||
} else if (count == 4) {
|
||||
bits += 37;
|
||||
} else {
|
||||
bits += HuffmanBitCost(depth, kSize);
|
||||
|
||||
// In this loop we compute the entropy of the histogram and simultaneously
|
||||
// build a simplified histogram of the code length codes where we use the
|
||||
// zero repeat code 17, but we don't use the non-zero repeat code 16.
|
||||
int max_depth = 1;
|
||||
int depth_histo[kCodeLengthCodes] = { 0 };
|
||||
const double log2total = FastLog2(histogram.total_count_);
|
||||
for (int i = 0; i < kSize;) {
|
||||
if (histogram.data_[i] > 0) {
|
||||
// Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
|
||||
// = log2(total_count) - log2(count(symbol))
|
||||
double log2p = log2total - FastLog2(histogram.data_[i]);
|
||||
// Approximate the bit depth by round(-log2(P(symbol)))
|
||||
int depth = static_cast<int>(log2p + 0.5);
|
||||
bits += histogram.data_[i] * log2p;
|
||||
if (depth > max_depth) {
|
||||
max_depth = depth;
|
||||
}
|
||||
++depth_histo[depth];
|
||||
++i;
|
||||
} else {
|
||||
// Compute the run length of zeros and add the appropiate number of 0 and
|
||||
// 17 code length codes to the code length code histogram.
|
||||
int reps = 1;
|
||||
for (int k = i + 1; k < kSize && histogram.data_[k] == 0; ++k) {
|
||||
++reps;
|
||||
}
|
||||
i += reps;
|
||||
if (i == kSize) {
|
||||
// Don't add any cost for the last zero run, since these are encoded
|
||||
// only implicitly.
|
||||
break;
|
||||
}
|
||||
if (reps < 3) {
|
||||
depth_histo[0] += reps;
|
||||
} else {
|
||||
reps -= 2;
|
||||
while (reps > 0) {
|
||||
++depth_histo[17];
|
||||
// Add the 3 extra bits for the 17 code length code.
|
||||
bits += 3;
|
||||
reps >>= 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Add the estimated encoding cost of the code length code histogram.
|
||||
bits += 18 + 2 * max_depth;
|
||||
// Add the entropy of the code length code histogram.
|
||||
bits += BitsEntropy(depth_histo, kCodeLengthCodes);
|
||||
return bits;
|
||||
}
|
||||
|
||||
|
@ -150,8 +150,8 @@ void RefineEntropyCodes(const DataType* data, size_t length,
|
||||
}
|
||||
}
|
||||
|
||||
inline static float BitCost(int total, int count) {
|
||||
return count == 0 ? FastLog2(total) + 2 : FastLog2(total) - FastLog2(count);
|
||||
inline static float BitCost(int count) {
|
||||
return count == 0 ? -2 : FastLog2(count);
|
||||
}
|
||||
|
||||
template<typename DataType, int kSize>
|
||||
@ -168,10 +168,12 @@ void FindBlocks(const DataType* data, const size_t length,
|
||||
int vecsize = vec.size();
|
||||
double* insert_cost = new double[kSize * vecsize];
|
||||
memset(insert_cost, 0, sizeof(insert_cost[0]) * kSize * vecsize);
|
||||
for (int i = 0; i < kSize; ++i) {
|
||||
for (int j = 0; j < vecsize; ++j) {
|
||||
insert_cost[j] = FastLog2(vec[j].total_count_);
|
||||
}
|
||||
for (int i = kSize - 1; i >= 0; --i) {
|
||||
for (int j = 0; j < vecsize; ++j) {
|
||||
insert_cost[i * vecsize + j] =
|
||||
BitCost(vec[j].total_count_, vec[j].data_[i]);
|
||||
insert_cost[i * vecsize + j] = insert_cost[j] - BitCost(vec[j].data_[i]);
|
||||
}
|
||||
}
|
||||
double *cost = new double[vecsize];
|
||||
|
@ -393,37 +393,6 @@ void RunLengthCodeZeros(const std::vector<int>& v_in,
|
||||
}
|
||||
}
|
||||
|
||||
// Returns a maximum zero-run-length-prefix value such that run-length coding
|
||||
// zeros in v with this maximum prefix value and then encoding the resulting
|
||||
// histogram and entropy-coding v produces the least amount of bits.
|
||||
int BestMaxZeroRunLengthPrefix(const std::vector<int>& v) {
|
||||
int min_cost = std::numeric_limits<int>::max();
|
||||
int best_max_prefix = 0;
|
||||
for (int max_prefix = 0; max_prefix <= 16; ++max_prefix) {
|
||||
std::vector<int> rle_symbols;
|
||||
std::vector<int> extra_bits;
|
||||
int max_run_length_prefix = max_prefix;
|
||||
RunLengthCodeZeros(v, &max_run_length_prefix, &rle_symbols, &extra_bits);
|
||||
if (max_run_length_prefix < max_prefix) break;
|
||||
HistogramContextMap histogram;
|
||||
for (int i = 0; i < rle_symbols.size(); ++i) {
|
||||
histogram.Add(rle_symbols[i]);
|
||||
}
|
||||
int bit_cost = PopulationCost(histogram);
|
||||
if (max_prefix > 0) {
|
||||
bit_cost += 4;
|
||||
}
|
||||
for (int i = 1; i <= max_prefix; ++i) {
|
||||
bit_cost += histogram.data_[i] * i; // extra bits
|
||||
}
|
||||
if (bit_cost < min_cost) {
|
||||
min_cost = bit_cost;
|
||||
best_max_prefix = max_prefix;
|
||||
}
|
||||
}
|
||||
return best_max_prefix;
|
||||
}
|
||||
|
||||
void EncodeContextMap(const std::vector<int>& context_map,
|
||||
int num_clusters,
|
||||
int* storage_ix, uint8_t* storage) {
|
||||
@ -436,7 +405,7 @@ void EncodeContextMap(const std::vector<int>& context_map,
|
||||
std::vector<int> transformed_symbols = MoveToFrontTransform(context_map);
|
||||
std::vector<int> rle_symbols;
|
||||
std::vector<int> extra_bits;
|
||||
int max_run_length_prefix = BestMaxZeroRunLengthPrefix(transformed_symbols);
|
||||
int max_run_length_prefix = 6;
|
||||
RunLengthCodeZeros(transformed_symbols, &max_run_length_prefix,
|
||||
&rle_symbols, &extra_bits);
|
||||
HistogramContextMap symbol_histogram;
|
||||
|
@ -279,13 +279,12 @@ void ClusterHistograms(const std::vector<HistogramType>& in,
|
||||
(*histogram_symbols)[i] = i;
|
||||
}
|
||||
|
||||
// Collapse similar histograms within a block type.
|
||||
if (num_contexts > 1) {
|
||||
for (int i = 0; i < num_blocks; ++i) {
|
||||
HistogramCombine(&(*out)[0], &cluster_size[0],
|
||||
&(*histogram_symbols)[i * num_contexts], num_contexts,
|
||||
max_histograms);
|
||||
}
|
||||
const int max_input_histograms = 64;
|
||||
for (int i = 0; i < in_size; i += max_input_histograms) {
|
||||
int num_to_combine = std::min(in_size - i, max_input_histograms);
|
||||
HistogramCombine(&(*out)[0], &cluster_size[0],
|
||||
&(*histogram_symbols)[i], num_to_combine,
|
||||
max_histograms);
|
||||
}
|
||||
|
||||
// Collapse similar histograms.
|
||||
|
Loading…
Reference in New Issue
Block a user