mirror of
https://github.com/google/brotli.git
synced 2024-12-03 08:01:03 +00:00
c66e4e3e4f
This commit is for the encoder for brotli compression format. Brotli is a generic byte-level compression algorithm.
412 lines
14 KiB
C++
412 lines
14 KiB
C++
// Copyright 2013 Google Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// Block split point selection utilities.
|
|
|
|
#include "./block_splitter.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
#include "./cluster.h"
|
|
#include "./command.h"
|
|
#include "./fast_log.h"
|
|
#include "./histogram.h"
|
|
|
|
namespace brotli {
|
|
|
|
static const int kMaxLiteralHistograms = 48;
|
|
static const int kMaxCommandHistograms = 50;
|
|
static const double kLiteralBlockSwitchCost = 26;
|
|
static const double kCommandBlockSwitchCost = 13.5;
|
|
static const double kDistanceBlockSwitchCost = 14.6;
|
|
static const int kLiteralStrideLength = 70;
|
|
static const int kCommandStrideLength = 40;
|
|
static const int kSymbolsPerLiteralHistogram = 550;
|
|
static const int kSymbolsPerCommandHistogram = 530;
|
|
static const int kSymbolsPerDistanceHistogram = 550;
|
|
static const int kMinLengthForBlockSplitting = 128;
|
|
static const int kIterMulForRefining = 2;
|
|
static const int kMinItersForRefining = 100;
|
|
|
|
void CopyLiteralsToByteArray(const std::vector<Command>& cmds,
|
|
const uint8_t* data,
|
|
std::vector<uint8_t>* literals) {
|
|
// Count how many we have.
|
|
size_t total_length = 0;
|
|
for (int i = 0; i < cmds.size(); ++i) {
|
|
total_length += cmds[i].insert_length_;
|
|
}
|
|
if (total_length == 0) {
|
|
return;
|
|
}
|
|
|
|
// Allocate.
|
|
literals->resize(total_length);
|
|
|
|
// Loop again, and copy this time.
|
|
size_t pos = 0;
|
|
size_t from_pos = 0;
|
|
for (int i = 0; i < cmds.size() && pos < total_length; ++i) {
|
|
memcpy(&(*literals)[pos], data + from_pos, cmds[i].insert_length_);
|
|
pos += cmds[i].insert_length_;
|
|
from_pos += cmds[i].insert_length_ + cmds[i].copy_length_;
|
|
}
|
|
}
|
|
|
|
void CopyCommandsToByteArray(const std::vector<Command>& cmds,
|
|
std::vector<uint16_t>* insert_and_copy_codes,
|
|
std::vector<uint8_t>* distance_prefixes) {
|
|
for (int i = 0; i < cmds.size(); ++i) {
|
|
const Command& cmd = cmds[i];
|
|
insert_and_copy_codes->push_back(cmd.command_prefix_);
|
|
if (cmd.copy_length_ > 0 && cmd.distance_prefix_ != 0xffff) {
|
|
distance_prefixes->push_back(cmd.distance_prefix_);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<int kSize>
|
|
double HistogramAddEval(const Histogram<kSize>& a,
|
|
const Histogram<kSize>& b) {
|
|
int total = a.total_count_ + b.total_count_;
|
|
double retval = total * FastLog2(total);
|
|
for (int i = 0; i < kSize; ++i) {
|
|
int count = a.data_[i] + b.data_[i];
|
|
retval -= count * FastLog2(count);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
template<typename HistogramType, typename DataType>
|
|
void InitialEntropyCodes(const DataType* data, size_t length,
|
|
int literals_per_histogram,
|
|
int max_histograms,
|
|
size_t stride,
|
|
std::vector<HistogramType>* vec) {
|
|
int total_histograms = length / literals_per_histogram + 1;
|
|
if (total_histograms > max_histograms) {
|
|
total_histograms = max_histograms;
|
|
}
|
|
unsigned int seed = 7;
|
|
int block_length = length / total_histograms;
|
|
for (int i = 0; i < total_histograms; ++i) {
|
|
int pos = length * i / total_histograms;
|
|
if (i != 0) {
|
|
pos += rand_r(&seed) % block_length;
|
|
}
|
|
if (pos + stride >= length) {
|
|
pos = length - stride - 1;
|
|
}
|
|
HistogramType histo;
|
|
histo.Add(data + pos, stride);
|
|
vec->push_back(histo);
|
|
}
|
|
}
|
|
|
|
template<typename HistogramType>
|
|
int FindClosest(const HistogramType& sample,
|
|
const std::vector<HistogramType>& vec) {
|
|
double best_distance = 1e99;
|
|
int best_ix = 0;
|
|
for (int i = 0; i < vec.size(); ++i) {
|
|
double distance = HistogramAddEval(sample, vec[i]);
|
|
if (distance < best_distance) {
|
|
best_ix = i;
|
|
best_distance = distance;
|
|
}
|
|
}
|
|
return best_ix;
|
|
}
|
|
|
|
template<typename HistogramType, typename DataType>
|
|
void RandomSample(unsigned int* seed,
|
|
const DataType* data,
|
|
size_t length,
|
|
size_t stride,
|
|
HistogramType* sample) {
|
|
size_t pos = rand_r(seed) % (length - stride);
|
|
sample->Add(data + pos, stride);
|
|
}
|
|
|
|
template<typename HistogramType, typename DataType>
|
|
void RefineEntropyCodes(const DataType* data, size_t length,
|
|
size_t stride,
|
|
std::vector<HistogramType>* vec) {
|
|
const int iters =
|
|
kIterMulForRefining * length / stride + kMinItersForRefining;
|
|
unsigned int seed = 7;
|
|
for (int iter = 0; iter < iters; ++iter) {
|
|
HistogramType sample;
|
|
RandomSample(&seed, data, length, stride, &sample);
|
|
int ix = FindClosest(sample, *vec);
|
|
(*vec)[ix].AddHistogram(sample);
|
|
}
|
|
}
|
|
|
|
inline static float BitCost(int total, int count) {
|
|
return count == 0 ? FastLog2(total) + 2 : FastLog2(total) - FastLog2(count);
|
|
}
|
|
|
|
template<typename DataType, int kSize>
|
|
void FindBlocks(const DataType* data, const size_t length,
|
|
const double block_switch_bitcost,
|
|
const std::vector<Histogram<kSize> > &vec,
|
|
uint8_t *block_id) {
|
|
if (vec.size() <= 1) {
|
|
for (int i = 0; i < length; ++i) {
|
|
block_id[i] = 0;
|
|
}
|
|
return;
|
|
}
|
|
int vecsize = vec.size();
|
|
double* insert_cost = new double[kSize * vecsize];
|
|
memset(insert_cost, 0, sizeof(insert_cost[0]) * kSize * vecsize);
|
|
for (int i = 0; i < kSize; ++i) {
|
|
for (int j = 0; j < vecsize; ++j) {
|
|
insert_cost[i * vecsize + j] =
|
|
BitCost(vec[j].total_count_, vec[j].data_[i]);
|
|
}
|
|
}
|
|
double *cost = new double[vecsize];
|
|
memset(cost, 0, sizeof(cost[0]) * vecsize);
|
|
bool* switch_signal = new bool[length * vecsize];
|
|
memset(switch_signal, 0, sizeof(switch_signal[0]) * length * vecsize);
|
|
// After each iteration of this loop, cost[k] will contain the difference
|
|
// between the minimum cost of arriving at the current byte position using
|
|
// entropy code k, and the minimum cost of arriving at the current byte
|
|
// position. This difference is capped at the block switch cost, and if it
|
|
// reaches block switch cost, it means that when we trace back from the last
|
|
// position, we need to switch here.
|
|
for (size_t byte_ix = 0; byte_ix < length; ++byte_ix) {
|
|
int ix = byte_ix * vecsize;
|
|
int insert_cost_ix = data[byte_ix] * vecsize;
|
|
double min_cost = 1e99;
|
|
for (int k = 0; k < vecsize; ++k) {
|
|
// We are coding the symbol in data[byte_ix] with entropy code k.
|
|
cost[k] += insert_cost[insert_cost_ix + k];
|
|
if (cost[k] < min_cost) {
|
|
min_cost = cost[k];
|
|
block_id[byte_ix] = k;
|
|
}
|
|
}
|
|
double block_switch_cost = block_switch_bitcost;
|
|
// More blocks for the beginning.
|
|
if (byte_ix < 2000) {
|
|
block_switch_cost *= 0.77 + 0.07 * byte_ix / 2000;
|
|
}
|
|
for (int k = 0; k < vecsize; ++k) {
|
|
cost[k] -= min_cost;
|
|
if (cost[k] >= block_switch_cost) {
|
|
cost[k] = block_switch_cost;
|
|
switch_signal[ix + k] = true;
|
|
}
|
|
}
|
|
}
|
|
// Now trace back from the last position and switch at the marked places.
|
|
int byte_ix = length - 1;
|
|
int ix = byte_ix * vecsize;
|
|
int cur_id = block_id[byte_ix];
|
|
while (byte_ix > 0) {
|
|
--byte_ix;
|
|
ix -= vecsize;
|
|
if (switch_signal[ix + cur_id]) {
|
|
cur_id = block_id[byte_ix];
|
|
}
|
|
block_id[byte_ix] = cur_id;
|
|
}
|
|
delete[] insert_cost;
|
|
delete[] cost;
|
|
delete[] switch_signal;
|
|
}
|
|
|
|
int RemapBlockIds(uint8_t* block_ids, const size_t length) {
|
|
std::map<uint8_t, uint8_t> new_id;
|
|
int next_id = 0;
|
|
for (int i = 0; i < length; ++i) {
|
|
if (new_id.find(block_ids[i]) == new_id.end()) {
|
|
new_id[block_ids[i]] = next_id;
|
|
++next_id;
|
|
}
|
|
}
|
|
for (int i = 0; i < length; ++i) {
|
|
block_ids[i] = new_id[block_ids[i]];
|
|
}
|
|
return next_id;
|
|
}
|
|
|
|
template<typename HistogramType, typename DataType>
|
|
void BuildBlockHistograms(const DataType* data, const size_t length,
|
|
uint8_t* block_ids,
|
|
std::vector<HistogramType>* histograms) {
|
|
int num_types = RemapBlockIds(block_ids, length);
|
|
histograms->clear();
|
|
histograms->resize(num_types);
|
|
for (int i = 0; i < length; ++i) {
|
|
(*histograms)[block_ids[i]].Add(data[i]);
|
|
}
|
|
}
|
|
|
|
template<typename HistogramType, typename DataType>
|
|
void ClusterBlocks(const DataType* data, const size_t length,
|
|
uint8_t* block_ids) {
|
|
std::vector<HistogramType> histograms;
|
|
std::vector<int> block_index(length);
|
|
int cur_idx = 0;
|
|
HistogramType cur_histogram;
|
|
for (int i = 0; i < length; ++i) {
|
|
bool block_boundary = (i + 1 == length || block_ids[i] != block_ids[i + 1]);
|
|
block_index[i] = cur_idx;
|
|
cur_histogram.Add(data[i]);
|
|
if (block_boundary) {
|
|
histograms.push_back(cur_histogram);
|
|
cur_histogram.Clear();
|
|
++cur_idx;
|
|
}
|
|
}
|
|
std::vector<HistogramType> clustered_histograms;
|
|
std::vector<int> histogram_symbols;
|
|
// Block ids need to fit in one byte and there are two ids reserved for
|
|
// indicating 'same as last' and 'last plus one'.
|
|
static const int kMaxNumberOfBlockTypes = 254;
|
|
ClusterHistograms(histograms, 1, histograms.size(),
|
|
kMaxNumberOfBlockTypes,
|
|
&clustered_histograms,
|
|
&histogram_symbols);
|
|
for (int i = 0; i < length; ++i) {
|
|
block_ids[i] = histogram_symbols[block_index[i]];
|
|
}
|
|
}
|
|
|
|
void BuildBlockSplit(const std::vector<uint8_t>& block_ids, BlockSplit* split) {
|
|
int cur_id = block_ids[0];
|
|
int cur_length = 1;
|
|
split->num_types_ = -1;
|
|
for (int i = 1; i < block_ids.size(); ++i) {
|
|
if (block_ids[i] != cur_id) {
|
|
split->types_.push_back(cur_id);
|
|
split->lengths_.push_back(cur_length);
|
|
split->num_types_ = std::max(split->num_types_, cur_id);
|
|
cur_id = block_ids[i];
|
|
cur_length = 0;
|
|
}
|
|
++cur_length;
|
|
}
|
|
split->types_.push_back(cur_id);
|
|
split->lengths_.push_back(cur_length);
|
|
split->num_types_ = std::max(split->num_types_, cur_id);
|
|
++split->num_types_;
|
|
}
|
|
|
|
template<typename HistogramType, typename DataType>
|
|
void SplitByteVector(const std::vector<DataType>& data,
|
|
const int literals_per_histogram,
|
|
const int max_histograms,
|
|
const int sampling_stride_length,
|
|
const double block_switch_cost,
|
|
BlockSplit* split) {
|
|
if (data.empty()) {
|
|
split->num_types_ = 0;
|
|
return;
|
|
} else if (data.size() < kMinLengthForBlockSplitting) {
|
|
split->num_types_ = 1;
|
|
split->types_.push_back(0);
|
|
split->lengths_.push_back(data.size());
|
|
return;
|
|
}
|
|
std::vector<HistogramType> histograms;
|
|
// Find good entropy codes.
|
|
InitialEntropyCodes(data.data(), data.size(),
|
|
literals_per_histogram,
|
|
max_histograms,
|
|
sampling_stride_length,
|
|
&histograms);
|
|
RefineEntropyCodes(data.data(), data.size(),
|
|
sampling_stride_length,
|
|
&histograms);
|
|
// Find a good path through literals with the good entropy codes.
|
|
std::vector<uint8_t> block_ids(data.size());
|
|
for (int i = 0; i < 10; ++i) {
|
|
FindBlocks(data.data(), data.size(),
|
|
block_switch_cost,
|
|
histograms,
|
|
&block_ids[0]);
|
|
BuildBlockHistograms(data.data(), data.size(), &block_ids[0], &histograms);
|
|
}
|
|
ClusterBlocks<HistogramType>(data.data(), data.size(), &block_ids[0]);
|
|
BuildBlockSplit(block_ids, split);
|
|
}
|
|
|
|
void SplitBlock(const std::vector<Command>& cmds,
|
|
const uint8_t* data,
|
|
BlockSplit* literal_split,
|
|
BlockSplit* insert_and_copy_split,
|
|
BlockSplit* dist_split) {
|
|
// Create a continuous array of literals.
|
|
std::vector<uint8_t> literals;
|
|
CopyLiteralsToByteArray(cmds, data, &literals);
|
|
|
|
// Compute prefix codes for commands.
|
|
std::vector<uint16_t> insert_and_copy_codes;
|
|
std::vector<uint8_t> distance_prefixes;
|
|
CopyCommandsToByteArray(cmds,
|
|
&insert_and_copy_codes,
|
|
&distance_prefixes);
|
|
|
|
SplitByteVector<HistogramLiteral>(
|
|
literals,
|
|
kSymbolsPerLiteralHistogram, kMaxLiteralHistograms,
|
|
kLiteralStrideLength, kLiteralBlockSwitchCost,
|
|
literal_split);
|
|
SplitByteVector<HistogramCommand>(
|
|
insert_and_copy_codes,
|
|
kSymbolsPerCommandHistogram, kMaxCommandHistograms,
|
|
kCommandStrideLength, kCommandBlockSwitchCost,
|
|
insert_and_copy_split);
|
|
SplitByteVector<HistogramDistance>(
|
|
distance_prefixes,
|
|
kSymbolsPerDistanceHistogram, kMaxCommandHistograms,
|
|
kCommandStrideLength, kDistanceBlockSwitchCost,
|
|
dist_split);
|
|
}
|
|
|
|
void SplitBlockByTotalLength(const std::vector<Command>& all_commands,
|
|
int input_size,
|
|
int target_length,
|
|
std::vector<std::vector<Command> >* blocks) {
|
|
int num_blocks = input_size / target_length + 1;
|
|
int length_limit = input_size / num_blocks + 1;
|
|
int total_length = 0;
|
|
std::vector<Command> cur_block;
|
|
for (int i = 0; i < all_commands.size(); ++i) {
|
|
const Command& cmd = all_commands[i];
|
|
int cmd_length = cmd.insert_length_ + cmd.copy_length_;
|
|
if (total_length > length_limit) {
|
|
blocks->push_back(cur_block);
|
|
cur_block.clear();
|
|
total_length = 0;
|
|
}
|
|
cur_block.push_back(cmd);
|
|
total_length += cmd_length;
|
|
}
|
|
blocks->push_back(cur_block);
|
|
}
|
|
|
|
} // namespace brotli
|