mirror of
https://github.com/google/brotli.git
synced 2024-12-28 18:51:08 +00:00
1174 lines
44 KiB
C++
1174 lines
44 KiB
C++
/* Copyright 2013 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
// Implementation of Brotli compressor.
|
|
|
|
#include "./encode.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdlib> /* free, malloc */
|
|
#include <cstring> /* memset */
|
|
#include <limits>
|
|
|
|
#include "./backward_references.h"
|
|
#include "./bit_cost.h"
|
|
#include "./block_splitter.h"
|
|
#include "./brotli_bit_stream.h"
|
|
#include "./cluster.h"
|
|
#include "./context.h"
|
|
#include "./metablock.h"
|
|
#include "./transform.h"
|
|
#include "./compress_fragment.h"
|
|
#include "./compress_fragment_two_pass.h"
|
|
#include "./entropy_encode.h"
|
|
#include "./fast_log.h"
|
|
#include "./hash.h"
|
|
#include "./histogram.h"
|
|
#include "./prefix.h"
|
|
#include "./utf8_util.h"
|
|
#include "./write_bits.h"
|
|
|
|
namespace brotli {
|
|
|
|
static const int kMinQualityForBlockSplit = 4;
|
|
static const int kMinQualityForContextModeling = 5;
|
|
static const int kMinQualityForOptimizeHistograms = 4;
|
|
// For quality 2 there is no block splitting, so we buffer at most this much
|
|
// literals and commands.
|
|
static const size_t kMaxNumDelayedSymbols = 0x2fff;
|
|
|
|
#define COPY_ARRAY(dst, src) memcpy(dst, src, sizeof(src));
|
|
|
|
void RecomputeDistancePrefixes(Command* cmds,
|
|
size_t num_commands,
|
|
uint32_t num_direct_distance_codes,
|
|
uint32_t distance_postfix_bits) {
|
|
if (num_direct_distance_codes == 0 && distance_postfix_bits == 0) {
|
|
return;
|
|
}
|
|
for (size_t i = 0; i < num_commands; ++i) {
|
|
Command* cmd = &cmds[i];
|
|
if (cmd->copy_len() && cmd->cmd_prefix_ >= 128) {
|
|
PrefixEncodeCopyDistance(cmd->DistanceCode(),
|
|
num_direct_distance_codes,
|
|
distance_postfix_bits,
|
|
&cmd->dist_prefix_,
|
|
&cmd->dist_extra_);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Wraps 64-bit input position to 32-bit ringbuffer position preserving
|
|
"not-a-first-lap" feature. */
|
|
uint32_t WrapPosition(uint64_t position) {
|
|
uint32_t result = static_cast<uint32_t>(position);
|
|
if (position > (1u << 30)) {
|
|
result = (result & ((1u << 30) - 1)) | (1u << 30);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
uint8_t* BrotliCompressor::GetBrotliStorage(size_t size) {
|
|
if (storage_size_ < size) {
|
|
delete[] storage_;
|
|
storage_ = new uint8_t[size];
|
|
storage_size_ = size;
|
|
}
|
|
return storage_;
|
|
}
|
|
|
|
size_t MaxHashTableSize(int quality) {
|
|
return quality == 0 ? 1 << 15 : 1 << 17;
|
|
}
|
|
|
|
size_t HashTableSize(size_t max_table_size, size_t input_size) {
|
|
size_t htsize = 256;
|
|
while (htsize < max_table_size && htsize < input_size) {
|
|
htsize <<= 1;
|
|
}
|
|
return htsize;
|
|
}
|
|
|
|
int* BrotliCompressor::GetHashTable(int quality,
|
|
size_t input_size,
|
|
size_t* table_size) {
|
|
// Use smaller hash table when input.size() is smaller, since we
|
|
// fill the table, incurring O(hash table size) overhead for
|
|
// compression, and if the input is short, we won't need that
|
|
// many hash table entries anyway.
|
|
const size_t max_table_size = MaxHashTableSize(quality);
|
|
assert(max_table_size >= 256);
|
|
size_t htsize = HashTableSize(max_table_size, input_size);
|
|
|
|
int* table;
|
|
if (htsize <= sizeof(small_table_) / sizeof(small_table_[0])) {
|
|
table = small_table_;
|
|
} else {
|
|
if (large_table_ == NULL) {
|
|
large_table_ = new int[max_table_size];
|
|
}
|
|
table = large_table_;
|
|
}
|
|
|
|
*table_size = htsize;
|
|
memset(table, 0, htsize * sizeof(*table));
|
|
return table;
|
|
}
|
|
|
|
void EncodeWindowBits(int lgwin, uint8_t* last_byte, uint8_t* last_byte_bits) {
|
|
if (lgwin == 16) {
|
|
*last_byte = 0;
|
|
*last_byte_bits = 1;
|
|
} else if (lgwin == 17) {
|
|
*last_byte = 1;
|
|
*last_byte_bits = 7;
|
|
} else if (lgwin > 17) {
|
|
*last_byte = static_cast<uint8_t>(((lgwin - 17) << 1) | 1);
|
|
*last_byte_bits = 4;
|
|
} else {
|
|
*last_byte = static_cast<uint8_t>(((lgwin - 8) << 4) | 1);
|
|
*last_byte_bits = 7;
|
|
}
|
|
}
|
|
|
|
// Initializes the command and distance prefix codes for the first block.
|
|
void InitCommandPrefixCodes(uint8_t cmd_depths[128],
|
|
uint16_t cmd_bits[128],
|
|
uint8_t cmd_code[512],
|
|
size_t* cmd_code_numbits) {
|
|
static const uint8_t kDefaultCommandDepths[128] = {
|
|
0, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8,
|
|
0, 0, 0, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7,
|
|
7, 7, 10, 10, 10, 10, 10, 10, 0, 4, 4, 5, 5, 5, 6, 6,
|
|
7, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4,
|
|
4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 10,
|
|
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
|
|
};
|
|
static const uint16_t kDefaultCommandBits[128] = {
|
|
0, 0, 8, 9, 3, 35, 7, 71,
|
|
39, 103, 23, 47, 175, 111, 239, 31,
|
|
0, 0, 0, 4, 12, 2, 10, 6,
|
|
13, 29, 11, 43, 27, 59, 87, 55,
|
|
15, 79, 319, 831, 191, 703, 447, 959,
|
|
0, 14, 1, 25, 5, 21, 19, 51,
|
|
119, 159, 95, 223, 479, 991, 63, 575,
|
|
127, 639, 383, 895, 255, 767, 511, 1023,
|
|
14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
27, 59, 7, 39, 23, 55, 30, 1, 17, 9, 25, 5, 0, 8, 4, 12,
|
|
2, 10, 6, 21, 13, 29, 3, 19, 11, 15, 47, 31, 95, 63, 127, 255,
|
|
767, 2815, 1791, 3839, 511, 2559, 1535, 3583, 1023, 3071, 2047, 4095,
|
|
};
|
|
COPY_ARRAY(cmd_depths, kDefaultCommandDepths);
|
|
COPY_ARRAY(cmd_bits, kDefaultCommandBits);
|
|
|
|
// Initialize the pre-compressed form of the command and distance prefix
|
|
// codes.
|
|
static const uint8_t kDefaultCommandCode[] = {
|
|
0xff, 0x77, 0xd5, 0xbf, 0xe7, 0xde, 0xea, 0x9e, 0x51, 0x5d, 0xde, 0xc6,
|
|
0x70, 0x57, 0xbc, 0x58, 0x58, 0x58, 0xd8, 0xd8, 0x58, 0xd5, 0xcb, 0x8c,
|
|
0xea, 0xe0, 0xc3, 0x87, 0x1f, 0x83, 0xc1, 0x60, 0x1c, 0x67, 0xb2, 0xaa,
|
|
0x06, 0x83, 0xc1, 0x60, 0x30, 0x18, 0xcc, 0xa1, 0xce, 0x88, 0x54, 0x94,
|
|
0x46, 0xe1, 0xb0, 0xd0, 0x4e, 0xb2, 0xf7, 0x04, 0x00,
|
|
};
|
|
static const int kDefaultCommandCodeNumBits = 448;
|
|
COPY_ARRAY(cmd_code, kDefaultCommandCode);
|
|
*cmd_code_numbits = kDefaultCommandCodeNumBits;
|
|
}
|
|
|
|
// Decide about the context map based on the ability of the prediction
|
|
// ability of the previous byte UTF8-prefix on the next byte. The
|
|
// prediction ability is calculated as shannon entropy. Here we need
|
|
// shannon entropy instead of 'BitsEntropy' since the prefix will be
|
|
// encoded with the remaining 6 bits of the following byte, and
|
|
// BitsEntropy will assume that symbol to be stored alone using Huffman
|
|
// coding.
|
|
void ChooseContextMap(int quality,
|
|
uint32_t* bigram_histo,
|
|
size_t* num_literal_contexts,
|
|
const uint32_t** literal_context_map) {
|
|
uint32_t monogram_histo[3] = { 0 };
|
|
uint32_t two_prefix_histo[6] = { 0 };
|
|
size_t total = 0;
|
|
for (size_t i = 0; i < 9; ++i) {
|
|
total += bigram_histo[i];
|
|
monogram_histo[i % 3] += bigram_histo[i];
|
|
size_t j = i;
|
|
if (j >= 6) {
|
|
j -= 6;
|
|
}
|
|
two_prefix_histo[j] += bigram_histo[i];
|
|
}
|
|
size_t dummy;
|
|
double entropy1 = ShannonEntropy(monogram_histo, 3, &dummy);
|
|
double entropy2 = (ShannonEntropy(two_prefix_histo, 3, &dummy) +
|
|
ShannonEntropy(two_prefix_histo + 3, 3, &dummy));
|
|
double entropy3 = 0;
|
|
for (size_t k = 0; k < 3; ++k) {
|
|
entropy3 += ShannonEntropy(bigram_histo + 3 * k, 3, &dummy);
|
|
}
|
|
|
|
assert(total != 0);
|
|
double scale = 1.0 / static_cast<double>(total);
|
|
entropy1 *= scale;
|
|
entropy2 *= scale;
|
|
entropy3 *= scale;
|
|
|
|
static const uint32_t kStaticContextMapContinuation[64] = {
|
|
1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
static const uint32_t kStaticContextMapSimpleUTF8[64] = {
|
|
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
if (quality < 7) {
|
|
// 3 context models is a bit slower, don't use it at lower qualities.
|
|
entropy3 = entropy1 * 10;
|
|
}
|
|
// If expected savings by symbol are less than 0.2 bits, skip the
|
|
// context modeling -- in exchange for faster decoding speed.
|
|
if (entropy1 - entropy2 < 0.2 &&
|
|
entropy1 - entropy3 < 0.2) {
|
|
*num_literal_contexts = 1;
|
|
} else if (entropy2 - entropy3 < 0.02) {
|
|
*num_literal_contexts = 2;
|
|
*literal_context_map = kStaticContextMapSimpleUTF8;
|
|
} else {
|
|
*num_literal_contexts = 3;
|
|
*literal_context_map = kStaticContextMapContinuation;
|
|
}
|
|
}
|
|
|
|
void DecideOverLiteralContextModeling(const uint8_t* input,
|
|
size_t start_pos,
|
|
size_t length,
|
|
size_t mask,
|
|
int quality,
|
|
ContextType* literal_context_mode,
|
|
size_t* num_literal_contexts,
|
|
const uint32_t** literal_context_map) {
|
|
if (quality < kMinQualityForContextModeling || length < 64) {
|
|
return;
|
|
}
|
|
// Gather bigram data of the UTF8 byte prefixes. To make the analysis of
|
|
// UTF8 data faster we only examine 64 byte long strides at every 4kB
|
|
// intervals.
|
|
const size_t end_pos = start_pos + length;
|
|
uint32_t bigram_prefix_histo[9] = { 0 };
|
|
for (; start_pos + 64 <= end_pos; start_pos += 4096) {
|
|
static const int lut[4] = { 0, 0, 1, 2 };
|
|
const size_t stride_end_pos = start_pos + 64;
|
|
int prev = lut[input[start_pos & mask] >> 6] * 3;
|
|
for (size_t pos = start_pos + 1; pos < stride_end_pos; ++pos) {
|
|
const uint8_t literal = input[pos & mask];
|
|
++bigram_prefix_histo[prev + lut[literal >> 6]];
|
|
prev = lut[literal >> 6] * 3;
|
|
}
|
|
}
|
|
*literal_context_mode = CONTEXT_UTF8;
|
|
ChooseContextMap(quality, &bigram_prefix_histo[0], num_literal_contexts,
|
|
literal_context_map);
|
|
}
|
|
|
|
bool ShouldCompress(const uint8_t* data,
|
|
const size_t mask,
|
|
const uint64_t last_flush_pos,
|
|
const size_t bytes,
|
|
const size_t num_literals,
|
|
const size_t num_commands) {
|
|
if (num_commands < (bytes >> 8) + 2) {
|
|
if (num_literals > 0.99 * static_cast<double>(bytes)) {
|
|
uint32_t literal_histo[256] = { 0 };
|
|
static const uint32_t kSampleRate = 13;
|
|
static const double kMinEntropy = 7.92;
|
|
const double bit_cost_threshold =
|
|
static_cast<double>(bytes) * kMinEntropy / kSampleRate;
|
|
size_t t = (bytes + kSampleRate - 1) / kSampleRate;
|
|
uint32_t pos = static_cast<uint32_t>(last_flush_pos);
|
|
for (size_t i = 0; i < t; i++) {
|
|
++literal_histo[data[pos & mask]];
|
|
pos += kSampleRate;
|
|
}
|
|
if (BitsEntropy(literal_histo, 256) > bit_cost_threshold) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void WriteMetaBlockInternal(const uint8_t* data,
|
|
const size_t mask,
|
|
const uint64_t last_flush_pos,
|
|
const size_t bytes,
|
|
const bool is_last,
|
|
const int quality,
|
|
const bool font_mode,
|
|
const uint8_t prev_byte,
|
|
const uint8_t prev_byte2,
|
|
const size_t num_literals,
|
|
const size_t num_commands,
|
|
Command* commands,
|
|
const int* saved_dist_cache,
|
|
int* dist_cache,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
if (bytes == 0) {
|
|
// Write the ISLAST and ISEMPTY bits.
|
|
WriteBits(2, 3, storage_ix, storage);
|
|
*storage_ix = (*storage_ix + 7u) & ~7u;
|
|
return;
|
|
}
|
|
|
|
if (!ShouldCompress(data, mask, last_flush_pos, bytes,
|
|
num_literals, num_commands)) {
|
|
// Restore the distance cache, as its last update by
|
|
// CreateBackwardReferences is now unused.
|
|
memcpy(dist_cache, saved_dist_cache, 4 * sizeof(dist_cache[0]));
|
|
StoreUncompressedMetaBlock(is_last, data,
|
|
WrapPosition(last_flush_pos), mask, bytes,
|
|
storage_ix, storage);
|
|
return;
|
|
}
|
|
|
|
const uint8_t last_byte = storage[0];
|
|
const uint8_t last_byte_bits = static_cast<uint8_t>(*storage_ix & 0xff);
|
|
uint32_t num_direct_distance_codes = 0;
|
|
uint32_t distance_postfix_bits = 0;
|
|
if (quality > 9 && font_mode) {
|
|
num_direct_distance_codes = 12;
|
|
distance_postfix_bits = 1;
|
|
RecomputeDistancePrefixes(commands,
|
|
num_commands,
|
|
num_direct_distance_codes,
|
|
distance_postfix_bits);
|
|
}
|
|
if (quality == 2) {
|
|
StoreMetaBlockFast(data, WrapPosition(last_flush_pos),
|
|
bytes, mask, is_last,
|
|
commands, num_commands,
|
|
storage_ix, storage);
|
|
} else if (quality < kMinQualityForBlockSplit) {
|
|
StoreMetaBlockTrivial(data, WrapPosition(last_flush_pos),
|
|
bytes, mask, is_last,
|
|
commands, num_commands,
|
|
storage_ix, storage);
|
|
} else {
|
|
MetaBlockSplit mb;
|
|
ContextType literal_context_mode = CONTEXT_UTF8;
|
|
if (quality <= 9) {
|
|
size_t num_literal_contexts = 1;
|
|
const uint32_t* literal_context_map = NULL;
|
|
DecideOverLiteralContextModeling(data, WrapPosition(last_flush_pos),
|
|
bytes, mask,
|
|
quality,
|
|
&literal_context_mode,
|
|
&num_literal_contexts,
|
|
&literal_context_map);
|
|
if (literal_context_map == NULL) {
|
|
BuildMetaBlockGreedy(data, WrapPosition(last_flush_pos), mask,
|
|
commands, num_commands, &mb);
|
|
} else {
|
|
BuildMetaBlockGreedyWithContexts(data, WrapPosition(last_flush_pos),
|
|
mask,
|
|
prev_byte, prev_byte2,
|
|
literal_context_mode,
|
|
num_literal_contexts,
|
|
literal_context_map,
|
|
commands, num_commands,
|
|
&mb);
|
|
}
|
|
} else {
|
|
if (!IsMostlyUTF8(data, WrapPosition(last_flush_pos), mask, bytes,
|
|
kMinUTF8Ratio)) {
|
|
literal_context_mode = CONTEXT_SIGNED;
|
|
}
|
|
BuildMetaBlock(data, WrapPosition(last_flush_pos), mask,
|
|
prev_byte, prev_byte2,
|
|
commands, num_commands,
|
|
literal_context_mode,
|
|
&mb);
|
|
}
|
|
if (quality >= kMinQualityForOptimizeHistograms) {
|
|
OptimizeHistograms(num_direct_distance_codes,
|
|
distance_postfix_bits,
|
|
&mb);
|
|
}
|
|
StoreMetaBlock(data, WrapPosition(last_flush_pos), bytes, mask,
|
|
prev_byte, prev_byte2,
|
|
is_last,
|
|
num_direct_distance_codes,
|
|
distance_postfix_bits,
|
|
literal_context_mode,
|
|
commands, num_commands,
|
|
mb,
|
|
storage_ix, storage);
|
|
}
|
|
if (bytes + 4 < (*storage_ix >> 3)) {
|
|
// Restore the distance cache and last byte.
|
|
memcpy(dist_cache, saved_dist_cache, 4 * sizeof(dist_cache[0]));
|
|
storage[0] = last_byte;
|
|
*storage_ix = last_byte_bits;
|
|
StoreUncompressedMetaBlock(is_last, data,
|
|
WrapPosition(last_flush_pos), mask,
|
|
bytes, storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
BrotliCompressor::BrotliCompressor(BrotliParams params)
|
|
: params_(params),
|
|
hashers_(new Hashers()),
|
|
input_pos_(0),
|
|
num_commands_(0),
|
|
num_literals_(0),
|
|
last_insert_len_(0),
|
|
last_flush_pos_(0),
|
|
last_processed_pos_(0),
|
|
prev_byte_(0),
|
|
prev_byte2_(0),
|
|
storage_size_(0),
|
|
storage_(0),
|
|
large_table_(NULL),
|
|
cmd_code_numbits_(0),
|
|
command_buf_(NULL),
|
|
literal_buf_(NULL) {
|
|
// Sanitize params.
|
|
params_.quality = std::max(0, params_.quality);
|
|
if (params_.lgwin < kMinWindowBits) {
|
|
params_.lgwin = kMinWindowBits;
|
|
} else if (params_.lgwin > kMaxWindowBits) {
|
|
params_.lgwin = kMaxWindowBits;
|
|
}
|
|
if (params_.quality <= 1) {
|
|
params_.lgblock = params_.lgwin;
|
|
} else if (params_.quality < kMinQualityForBlockSplit) {
|
|
params_.lgblock = 14;
|
|
} else if (params_.lgblock == 0) {
|
|
params_.lgblock = 16;
|
|
if (params_.quality >= 9 && params_.lgwin > params_.lgblock) {
|
|
params_.lgblock = std::min(18, params_.lgwin);
|
|
}
|
|
} else {
|
|
params_.lgblock = std::min(kMaxInputBlockBits,
|
|
std::max(kMinInputBlockBits, params_.lgblock));
|
|
}
|
|
|
|
// Initialize input and literal cost ring buffers.
|
|
// We allocate at least lgwin + 1 bits for the ring buffer so that the newly
|
|
// added block fits there completely and we still get lgwin bits and at least
|
|
// read_block_size_bits + 1 bits because the copy tail length needs to be
|
|
// smaller than ringbuffer size.
|
|
int ringbuffer_bits = std::max(params_.lgwin + 1, params_.lgblock + 1);
|
|
ringbuffer_ = new RingBuffer(ringbuffer_bits, params_.lgblock);
|
|
|
|
commands_ = 0;
|
|
cmd_alloc_size_ = 0;
|
|
|
|
// Initialize last byte with stream header.
|
|
EncodeWindowBits(params_.lgwin, &last_byte_, &last_byte_bits_);
|
|
|
|
// Initialize distance cache.
|
|
dist_cache_[0] = 4;
|
|
dist_cache_[1] = 11;
|
|
dist_cache_[2] = 15;
|
|
dist_cache_[3] = 16;
|
|
// Save the state of the distance cache in case we need to restore it for
|
|
// emitting an uncompressed block.
|
|
memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_));
|
|
|
|
if (params_.quality == 0) {
|
|
InitCommandPrefixCodes(cmd_depths_, cmd_bits_,
|
|
cmd_code_, &cmd_code_numbits_);
|
|
} else if (params_.quality == 1) {
|
|
command_buf_ = new uint32_t[kCompressFragmentTwoPassBlockSize];
|
|
literal_buf_ = new uint8_t[kCompressFragmentTwoPassBlockSize];
|
|
}
|
|
|
|
// Initialize hashers.
|
|
hash_type_ = std::min(10, params_.quality);
|
|
hashers_->Init(hash_type_);
|
|
}
|
|
|
|
BrotliCompressor::~BrotliCompressor(void) {
|
|
delete[] storage_;
|
|
free(commands_);
|
|
delete ringbuffer_;
|
|
delete hashers_;
|
|
delete[] large_table_;
|
|
delete[] command_buf_;
|
|
delete[] literal_buf_;
|
|
}
|
|
|
|
void BrotliCompressor::CopyInputToRingBuffer(const size_t input_size,
|
|
const uint8_t* input_buffer) {
|
|
ringbuffer_->Write(input_buffer, input_size);
|
|
input_pos_ += input_size;
|
|
|
|
// TL;DR: If needed, initialize 7 more bytes in the ring buffer to make the
|
|
// hashing not depend on uninitialized data. This makes compression
|
|
// deterministic and it prevents uninitialized memory warnings in Valgrind.
|
|
// Even without erasing, the output would be valid (but nondeterministic).
|
|
//
|
|
// Background information: The compressor stores short (at most 8 bytes)
|
|
// substrings of the input already read in a hash table, and detects
|
|
// repetitions by looking up such substrings in the hash table. If it
|
|
// can find a substring, it checks whether the substring is really there
|
|
// in the ring buffer (or it's just a hash collision). Should the hash
|
|
// table become corrupt, this check makes sure that the output is
|
|
// still valid, albeit the compression ratio would be bad.
|
|
//
|
|
// The compressor populates the hash table from the ring buffer as it's
|
|
// reading new bytes from the input. However, at the last few indexes of
|
|
// the ring buffer, there are not enough bytes to build full-length
|
|
// substrings from. Since the hash table always contains full-length
|
|
// substrings, we erase with dummy 0s here to make sure that those
|
|
// substrings will contain 0s at the end instead of uninitialized
|
|
// data.
|
|
//
|
|
// Please note that erasing is not necessary (because the
|
|
// memory region is already initialized since he ring buffer
|
|
// has a `tail' that holds a copy of the beginning,) so we
|
|
// skip erasing if we have already gone around at least once in
|
|
// the ring buffer.
|
|
size_t pos = ringbuffer_->position();
|
|
// Only clear during the first round of ringbuffer writes. On
|
|
// subsequent rounds data in the ringbuffer would be affected.
|
|
if (pos <= ringbuffer_->mask()) {
|
|
// This is the first time when the ring buffer is being written.
|
|
// We clear 7 bytes just after the bytes that have been copied from
|
|
// the input buffer.
|
|
//
|
|
// The ringbuffer has a "tail" that holds a copy of the beginning,
|
|
// but only once the ring buffer has been fully written once, i.e.,
|
|
// pos <= mask. For the first time, we need to write values
|
|
// in this tail (where index may be larger than mask), so that
|
|
// we have exactly defined behavior and don't read un-initialized
|
|
// memory. Due to performance reasons, hashing reads data using a
|
|
// LOAD64, which can go 7 bytes beyond the bytes written in the
|
|
// ringbuffer.
|
|
memset(ringbuffer_->start() + pos, 0, 7);
|
|
}
|
|
}
|
|
|
|
void BrotliCompressor::BrotliSetCustomDictionary(
|
|
const size_t size, const uint8_t* dict) {
|
|
CopyInputToRingBuffer(size, dict);
|
|
last_flush_pos_ = size;
|
|
last_processed_pos_ = size;
|
|
if (size > 0) {
|
|
prev_byte_ = dict[size - 1];
|
|
}
|
|
if (size > 1) {
|
|
prev_byte2_ = dict[size - 2];
|
|
}
|
|
hashers_->PrependCustomDictionary(hash_type_, params_.lgwin, size, dict);
|
|
}
|
|
|
|
bool BrotliCompressor::WriteBrotliData(const bool is_last,
|
|
const bool force_flush,
|
|
size_t* out_size,
|
|
uint8_t** output) {
|
|
const uint64_t delta = input_pos_ - last_processed_pos_;
|
|
const uint8_t* data = ringbuffer_->start();
|
|
const uint32_t mask = ringbuffer_->mask();
|
|
|
|
if (delta > input_block_size()) {
|
|
return false;
|
|
}
|
|
const uint32_t bytes = static_cast<uint32_t>(delta);
|
|
|
|
if (params_.quality <= 1) {
|
|
if (delta == 0 && !is_last) {
|
|
// We have no new input data and we don't have to finish the stream, so
|
|
// nothing to do.
|
|
*out_size = 0;
|
|
return true;
|
|
}
|
|
const size_t max_out_size = 2 * bytes + 500;
|
|
uint8_t* storage = GetBrotliStorage(max_out_size);
|
|
storage[0] = last_byte_;
|
|
size_t storage_ix = last_byte_bits_;
|
|
size_t table_size;
|
|
int* table = GetHashTable(params_.quality, bytes, &table_size);
|
|
if (params_.quality == 0) {
|
|
BrotliCompressFragmentFast(
|
|
&data[WrapPosition(last_processed_pos_) & mask],
|
|
bytes, is_last,
|
|
table, table_size,
|
|
cmd_depths_, cmd_bits_,
|
|
&cmd_code_numbits_, cmd_code_,
|
|
&storage_ix, storage);
|
|
} else {
|
|
BrotliCompressFragmentTwoPass(
|
|
&data[WrapPosition(last_processed_pos_) & mask],
|
|
bytes, is_last,
|
|
command_buf_, literal_buf_,
|
|
table, table_size,
|
|
&storage_ix, storage);
|
|
}
|
|
last_byte_ = storage[storage_ix >> 3];
|
|
last_byte_bits_ = storage_ix & 7u;
|
|
last_processed_pos_ = input_pos_;
|
|
*output = &storage[0];
|
|
*out_size = storage_ix >> 3;
|
|
return true;
|
|
}
|
|
|
|
// Theoretical max number of commands is 1 per 2 bytes.
|
|
size_t newsize = num_commands_ + bytes / 2 + 1;
|
|
if (newsize > cmd_alloc_size_) {
|
|
// Reserve a bit more memory to allow merging with a next block
|
|
// without realloc: that would impact speed.
|
|
newsize += (bytes / 4) + 16;
|
|
cmd_alloc_size_ = newsize;
|
|
commands_ =
|
|
static_cast<Command*>(realloc(commands_, sizeof(Command) * newsize));
|
|
}
|
|
|
|
CreateBackwardReferences(bytes, WrapPosition(last_processed_pos_),
|
|
is_last, data, mask,
|
|
params_.quality,
|
|
params_.lgwin,
|
|
hashers_,
|
|
hash_type_,
|
|
dist_cache_,
|
|
&last_insert_len_,
|
|
&commands_[num_commands_],
|
|
&num_commands_,
|
|
&num_literals_);
|
|
|
|
size_t max_length = std::min<size_t>(mask + 1, 1u << kMaxInputBlockBits);
|
|
const size_t max_literals = max_length / 8;
|
|
const size_t max_commands = max_length / 8;
|
|
if (!is_last && !force_flush &&
|
|
(params_.quality >= kMinQualityForBlockSplit ||
|
|
(num_literals_ + num_commands_ < kMaxNumDelayedSymbols)) &&
|
|
num_literals_ < max_literals &&
|
|
num_commands_ < max_commands &&
|
|
input_pos_ + input_block_size() <= last_flush_pos_ + max_length) {
|
|
// Merge with next input block. Everything will happen later.
|
|
last_processed_pos_ = input_pos_;
|
|
*out_size = 0;
|
|
return true;
|
|
}
|
|
|
|
// Create the last insert-only command.
|
|
if (last_insert_len_ > 0) {
|
|
brotli::Command cmd(last_insert_len_);
|
|
commands_[num_commands_++] = cmd;
|
|
num_literals_ += last_insert_len_;
|
|
last_insert_len_ = 0;
|
|
}
|
|
|
|
if (!is_last && input_pos_ == last_flush_pos_) {
|
|
// We have no new input data and we don't have to finish the stream, so
|
|
// nothing to do.
|
|
*out_size = 0;
|
|
return true;
|
|
}
|
|
assert(input_pos_ >= last_flush_pos_);
|
|
assert(input_pos_ > last_flush_pos_ || is_last);
|
|
assert(input_pos_ - last_flush_pos_ <= 1u << 24);
|
|
const uint32_t metablock_size =
|
|
static_cast<uint32_t>(input_pos_ - last_flush_pos_);
|
|
const size_t max_out_size = 2 * metablock_size + 500;
|
|
uint8_t* storage = GetBrotliStorage(max_out_size);
|
|
storage[0] = last_byte_;
|
|
size_t storage_ix = last_byte_bits_;
|
|
bool font_mode = params_.mode == BrotliParams::MODE_FONT;
|
|
WriteMetaBlockInternal(
|
|
data, mask, last_flush_pos_, metablock_size, is_last, params_.quality,
|
|
font_mode, prev_byte_, prev_byte2_, num_literals_, num_commands_,
|
|
commands_, saved_dist_cache_, dist_cache_, &storage_ix, storage);
|
|
last_byte_ = storage[storage_ix >> 3];
|
|
last_byte_bits_ = storage_ix & 7u;
|
|
last_flush_pos_ = input_pos_;
|
|
last_processed_pos_ = input_pos_;
|
|
if (last_flush_pos_ > 0) {
|
|
prev_byte_ = data[(static_cast<uint32_t>(last_flush_pos_) - 1) & mask];
|
|
}
|
|
if (last_flush_pos_ > 1) {
|
|
prev_byte2_ = data[(static_cast<uint32_t>(last_flush_pos_) - 2) & mask];
|
|
}
|
|
num_commands_ = 0;
|
|
num_literals_ = 0;
|
|
// Save the state of the distance cache in case we need to restore it for
|
|
// emitting an uncompressed block.
|
|
memcpy(saved_dist_cache_, dist_cache_, sizeof(dist_cache_));
|
|
*output = &storage[0];
|
|
*out_size = storage_ix >> 3;
|
|
return true;
|
|
}
|
|
|
|
bool BrotliCompressor::WriteMetaBlock(const size_t input_size,
|
|
const uint8_t* input_buffer,
|
|
const bool is_last,
|
|
size_t* encoded_size,
|
|
uint8_t* encoded_buffer) {
|
|
CopyInputToRingBuffer(input_size, input_buffer);
|
|
size_t out_size = 0;
|
|
uint8_t* output;
|
|
if (!WriteBrotliData(is_last, /* force_flush = */ true, &out_size, &output) ||
|
|
out_size > *encoded_size) {
|
|
return false;
|
|
}
|
|
if (out_size > 0) {
|
|
memcpy(encoded_buffer, output, out_size);
|
|
}
|
|
*encoded_size = out_size;
|
|
return true;
|
|
}
|
|
|
|
bool BrotliCompressor::WriteMetadata(const size_t input_size,
|
|
const uint8_t* input_buffer,
|
|
const bool is_last,
|
|
size_t* encoded_size,
|
|
uint8_t* encoded_buffer) {
|
|
if (input_size > (1 << 24) || input_size + 6 > *encoded_size) {
|
|
return false;
|
|
}
|
|
uint64_t hdr_buffer_data[2];
|
|
uint8_t* hdr_buffer = reinterpret_cast<uint8_t*>(&hdr_buffer_data[0]);
|
|
size_t storage_ix = last_byte_bits_;
|
|
hdr_buffer[0] = last_byte_;
|
|
WriteBits(1, 0, &storage_ix, hdr_buffer);
|
|
WriteBits(2, 3, &storage_ix, hdr_buffer);
|
|
WriteBits(1, 0, &storage_ix, hdr_buffer);
|
|
if (input_size == 0) {
|
|
WriteBits(2, 0, &storage_ix, hdr_buffer);
|
|
*encoded_size = (storage_ix + 7u) >> 3;
|
|
memcpy(encoded_buffer, hdr_buffer, *encoded_size);
|
|
} else {
|
|
uint32_t nbits = (input_size == 1) ? 0 : (Log2FloorNonZero(
|
|
static_cast<uint32_t>(input_size) - 1) + 1);
|
|
uint32_t nbytes = (nbits + 7) / 8;
|
|
WriteBits(2, nbytes, &storage_ix, hdr_buffer);
|
|
WriteBits(8 * nbytes, input_size - 1, &storage_ix, hdr_buffer);
|
|
size_t hdr_size = (storage_ix + 7u) >> 3;
|
|
memcpy(encoded_buffer, hdr_buffer, hdr_size);
|
|
memcpy(&encoded_buffer[hdr_size], input_buffer, input_size);
|
|
*encoded_size = hdr_size + input_size;
|
|
}
|
|
if (is_last) {
|
|
encoded_buffer[(*encoded_size)++] = 3;
|
|
}
|
|
last_byte_ = 0;
|
|
last_byte_bits_ = 0;
|
|
return true;
|
|
}
|
|
|
|
bool BrotliCompressor::FinishStream(
|
|
size_t* encoded_size, uint8_t* encoded_buffer) {
|
|
return WriteMetaBlock(0, NULL, true, encoded_size, encoded_buffer);
|
|
}
|
|
|
|
int BrotliCompressBufferQuality10(int lgwin,
|
|
size_t input_size,
|
|
const uint8_t* input_buffer,
|
|
size_t* encoded_size,
|
|
uint8_t* encoded_buffer) {
|
|
const size_t mask = std::numeric_limits<size_t>::max() >> 1;
|
|
assert(input_size <= mask + 1);
|
|
const size_t max_backward_limit = (1 << lgwin) - 16;
|
|
int dist_cache[4] = { 4, 11, 15, 16 };
|
|
int saved_dist_cache[4] = { 4, 11, 15, 16 };
|
|
int ok = 1;
|
|
const size_t max_out_size = *encoded_size;
|
|
size_t total_out_size = 0;
|
|
uint8_t last_byte;
|
|
uint8_t last_byte_bits;
|
|
EncodeWindowBits(lgwin, &last_byte, &last_byte_bits);
|
|
|
|
Hashers::H10* hasher = new Hashers::H10;
|
|
const size_t hasher_eff_size = std::min(input_size, max_backward_limit + 16);
|
|
hasher->Init(lgwin, 0, hasher_eff_size, true);
|
|
|
|
const int lgblock = std::min(18, lgwin);
|
|
const int lgmetablock = std::min(24, lgwin + 1);
|
|
const size_t max_block_size = static_cast<size_t>(1) << lgblock;
|
|
const size_t max_metablock_size = static_cast<size_t>(1) << lgmetablock;
|
|
const size_t max_literals_per_metablock = max_metablock_size / 8;
|
|
const size_t max_commands_per_metablock = max_metablock_size / 8;
|
|
size_t metablock_start = 0;
|
|
uint8_t prev_byte = 0;
|
|
uint8_t prev_byte2 = 0;
|
|
while (ok && metablock_start < input_size) {
|
|
const size_t metablock_end =
|
|
std::min(input_size, metablock_start + max_metablock_size);
|
|
const size_t expected_num_commands =
|
|
(metablock_end - metablock_start) / 12 + 16;
|
|
Command* commands = 0;
|
|
size_t num_commands = 0;
|
|
size_t last_insert_len = 0;
|
|
size_t num_literals = 0;
|
|
size_t metablock_size = 0;
|
|
size_t cmd_alloc_size = 0;
|
|
|
|
for (size_t block_start = metablock_start; block_start < metablock_end; ) {
|
|
size_t block_size = std::min(metablock_end - block_start, max_block_size);
|
|
ZopfliNode* nodes = new ZopfliNode[block_size + 1];
|
|
std::vector<uint32_t> path;
|
|
hasher->StitchToPreviousBlock(block_size, block_start,
|
|
input_buffer, mask);
|
|
ZopfliComputeShortestPath(block_size, block_start, input_buffer, mask,
|
|
max_backward_limit, dist_cache,
|
|
hasher, nodes, &path);
|
|
// We allocate a command buffer in the first iteration of this loop that
|
|
// will be likely big enough for the whole metablock, so that for most
|
|
// inputs we will not have to reallocate in later iterations. We do the
|
|
// allocation here and not before the loop, because if the input is small,
|
|
// this will be allocated after the zopfli cost model is freed, so this
|
|
// will not increase peak memory usage.
|
|
// TODO: If the first allocation is too small, increase command
|
|
// buffer size exponentially.
|
|
size_t new_cmd_alloc_size = std::max(expected_num_commands,
|
|
num_commands + path.size() + 1);
|
|
if (cmd_alloc_size != new_cmd_alloc_size) {
|
|
cmd_alloc_size = new_cmd_alloc_size;
|
|
commands = static_cast<Command*>(
|
|
realloc(commands, cmd_alloc_size * sizeof(Command)));
|
|
}
|
|
ZopfliCreateCommands(block_size, block_start, max_backward_limit, path,
|
|
&nodes[0], dist_cache, &last_insert_len,
|
|
&commands[num_commands], &num_literals);
|
|
num_commands += path.size();
|
|
block_start += block_size;
|
|
metablock_size += block_size;
|
|
delete[] nodes;
|
|
if (num_literals > max_literals_per_metablock ||
|
|
num_commands > max_commands_per_metablock) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (last_insert_len > 0) {
|
|
Command cmd(last_insert_len);
|
|
commands[num_commands++] = cmd;
|
|
num_literals += last_insert_len;
|
|
}
|
|
|
|
const bool is_last = (metablock_start + metablock_size == input_size);
|
|
uint8_t* storage = NULL;
|
|
size_t storage_ix = last_byte_bits;
|
|
|
|
if (metablock_size == 0) {
|
|
// Write the ISLAST and ISEMPTY bits.
|
|
storage = new uint8_t[16];
|
|
storage[0] = last_byte;
|
|
WriteBits(2, 3, &storage_ix, storage);
|
|
storage_ix = (storage_ix + 7u) & ~7u;
|
|
} else if (!ShouldCompress(input_buffer, mask, metablock_start,
|
|
metablock_size, num_literals, num_commands)) {
|
|
// Restore the distance cache, as its last update by
|
|
// CreateBackwardReferences is now unused.
|
|
memcpy(dist_cache, saved_dist_cache, 4 * sizeof(dist_cache[0]));
|
|
storage = new uint8_t[metablock_size + 16];
|
|
storage[0] = last_byte;
|
|
StoreUncompressedMetaBlock(is_last, input_buffer,
|
|
metablock_start, mask, metablock_size,
|
|
&storage_ix, storage);
|
|
} else {
|
|
uint32_t num_direct_distance_codes = 0;
|
|
uint32_t distance_postfix_bits = 0;
|
|
MetaBlockSplit mb;
|
|
ContextType literal_context_mode = CONTEXT_UTF8;
|
|
if (!IsMostlyUTF8(
|
|
input_buffer, metablock_start, mask, metablock_size,
|
|
kMinUTF8Ratio)) {
|
|
literal_context_mode = CONTEXT_SIGNED;
|
|
}
|
|
BuildMetaBlock(input_buffer, metablock_start, mask,
|
|
prev_byte, prev_byte2,
|
|
commands, num_commands,
|
|
literal_context_mode,
|
|
&mb);
|
|
OptimizeHistograms(num_direct_distance_codes,
|
|
distance_postfix_bits,
|
|
&mb);
|
|
const size_t max_out_metablock_size = 2 * metablock_size + 500;
|
|
storage = new uint8_t[max_out_metablock_size];
|
|
storage[0] = last_byte;
|
|
StoreMetaBlock(input_buffer, metablock_start, metablock_size, mask,
|
|
prev_byte, prev_byte2,
|
|
is_last,
|
|
num_direct_distance_codes,
|
|
distance_postfix_bits,
|
|
literal_context_mode,
|
|
commands, num_commands,
|
|
mb,
|
|
&storage_ix, storage);
|
|
if (metablock_size + 4 < (storage_ix >> 3)) {
|
|
// Restore the distance cache and last byte.
|
|
memcpy(dist_cache, saved_dist_cache, 4 * sizeof(dist_cache[0]));
|
|
storage[0] = last_byte;
|
|
storage_ix = last_byte_bits;
|
|
StoreUncompressedMetaBlock(is_last, input_buffer,
|
|
metablock_start, mask,
|
|
metablock_size, &storage_ix, storage);
|
|
}
|
|
}
|
|
last_byte = storage[storage_ix >> 3];
|
|
last_byte_bits = storage_ix & 7u;
|
|
metablock_start += metablock_size;
|
|
prev_byte = input_buffer[metablock_start - 1];
|
|
prev_byte2 = input_buffer[metablock_start - 2];
|
|
// Save the state of the distance cache in case we need to restore it for
|
|
// emitting an uncompressed block.
|
|
memcpy(saved_dist_cache, dist_cache, 4 * sizeof(dist_cache[0]));
|
|
|
|
const size_t out_size = storage_ix >> 3;
|
|
total_out_size += out_size;
|
|
if (total_out_size <= max_out_size) {
|
|
memcpy(encoded_buffer, storage, out_size);
|
|
encoded_buffer += out_size;
|
|
} else {
|
|
ok = 0;
|
|
}
|
|
delete[] storage;
|
|
free(commands);
|
|
}
|
|
|
|
*encoded_size = total_out_size;
|
|
delete hasher;
|
|
return ok;
|
|
}
|
|
|
|
int BrotliCompressBuffer(BrotliParams params,
|
|
size_t input_size,
|
|
const uint8_t* input_buffer,
|
|
size_t* encoded_size,
|
|
uint8_t* encoded_buffer) {
|
|
if (*encoded_size == 0) {
|
|
// Output buffer needs at least one byte.
|
|
return 0;
|
|
}
|
|
if (input_size == 0) {
|
|
// Handle the special case of empty input.
|
|
*encoded_size = 1;
|
|
*encoded_buffer = 6;
|
|
return 1;
|
|
}
|
|
if (params.quality == 10) {
|
|
// TODO(user) Implement this direct path for all quality levels.
|
|
const int lgwin = std::min(24, std::max(16, params.lgwin));
|
|
return BrotliCompressBufferQuality10(lgwin, input_size, input_buffer,
|
|
encoded_size, encoded_buffer);
|
|
}
|
|
BrotliMemIn in(input_buffer, input_size);
|
|
BrotliMemOut out(encoded_buffer, *encoded_size);
|
|
if (!BrotliCompress(params, &in, &out)) {
|
|
return 0;
|
|
}
|
|
*encoded_size = out.position();
|
|
return 1;
|
|
}
|
|
|
|
bool BrotliInIsFinished(BrotliIn* r) {
|
|
size_t read_bytes;
|
|
return r->Read(0, &read_bytes) == NULL;
|
|
}
|
|
|
|
const uint8_t* BrotliInReadAndCheckEnd(const size_t block_size,
|
|
BrotliIn* r,
|
|
size_t* bytes_read,
|
|
bool* is_last) {
|
|
*bytes_read = 0;
|
|
const uint8_t* data = reinterpret_cast<const uint8_t*>(
|
|
r->Read(block_size, bytes_read));
|
|
assert((data == NULL) == (*bytes_read == 0));
|
|
*is_last = BrotliInIsFinished(r);
|
|
return data;
|
|
}
|
|
|
|
bool CopyOneBlockToRingBuffer(BrotliIn* r,
|
|
BrotliCompressor* compressor,
|
|
size_t* bytes_read,
|
|
bool* is_last) {
|
|
const size_t block_size = compressor->input_block_size();
|
|
const uint8_t* data = BrotliInReadAndCheckEnd(block_size, r,
|
|
bytes_read, is_last);
|
|
if (data == NULL) {
|
|
return *is_last;
|
|
}
|
|
compressor->CopyInputToRingBuffer(*bytes_read, data);
|
|
|
|
// Read more bytes until block_size is filled or an EOF (data == NULL) is
|
|
// received. This is useful to get deterministic compressed output for the
|
|
// same input no matter how r->Read splits the input to chunks.
|
|
for (size_t remaining = block_size - *bytes_read; remaining > 0; ) {
|
|
size_t more_bytes_read = 0;
|
|
data = BrotliInReadAndCheckEnd(remaining, r, &more_bytes_read, is_last);
|
|
if (data == NULL) {
|
|
return *is_last;
|
|
}
|
|
compressor->CopyInputToRingBuffer(more_bytes_read, data);
|
|
*bytes_read += more_bytes_read;
|
|
remaining -= more_bytes_read;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
int BrotliCompress(BrotliParams params, BrotliIn* in, BrotliOut* out) {
|
|
return BrotliCompressWithCustomDictionary(0, 0, params, in, out);
|
|
}
|
|
|
|
// Reads the provided input in 'block_size' blocks. Only the last read can be
|
|
// smaller than 'block_size'.
|
|
class BrotliBlockReader {
|
|
public:
|
|
explicit BrotliBlockReader(size_t block_size)
|
|
: block_size_(block_size), buf_(NULL) {}
|
|
~BrotliBlockReader(void) { delete[] buf_; }
|
|
|
|
const uint8_t* Read(BrotliIn* in, size_t* bytes_read, bool* is_last) {
|
|
*bytes_read = 0;
|
|
const uint8_t* data = BrotliInReadAndCheckEnd(block_size_, in,
|
|
bytes_read, is_last);
|
|
if (data == NULL || *bytes_read == block_size_ || *is_last) {
|
|
// If we could get the whole block in one read, or it is the last block,
|
|
// we just return the pointer to the data without copying.
|
|
return data;
|
|
}
|
|
// If the data comes in smaller chunks, we need to copy it into an internal
|
|
// buffer until we get a whole block or reach the last chunk.
|
|
if (buf_ == NULL) {
|
|
buf_ = new uint8_t[block_size_];
|
|
}
|
|
memcpy(buf_, data, *bytes_read);
|
|
do {
|
|
size_t cur_bytes_read = 0;
|
|
data = BrotliInReadAndCheckEnd(block_size_ - *bytes_read, in,
|
|
&cur_bytes_read, is_last);
|
|
if (data == NULL) {
|
|
return *is_last ? buf_ : NULL;
|
|
}
|
|
memcpy(&buf_[*bytes_read], data, cur_bytes_read);
|
|
*bytes_read += cur_bytes_read;
|
|
} while (*bytes_read < block_size_ && !*is_last);
|
|
return buf_;
|
|
}
|
|
|
|
private:
|
|
const size_t block_size_;
|
|
uint8_t* buf_;
|
|
};
|
|
|
|
int BrotliCompressWithCustomDictionary(size_t dictsize, const uint8_t* dict,
|
|
BrotliParams params,
|
|
BrotliIn* in, BrotliOut* out) {
|
|
if (params.quality <= 1) {
|
|
const int quality = std::max(0, params.quality);
|
|
const int lgwin = std::min(kMaxWindowBits,
|
|
std::max(kMinWindowBits, params.lgwin));
|
|
uint8_t* storage = NULL;
|
|
int* table = NULL;
|
|
uint32_t* command_buf = NULL;
|
|
uint8_t* literal_buf = NULL;
|
|
uint8_t cmd_depths[128];
|
|
uint16_t cmd_bits[128];
|
|
uint8_t cmd_code[512];
|
|
size_t cmd_code_numbits;
|
|
if (quality == 0) {
|
|
InitCommandPrefixCodes(cmd_depths, cmd_bits, cmd_code, &cmd_code_numbits);
|
|
}
|
|
uint8_t last_byte;
|
|
uint8_t last_byte_bits;
|
|
EncodeWindowBits(lgwin, &last_byte, &last_byte_bits);
|
|
BrotliBlockReader r(1u << lgwin);
|
|
int ok = 1;
|
|
bool is_last = false;
|
|
while (ok && !is_last) {
|
|
// Read next block of input.
|
|
size_t bytes;
|
|
const uint8_t* data = r.Read(in, &bytes, &is_last);
|
|
if (data == NULL) {
|
|
if (!is_last) {
|
|
ok = 0;
|
|
break;
|
|
}
|
|
assert(bytes == 0);
|
|
}
|
|
// Set up output storage.
|
|
const size_t max_out_size = 2 * bytes + 500;
|
|
if (storage == NULL) {
|
|
storage = new uint8_t[max_out_size];
|
|
}
|
|
storage[0] = last_byte;
|
|
size_t storage_ix = last_byte_bits;
|
|
// Set up hash table.
|
|
size_t htsize = HashTableSize(MaxHashTableSize(quality), bytes);
|
|
if (table == NULL) {
|
|
table = new int[htsize];
|
|
}
|
|
memset(table, 0, htsize * sizeof(table[0]));
|
|
// Set up command and literal buffers for two pass mode.
|
|
if (quality == 1 && command_buf == NULL) {
|
|
size_t buf_size = std::min(bytes, kCompressFragmentTwoPassBlockSize);
|
|
command_buf = new uint32_t[buf_size];
|
|
literal_buf = new uint8_t[buf_size];
|
|
}
|
|
// Do the actual compression.
|
|
if (quality == 0) {
|
|
BrotliCompressFragmentFast(data, bytes, is_last, table, htsize,
|
|
cmd_depths, cmd_bits,
|
|
&cmd_code_numbits, cmd_code,
|
|
&storage_ix, storage);
|
|
} else {
|
|
BrotliCompressFragmentTwoPass(data, bytes, is_last,
|
|
command_buf, literal_buf,
|
|
table, htsize,
|
|
&storage_ix, storage);
|
|
}
|
|
// Save last bytes to stitch it together with the next output block.
|
|
last_byte = storage[storage_ix >> 3];
|
|
last_byte_bits = storage_ix & 7u;
|
|
// Write output block.
|
|
size_t out_bytes = storage_ix >> 3;
|
|
if (out_bytes > 0 && !out->Write(storage, out_bytes)) {
|
|
ok = 0;
|
|
break;
|
|
}
|
|
}
|
|
delete[] storage;
|
|
delete[] table;
|
|
delete[] command_buf;
|
|
delete[] literal_buf;
|
|
return ok;
|
|
}
|
|
|
|
size_t in_bytes = 0;
|
|
size_t out_bytes = 0;
|
|
uint8_t* output;
|
|
bool final_block = false;
|
|
BrotliCompressor compressor(params);
|
|
if (dictsize != 0) compressor.BrotliSetCustomDictionary(dictsize, dict);
|
|
while (!final_block) {
|
|
if (!CopyOneBlockToRingBuffer(in, &compressor, &in_bytes, &final_block)) {
|
|
return false;
|
|
}
|
|
out_bytes = 0;
|
|
if (!compressor.WriteBrotliData(final_block,
|
|
/* force_flush = */ false,
|
|
&out_bytes, &output)) {
|
|
return false;
|
|
}
|
|
if (out_bytes > 0 && !out->Write(output, out_bytes)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
} // namespace brotli
|