bullet3/Extras/ConvexDecomposition/ConvexBuilder.cpp

374 lines
8.3 KiB
C++
Raw Normal View History

#include "float_math.h"
#include "ConvexBuilder.h"
#include "meshvolume.h"
#include "bestfit.h"
#include <assert.h>
#include "cd_hull.h"
#include "fitsphere.h"
#include "bestfitobb.h"
unsigned int MAXDEPTH = 8 ;
float CONCAVE_PERCENT = 1.0f ;
float MERGE_PERCENT = 2.0f ;
CHull::CHull(const ConvexDecomposition::ConvexResult &result)
{
mResult = new ConvexDecomposition::ConvexResult(result);
mVolume = computeMeshVolume( result.mHullVertices, result.mHullTcount, result.mHullIndices );
mDiagonal = getBoundingRegion( result.mHullVcount, result.mHullVertices, sizeof(float)*3, mMin, mMax );
float dx = mMax[0] - mMin[0];
float dy = mMax[1] - mMin[1];
float dz = mMax[2] - mMin[2];
dx*=0.1f; // inflate 1/10th on each edge
dy*=0.1f; // inflate 1/10th on each edge
dz*=0.1f; // inflate 1/10th on each edge
mMin[0]-=dx;
mMin[1]-=dy;
mMin[2]-=dz;
mMax[0]+=dx;
mMax[1]+=dy;
mMax[2]+=dz;
}
CHull::~CHull(void)
{
delete mResult;
}
bool CHull::overlap(const CHull &h) const
{
return overlapAABB(mMin,mMax, h.mMin, h.mMax );
}
ConvexBuilder::ConvexBuilder(ConvexDecompInterface *callback)
{
mCallback = callback;
}
ConvexBuilder::~ConvexBuilder(void)
{
int i;
for (i=0;i<mChulls.size();i++)
{
CHull *cr = mChulls[i];
delete cr;
}
}
bool ConvexBuilder::isDuplicate(unsigned int i1,unsigned int i2,unsigned int i3,
unsigned int ci1,unsigned int ci2,unsigned int ci3)
{
unsigned int dcount = 0;
assert( i1 != i2 && i1 != i3 && i2 != i3 );
assert( ci1 != ci2 && ci1 != ci3 && ci2 != ci3 );
if ( i1 == ci1 || i1 == ci2 || i1 == ci3 ) dcount++;
if ( i2 == ci1 || i2 == ci2 || i2 == ci3 ) dcount++;
if ( i3 == ci1 || i3 == ci2 || i3 == ci3 ) dcount++;
return dcount == 3;
}
void ConvexBuilder::getMesh(const ConvexDecomposition::ConvexResult &cr,VertexLookup vc,UintVector &indices)
{
unsigned int *src = cr.mHullIndices;
for (unsigned int i=0; i<cr.mHullTcount; i++)
{
unsigned int i1 = *src++;
unsigned int i2 = *src++;
unsigned int i3 = *src++;
const float *p1 = &cr.mHullVertices[i1*3];
const float *p2 = &cr.mHullVertices[i2*3];
const float *p3 = &cr.mHullVertices[i3*3];
i1 = Vl_getIndex(vc,p1);
i2 = Vl_getIndex(vc,p2);
i3 = Vl_getIndex(vc,p3);
#if 0
bool duplicate = false;
unsigned int tcount = indices.size()/3;
for (unsigned int j=0; j<tcount; j++)
{
unsigned int ci1 = indices[j*3+0];
unsigned int ci2 = indices[j*3+1];
unsigned int ci3 = indices[j*3+2];
if ( isDuplicate(i1,i2,i3, ci1, ci2, ci3 ) )
{
duplicate = true;
break;
}
}
if ( !duplicate )
{
indices.push_back(i1);
indices.push_back(i2);
indices.push_back(i3);
}
#endif
}
}
CHull * ConvexBuilder::canMerge(CHull *a,CHull *b)
{
if ( !a->overlap(*b) ) return 0; // if their AABB's (with a little slop) don't overlap, then return.
CHull *ret = 0;
// ok..we are going to combine both meshes into a single mesh
// and then we are going to compute the concavity...
VertexLookup vc = Vl_createVertexLookup();
UintVector indices;
getMesh( *a->mResult, vc, indices );
getMesh( *b->mResult, vc, indices );
unsigned int vcount = Vl_getVcount(vc);
const float *vertices = Vl_getVertices(vc);
unsigned int tcount = indices.size()/3;
//don't do anything if hull is empty
if (!tcount)
{
Vl_releaseVertexLookup (vc);
return 0;
}
ConvexDecomposition::HullResult hresult;
ConvexDecomposition::HullLibrary hl;
ConvexDecomposition::HullDesc desc;
desc.SetHullFlag(ConvexDecomposition::QF_TRIANGLES);
desc.mVcount = vcount;
desc.mVertices = vertices;
desc.mVertexStride = sizeof(float)*3;
ConvexDecomposition::HullError hret = hl.CreateConvexHull(desc,hresult);
if ( hret == ConvexDecomposition::QE_OK )
{
float combineVolume = computeMeshVolume( hresult.mOutputVertices, hresult.mNumFaces, hresult.mIndices );
float sumVolume = a->mVolume + b->mVolume;
float percent = (sumVolume*100) / combineVolume;
if ( percent >= (100.0f-MERGE_PERCENT) )
{
ConvexDecomposition::ConvexResult cr(hresult.mNumOutputVertices, hresult.mOutputVertices, hresult.mNumFaces, hresult.mIndices);
ret = new CHull(cr);
}
}
Vl_releaseVertexLookup(vc);
return ret;
}
bool ConvexBuilder::combineHulls(void)
{
bool combine = false;
sortChulls(mChulls); // sort the convex hulls, largest volume to least...
CHullVector output; // the output hulls...
int i;
for (i=0;i<mChulls.size() && !combine; ++i)
{
CHull *cr = mChulls[i];
int j;
for (j=0;j<mChulls.size();j++)
{
CHull *match = mChulls[j];
if ( cr != match ) // don't try to merge a hull with itself, that be stoopid
{
CHull *merge = canMerge(cr,match); // if we can merge these two....
if ( merge )
{
output.push_back(merge);
++i;
while ( i != mChulls.size() )
{
CHull *cr = mChulls[i];
if ( cr != match )
{
output.push_back(cr);
}
i++;
}
delete cr;
delete match;
combine = true;
break;
}
}
}
if ( combine )
{
break;
}
else
{
output.push_back(cr);
}
}
if ( combine )
{
mChulls.clear();
mChulls.copyFromArray(output);
output.clear();
}
return combine;
}
unsigned int ConvexBuilder::process(const ConvexDecomposition::DecompDesc &desc)
{
unsigned int ret = 0;
MAXDEPTH = desc.mDepth;
CONCAVE_PERCENT = desc.mCpercent;
MERGE_PERCENT = desc.mPpercent;
calcConvexDecomposition(desc.mVcount, desc.mVertices, desc.mTcount, desc.mIndices,this,0,0);
while ( combineHulls() ); // keep combinging hulls until I can't combine any more...
int i;
for (i=0;i<mChulls.size();i++)
{
CHull *cr = mChulls[i];
// before we hand it back to the application, we need to regenerate the hull based on the
// limits given by the user.
const ConvexDecomposition::ConvexResult &c = *cr->mResult; // the high resolution hull...
ConvexDecomposition::HullResult result;
ConvexDecomposition::HullLibrary hl;
ConvexDecomposition::HullDesc hdesc;
hdesc.SetHullFlag(ConvexDecomposition::QF_TRIANGLES);
hdesc.mVcount = c.mHullVcount;
hdesc.mVertices = c.mHullVertices;
hdesc.mVertexStride = sizeof(float)*3;
hdesc.mMaxVertices = desc.mMaxVertices; // maximum number of vertices allowed in the output
if ( desc.mSkinWidth )
{
hdesc.mSkinWidth = desc.mSkinWidth;
hdesc.SetHullFlag(ConvexDecomposition::QF_SKIN_WIDTH); // do skin width computation.
}
ConvexDecomposition::HullError ret = hl.CreateConvexHull(hdesc,result);
if ( ret == ConvexDecomposition::QE_OK )
{
ConvexDecomposition::ConvexResult r(result.mNumOutputVertices, result.mOutputVertices, result.mNumFaces, result.mIndices);
r.mHullVolume = computeMeshVolume( result.mOutputVertices, result.mNumFaces, result.mIndices ); // the volume of the hull.
// compute the best fit OBB
computeBestFitOBB( result.mNumOutputVertices, result.mOutputVertices, sizeof(float)*3, r.mOBBSides, r.mOBBTransform );
r.mOBBVolume = r.mOBBSides[0] * r.mOBBSides[1] *r.mOBBSides[2]; // compute the OBB volume.
fm_getTranslation( r.mOBBTransform, r.mOBBCenter ); // get the translation component of the 4x4 matrix.
fm_matrixToQuat( r.mOBBTransform, r.mOBBOrientation ); // extract the orientation as a quaternion.
r.mSphereRadius = computeBoundingSphere( result.mNumOutputVertices, result.mOutputVertices, r.mSphereCenter );
r.mSphereVolume = fm_sphereVolume( r.mSphereRadius );
mCallback->ConvexDecompResult(r);
}
hl.ReleaseResult (result);
delete cr;
}
ret = mChulls.size();
mChulls.clear();
return ret;
}
void ConvexBuilder::ConvexDebugTri(const float *p1,const float *p2,const float *p3,unsigned int color)
{
mCallback->ConvexDebugTri(p1,p2,p3,color);
}
void ConvexBuilder::ConvexDebugOBB(const float *sides, const float *matrix,unsigned int color)
{
mCallback->ConvexDebugOBB(sides,matrix,color);
}
void ConvexBuilder::ConvexDebugPoint(const float *p,float dist,unsigned int color)
{
mCallback->ConvexDebugPoint(p,dist,color);
}
void ConvexBuilder::ConvexDebugBound(const float *bmin,const float *bmax,unsigned int color)
{
mCallback->ConvexDebugBound(bmin,bmax,color);
}
void ConvexBuilder::ConvexDecompResult(ConvexDecomposition::ConvexResult &result)
{
CHull *ch = new CHull(result);
mChulls.push_back(ch);
}
void ConvexBuilder::sortChulls(CHullVector &hulls)
{
hulls.quickSort(CHullSort());
//hulls.heapSort(CHullSort());
}