bullet3/examples/SharedMemory/PhysicsClientC_API.cpp

1964 lines
72 KiB
C++
Raw Normal View History

#include "PhysicsClientC_API.h"
#include "PhysicsClientSharedMemory.h"
#include "Bullet3Common/b3Scalar.h"
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3Matrix3x3.h"
#include <string.h>
#include "SharedMemoryCommands.h"
b3SharedMemoryCommandHandle b3LoadSdfCommandInit(b3PhysicsClientHandle physClient, const char* sdfFileName)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_SDF;
int len = strlen(sdfFileName);
if (len<MAX_SDF_FILENAME_LENGTH)
{
strcpy(command->m_sdfArguments.m_sdfFileName,sdfFileName);
} else
{
command->m_sdfArguments.m_sdfFileName[0] = 0;
}
command->m_updateFlags = SDF_ARGS_FILE_NAME;
return (b3SharedMemoryCommandHandle) command;
}
b3SharedMemoryCommandHandle b3SaveWorldCommandInit(b3PhysicsClientHandle physClient, const char* sdfFileName)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SAVE_WORLD;
int len = strlen(sdfFileName);
if (len<MAX_SDF_FILENAME_LENGTH)
{
strcpy(command->m_sdfArguments.m_sdfFileName,sdfFileName);
} else
{
command->m_sdfArguments.m_sdfFileName[0] = 0;
}
command->m_updateFlags = SDF_ARGS_FILE_NAME;
return (b3SharedMemoryCommandHandle) command;
}
b3SharedMemoryCommandHandle b3LoadUrdfCommandInit(b3PhysicsClientHandle physClient, const char* urdfFileName)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_URDF;
int len = strlen(urdfFileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_urdfArguments.m_urdfFileName, urdfFileName);
}
else
{
command->m_urdfArguments.m_urdfFileName[0] = 0;
}
command->m_updateFlags = URDF_ARGS_FILE_NAME;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
b3SharedMemoryCommandHandle b3LoadBulletCommandInit(b3PhysicsClientHandle physClient, const char* fileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_BULLET;
int len = strlen(fileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_fileArguments.m_fileName, fileName);
}
else
{
command->m_fileArguments.m_fileName[0] = 0;
}
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
b3SharedMemoryCommandHandle b3SaveBulletCommandInit(b3PhysicsClientHandle physClient, const char* fileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SAVE_BULLET;
int len = strlen(fileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_fileArguments.m_fileName, fileName);
}
else
{
command->m_fileArguments.m_fileName[0] = 0;
}
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
b3SharedMemoryCommandHandle b3LoadMJCFCommandInit(b3PhysicsClientHandle physClient, const char* fileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_MJCF;
int len = strlen(fileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_fileArguments.m_fileName, fileName);
}
else
{
command->m_fileArguments.m_fileName[0] = 0;
}
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
b3SharedMemoryCommandHandle b3LoadBunnyCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_BUNNY;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle) command;
}
int b3LoadBunnySetScale(b3SharedMemoryCommandHandle commandHandle, double scale)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_LOAD_BUNNY);
command->m_loadBunnyArguments.m_scale = scale;
command->m_updateFlags |= LOAD_BUNNY_UPDATE_SCALE;
return 0;
}
int b3LoadBunnySetMass(b3SharedMemoryCommandHandle commandHandle, double mass)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_LOAD_BUNNY);
command->m_loadBunnyArguments.m_mass = mass;
command->m_updateFlags |= LOAD_BUNNY_UPDATE_MASS;
return 0;
}
int b3LoadBunnySetCollisionMargin(b3SharedMemoryCommandHandle commandHandle, double collisionMargin)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_LOAD_BUNNY);
command->m_loadBunnyArguments.m_collisionMargin = collisionMargin;
command->m_updateFlags |= LOAD_BUNNY_UPDATE_COLLISION_MARGIN;
return 0;
}
int b3LoadUrdfCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_URDF);
command->m_updateFlags |=URDF_ARGS_USE_MULTIBODY;
command->m_urdfArguments.m_useMultiBody = useMultiBody;
return 0;
}
int b3LoadSdfCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_SDF);
command->m_updateFlags |=URDF_ARGS_USE_MULTIBODY;
command->m_sdfArguments.m_useMultiBody = useMultiBody;
return 0;
}
int b3LoadUrdfCommandSetUseFixedBase(b3SharedMemoryCommandHandle commandHandle, int useFixedBase)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_URDF);
if (command && (command->m_type == CMD_LOAD_URDF))
{
command->m_updateFlags |= URDF_ARGS_USE_FIXED_BASE;
command->m_urdfArguments.m_useFixedBase = useFixedBase;
return 0;
}
return -1;
}
int b3LoadUrdfCommandSetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX,double startPosY,double startPosZ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
if (command)
{
b3Assert(command->m_type == CMD_LOAD_URDF);
if (command->m_type == CMD_LOAD_URDF)
{
command->m_urdfArguments.m_initialPosition[0] = startPosX;
command->m_urdfArguments.m_initialPosition[1] = startPosY;
command->m_urdfArguments.m_initialPosition[2] = startPosZ;
command->m_updateFlags |= URDF_ARGS_INITIAL_POSITION;
}
return 0;
}
return -1;
}
int b3LoadUrdfCommandSetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX,double startOrnY,double startOrnZ, double startOrnW)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
if (command)
{
b3Assert(command->m_type == CMD_LOAD_URDF);
if (command->m_type == CMD_LOAD_URDF)
{
command->m_urdfArguments.m_initialOrientation[0] = startOrnX;
command->m_urdfArguments.m_initialOrientation[1] = startOrnY;
command->m_urdfArguments.m_initialOrientation[2] = startOrnZ;
command->m_urdfArguments.m_initialOrientation[3] = startOrnW;
command->m_updateFlags |= URDF_ARGS_INITIAL_ORIENTATION;
}
return 0;
}
return -1;
}
b3SharedMemoryCommandHandle b3InitPhysicsParamCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SEND_PHYSICS_SIMULATION_PARAMETERS;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle) command;
}
int b3PhysicsParamSetGravity(b3SharedMemoryCommandHandle commandHandle, double gravx,double gravy, double gravz)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_gravityAcceleration[0] = gravx;
command->m_physSimParamArgs.m_gravityAcceleration[1] = gravy;
command->m_physSimParamArgs.m_gravityAcceleration[2] = gravz;
command->m_updateFlags |= SIM_PARAM_UPDATE_GRAVITY;
return 0;
}
int b3PhysicsParamSetRealTimeSimulation(b3SharedMemoryCommandHandle commandHandle, int enableRealTimeSimulation)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_allowRealTimeSimulation = (enableRealTimeSimulation!=0);
command->m_updateFlags |= SIM_PARAM_UPDATE_REAL_TIME_SIMULATION;
return 0;
}
int b3PhysicsParamSetInternalSimFlags(b3SharedMemoryCommandHandle commandHandle, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_internalSimFlags = flags;
command->m_updateFlags |= SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS;
return 0;
}
int b3PhysicsParamSetNumSolverIterations(b3SharedMemoryCommandHandle commandHandle, int numSolverIterations)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_numSolverIterations = numSolverIterations;
command->m_updateFlags |= SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS;
return 0;
}
int b3PhysicsParamSetTimeStep(b3SharedMemoryCommandHandle commandHandle, double timeStep)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_DELTA_TIME;
command->m_physSimParamArgs.m_deltaTime = timeStep;
return 0;
}
2016-08-24 21:25:06 +00:00
int b3PhysicsParamSetNumSubSteps(b3SharedMemoryCommandHandle commandHandle, int numSubSteps)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS;
command->m_physSimParamArgs.m_numSimulationSubSteps = numSubSteps;
return 0;
}
int b3PhysicsParamSetDefaultContactERP(b3SharedMemoryCommandHandle commandHandle, double defaultContactERP)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP;
command->m_physSimParamArgs.m_defaultContactERP = defaultContactERP;
return 0;
}
int b3PhysicsParamSetDefaultContactERP(b3SharedMemoryCommandHandle commandHandle, double defaultContactERP);
b3SharedMemoryCommandHandle b3InitStepSimulationCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_STEP_FORWARD_SIMULATION;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle) command;
}
b3SharedMemoryCommandHandle b3InitResetSimulationCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_RESET_SIMULATION;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle) command;
}
b3SharedMemoryCommandHandle b3JointControlCommandInit(b3PhysicsClientHandle physClient, int controlMode)
{
return b3JointControlCommandInit2(physClient,0,controlMode);
}
b3SharedMemoryCommandHandle b3JointControlCommandInit2( b3PhysicsClientHandle physClient, int bodyUniqueId, int controlMode)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SEND_DESIRED_STATE;
command->m_sendDesiredStateCommandArgument.m_controlMode = controlMode;
command->m_sendDesiredStateCommandArgument.m_bodyUniqueId = bodyUniqueId;
command->m_updateFlags = 0;
for (int i=0;i<MAX_DEGREE_OF_FREEDOM;i++)
{
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[i] = 0;
}
return (b3SharedMemoryCommandHandle) command;
}
int b3JointControlSetDesiredPosition(b3SharedMemoryCommandHandle commandHandle, int qIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
command->m_sendDesiredStateCommandArgument.m_desiredStateQ[qIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_Q;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[qIndex] |= SIM_DESIRED_STATE_HAS_Q;
return 0;
}
int b3JointControlSetKp(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
command->m_sendDesiredStateCommandArgument.m_Kp[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_KP;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_KP;
return 0;
}
int b3JointControlSetKd(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
command->m_sendDesiredStateCommandArgument.m_Kd[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_KD;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_KD;
return 0;
}
int b3JointControlSetDesiredVelocity(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
command->m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_QDOT;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_QDOT;
return 0;
}
int b3JointControlSetMaximumForce(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
command->m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
return 0;
}
int b3JointControlSetDesiredForceTorque(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
command->m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
return 0;
}
b3SharedMemoryCommandHandle b3RequestActualStateCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type =CMD_REQUEST_ACTUAL_STATE;
command->m_requestActualStateInformationCommandArgument.m_bodyUniqueId = bodyUniqueId;
return (b3SharedMemoryCommandHandle) command;
}
void b3GetJointState(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int jointIndex, b3JointSensorState *state)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle;
b3Assert(status);
int bodyIndex = status->m_sendActualStateArgs.m_bodyUniqueId;
b3Assert(bodyIndex>=0);
if (bodyIndex>=0)
{
b3JointInfo info;
b3GetJointInfo(physClient, bodyIndex,jointIndex, &info);
state->m_jointPosition = status->m_sendActualStateArgs.m_actualStateQ[info.m_qIndex];
state->m_jointVelocity = status->m_sendActualStateArgs.m_actualStateQdot[info.m_uIndex];
for (int ii(0); ii < 6; ++ii) {
state->m_jointForceTorque[ii] = status->m_sendActualStateArgs.m_jointReactionForces[6 * jointIndex + ii];
}
state->m_jointMotorTorque = status->m_sendActualStateArgs.m_jointMotorForce[jointIndex];
}
}
void b3GetLinkState(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int linkIndex, b3LinkState *state)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle;
b3Assert(status);
int bodyIndex = status->m_sendActualStateArgs.m_bodyUniqueId;
b3Assert(bodyIndex>=0);
if (bodyIndex>=0)
{
for (int i = 0; i < 3; ++i)
{
state->m_worldPosition[i] = status->m_sendActualStateArgs.m_linkState[7 * linkIndex + i];
state->m_localInertialPosition[i] = status->m_sendActualStateArgs.m_linkLocalInertialFrames[7 * linkIndex + i];
}
for (int i = 0; i < 4; ++i)
{
state->m_worldOrientation[i] = status->m_sendActualStateArgs.m_linkState[7 * linkIndex + 3 + i];
state->m_localInertialOrientation[i] = status->m_sendActualStateArgs.m_linkLocalInertialFrames[7 * linkIndex + 3 + i];
}
}
}
b3SharedMemoryCommandHandle b3CreateBoxShapeCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CREATE_BOX_COLLISION_SHAPE;
command->m_updateFlags =0;
return (b3SharedMemoryCommandHandle) command;
}
int b3CreateBoxCommandSetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX,double startPosY,double startPosZ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |=BOX_SHAPE_HAS_INITIAL_POSITION;
command->m_createBoxShapeArguments.m_initialPosition[0] = startPosX;
command->m_createBoxShapeArguments.m_initialPosition[1] = startPosY;
command->m_createBoxShapeArguments.m_initialPosition[2] = startPosZ;
return 0;
}
int b3CreateBoxCommandSetHalfExtents(b3SharedMemoryCommandHandle commandHandle, double halfExtentsX,double halfExtentsY,double halfExtentsZ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |=BOX_SHAPE_HAS_HALF_EXTENTS;
command->m_createBoxShapeArguments.m_halfExtentsX = halfExtentsX;
command->m_createBoxShapeArguments.m_halfExtentsY = halfExtentsY;
command->m_createBoxShapeArguments.m_halfExtentsZ = halfExtentsZ;
return 0;
}
int b3CreateBoxCommandSetMass(b3SharedMemoryCommandHandle commandHandle, double mass)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |=BOX_SHAPE_HAS_MASS;
command->m_createBoxShapeArguments.m_mass = mass;
return 0;
}
int b3CreateBoxCommandSetCollisionShapeType(b3SharedMemoryCommandHandle commandHandle, int collisionShapeType)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |=BOX_SHAPE_HAS_COLLISION_SHAPE_TYPE;
command->m_createBoxShapeArguments.m_collisionShapeType = collisionShapeType;
return 0;
}
int b3CreateBoxCommandSetColorRGBA(b3SharedMemoryCommandHandle commandHandle, double red,double green,double blue, double alpha)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |=BOX_SHAPE_HAS_COLOR;
command->m_createBoxShapeArguments.m_colorRGBA[0] = red;
command->m_createBoxShapeArguments.m_colorRGBA[1] = green;
command->m_createBoxShapeArguments.m_colorRGBA[2] = blue;
command->m_createBoxShapeArguments.m_colorRGBA[3] = alpha;
return 0;
}
int b3CreateBoxCommandSetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX,double startOrnY,double startOrnZ, double startOrnW)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |=BOX_SHAPE_HAS_INITIAL_ORIENTATION;
command->m_createBoxShapeArguments.m_initialOrientation[0] = startOrnX;
command->m_createBoxShapeArguments.m_initialOrientation[1] = startOrnY;
command->m_createBoxShapeArguments.m_initialOrientation[2] = startOrnZ;
command->m_createBoxShapeArguments.m_initialOrientation[3] = startOrnW;
return 0;
}
b3SharedMemoryCommandHandle b3CreatePoseCommandInit(b3PhysicsClientHandle physClient, int bodyIndex)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_INIT_POSE;
command->m_updateFlags =0;
command->m_initPoseArgs.m_bodyUniqueId = bodyIndex;
//a bit slow, initialing the full range to zero...
for (int i=0;i<MAX_DEGREE_OF_FREEDOM;i++)
{
command->m_initPoseArgs.m_hasInitialStateQ[i] = 0;
}
return (b3SharedMemoryCommandHandle) command;
}
int b3CreatePoseCommandSetBasePosition(b3SharedMemoryCommandHandle commandHandle, double startPosX,double startPosY,double startPosZ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |=INIT_POSE_HAS_INITIAL_POSITION;
command->m_initPoseArgs.m_initialStateQ[0] = startPosX;
command->m_initPoseArgs.m_initialStateQ[1] = startPosY;
command->m_initPoseArgs.m_initialStateQ[2] = startPosZ;
command->m_initPoseArgs.m_hasInitialStateQ[0] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[1] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[2] = 1;
return 0;
}
int b3CreatePoseCommandSetBaseOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX,double startOrnY,double startOrnZ, double startOrnW)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |=INIT_POSE_HAS_INITIAL_ORIENTATION;
command->m_initPoseArgs.m_initialStateQ[3] = startOrnX;
command->m_initPoseArgs.m_initialStateQ[4] = startOrnY;
command->m_initPoseArgs.m_initialStateQ[5] = startOrnZ;
command->m_initPoseArgs.m_initialStateQ[6] = startOrnW;
command->m_initPoseArgs.m_hasInitialStateQ[3] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[4] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[5] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[6] = 1;
return 0;
}
int b3CreatePoseCommandSetJointPositions(b3SharedMemoryCommandHandle commandHandle, int numJointPositions, const double* jointPositions)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |=INIT_POSE_HAS_JOINT_STATE;
for (int i=0;i<numJointPositions;i++)
{
command->m_initPoseArgs.m_initialStateQ[i+7] = jointPositions[i];
command->m_initPoseArgs.m_hasInitialStateQ[i+7] = 1;
}
return 0;
}
int b3CreatePoseCommandSetJointPosition(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, double jointPosition)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |=INIT_POSE_HAS_JOINT_STATE;
b3JointInfo info;
b3GetJointInfo(physClient, command->m_initPoseArgs.m_bodyUniqueId,jointIndex, &info);
btAssert((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_qIndex >=0);
if ((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_qIndex >=0)
{
command->m_initPoseArgs.m_initialStateQ[info.m_qIndex] = jointPosition;
command->m_initPoseArgs.m_hasInitialStateQ[info.m_qIndex] = 1;
}
return 0;
}
b3SharedMemoryCommandHandle b3CreateSensorCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CREATE_SENSOR;
command->m_updateFlags = 0;
command->m_createSensorArguments.m_numJointSensorChanges = 0;
command->m_createSensorArguments.m_bodyUniqueId = bodyUniqueId;
return (b3SharedMemoryCommandHandle) command;
}
int b3CreateSensorEnable6DofJointForceTorqueSensor(b3SharedMemoryCommandHandle commandHandle, int jointIndex, int enable)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_SENSOR);
int curIndex = command->m_createSensorArguments.m_numJointSensorChanges;
command->m_createSensorArguments.m_sensorType[curIndex] = SENSOR_FORCE_TORQUE;
command->m_createSensorArguments.m_jointIndex[curIndex] = jointIndex;
command->m_createSensorArguments.m_enableJointForceSensor[curIndex] = enable;
command->m_createSensorArguments.m_numJointSensorChanges++;
return 0;
}
int b3CreateSensorEnableIMUForLink(b3SharedMemoryCommandHandle commandHandle, int linkIndex, int enable)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_SENSOR);
int curIndex = command->m_createSensorArguments.m_numJointSensorChanges;
command->m_createSensorArguments.m_sensorType[curIndex] = SENSOR_IMU;
command->m_createSensorArguments.m_linkIndex[curIndex] = linkIndex;
command->m_createSensorArguments.m_enableSensor[curIndex] = enable;
command->m_createSensorArguments.m_numJointSensorChanges++;
return 0;
}
void b3DisconnectSharedMemory(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
cl->disconnectSharedMemory();
delete cl;
}
b3SharedMemoryStatusHandle b3ProcessServerStatus(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
if (cl && cl->isConnected())
{
const SharedMemoryStatus* stat = cl->processServerStatus();
return (b3SharedMemoryStatusHandle) stat;
}
return 0;
}
int b3GetStatusType(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle;
b3Assert(status);
if (status)
{
return status->m_type;
}
return CMD_INVALID_STATUS;
}
int b3GetStatusBodyIndices(b3SharedMemoryStatusHandle statusHandle, int* bodyIndicesOut, int bodyIndicesCapacity)
{
int numBodies = 0;
const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle;
b3Assert(status);
if (status)
{
switch (status->m_type)
{
case CMD_BULLET_LOADING_COMPLETED:
case CMD_SDF_LOADING_COMPLETED:
{
int i,maxBodies;
numBodies = status->m_sdfLoadedArgs.m_numBodies;
maxBodies = btMin(bodyIndicesCapacity, numBodies);
for (i=0;i<maxBodies;i++)
{
bodyIndicesOut[i] = status->m_sdfLoadedArgs.m_bodyUniqueIds[i];
}
break;
}
}
}
return numBodies;
}
int b3GetStatusBodyIndex(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle;
b3Assert(status);
int bodyId = -1;
if (status)
{
switch (status->m_type)
{
case CMD_URDF_LOADING_COMPLETED:
{
bodyId = status->m_dataStreamArguments.m_bodyUniqueId;
break;
}
case CMD_RIGID_BODY_CREATION_COMPLETED:
{
bodyId = status->m_rigidBodyCreateArgs.m_bodyUniqueId;
break;
}
default:
{
b3Assert(0);
}
};
}
return bodyId;
}
int b3GetStatusActualState(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* numDegreeOfFreedomQ,
int* numDegreeOfFreedomU,
const double* rootLocalInertialFrame[],
const double* actualStateQ[],
const double* actualStateQdot[],
const double* jointReactionForces[]) {
const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle;
const SendActualStateArgs &args = status->m_sendActualStateArgs;
2016-06-14 01:58:52 +00:00
btAssert(status->m_type == CMD_ACTUAL_STATE_UPDATE_COMPLETED);
if (status->m_type != CMD_ACTUAL_STATE_UPDATE_COMPLETED)
return false;
if (bodyUniqueId) {
*bodyUniqueId = args.m_bodyUniqueId;
}
if (numDegreeOfFreedomQ) {
*numDegreeOfFreedomQ = args.m_numDegreeOfFreedomQ;
}
if (numDegreeOfFreedomU) {
*numDegreeOfFreedomU = args.m_numDegreeOfFreedomU;
}
if (rootLocalInertialFrame) {
*rootLocalInertialFrame = args.m_rootLocalInertialFrame;
}
if (actualStateQ) {
*actualStateQ = args.m_actualStateQ;
}
if (actualStateQdot) {
*actualStateQdot = args.m_actualStateQdot;
}
if (jointReactionForces) {
*jointReactionForces = args.m_jointReactionForces;
}
return true;
}
int b3CanSubmitCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
if (cl)
{
return (int)cl->canSubmitCommand();
}
return false;
}
int b3SubmitClientCommand(b3PhysicsClientHandle physClient, const b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(command);
b3Assert(cl);
if (command && cl)
{
return (int)cl->submitClientCommand(*command);
}
return -1;
}
b3SharedMemoryStatusHandle b3SubmitClientCommandAndWaitStatus(b3PhysicsClientHandle physClient, const b3SharedMemoryCommandHandle commandHandle)
{
int timeout = 1024 * 1024 * 1024;
b3SharedMemoryStatusHandle statusHandle = 0;
b3Assert(commandHandle);
b3Assert(physClient);
if (physClient && commandHandle)
{
b3SubmitClientCommand(physClient, commandHandle);
while ((statusHandle == 0) && (timeout-- > 0))
{
statusHandle = b3ProcessServerStatus(physClient);
}
return (b3SharedMemoryStatusHandle)statusHandle;
}
return 0;
}
///return the total number of bodies in the simulation
int b3GetNumBodies(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
return cl->getNumBodies();
}
/// return the body unique id, given the index in range [0 , b3GetNumBodies() )
int b3GetBodyUniqueId(b3PhysicsClientHandle physClient, int serialIndex)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
return cl->getBodyUniqueId(serialIndex);
}
///given a body unique id, return the body information. See b3BodyInfo in SharedMemoryPublic.h
int b3GetBodyInfo(b3PhysicsClientHandle physClient, int bodyUniqueId, struct b3BodyInfo* info)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
return cl->getBodyInfo(bodyUniqueId,*info);
}
int b3GetNumJoints(b3PhysicsClientHandle physClient, int bodyId)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
return cl->getNumJoints(bodyId);
}
int b3GetJointInfo(b3PhysicsClientHandle physClient, int bodyIndex, int jointIndex, struct b3JointInfo* info)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
return cl->getJointInfo(bodyIndex, jointIndex, *info);
}
b3SharedMemoryCommandHandle b3InitCreateUserConstraintCommand(b3PhysicsClientHandle physClient, int parentBodyIndex, int parentJointIndex, int childBodyIndex, int childJointIndex, struct b3JointInfo* info)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_CONSTRAINT;
command->m_updateFlags = USER_CONSTRAINT_ADD_CONSTRAINT;
command->m_userConstraintArguments.m_parentBodyIndex = parentBodyIndex;
command->m_userConstraintArguments.m_parentJointIndex = parentJointIndex;
command->m_userConstraintArguments.m_childBodyIndex = childBodyIndex;
command->m_userConstraintArguments.m_childJointIndex = childJointIndex;
for (int i = 0; i < 7; ++i) {
command->m_userConstraintArguments.m_parentFrame[i] = info->m_parentFrame[i];
command->m_userConstraintArguments.m_childFrame[i] = info->m_childFrame[i];
}
for (int i = 0; i < 3; ++i) {
command->m_userConstraintArguments.m_jointAxis[i] = info->m_jointAxis[i];
}
command->m_userConstraintArguments.m_jointType = info->m_jointType;
return (b3SharedMemoryCommandHandle)command;
}
b3SharedMemoryCommandHandle b3InitRemoveUserConstraintCommand(b3PhysicsClientHandle physClient, int userConstraintUniqueId)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_CONSTRAINT;
command->m_updateFlags = USER_CONSTRAINT_REMOVE_CONSTRAINT;
command->m_userConstraintArguments.m_userConstraintUniqueId = userConstraintUniqueId;
return (b3SharedMemoryCommandHandle)command;
}
int b3GetStatusUserConstraintUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus* ) statusHandle;
b3Assert(status);
b3Assert(status->m_type == CMD_USER_CONSTRAINT_COMPLETED);
if (status && status->m_type == CMD_USER_CONSTRAINT_COMPLETED)
{
return status->m_userConstraintResultArgs.m_userConstraintUniqueId;
}
return -1;
}
b3SharedMemoryCommandHandle b3PickBody(b3PhysicsClientHandle physClient, double rayFromWorldX,
double rayFromWorldY, double rayFromWorldZ,
double rayToWorldX, double rayToWorldY, double rayToWorldZ)
{
PhysicsClient *cl = (PhysicsClient *)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand *command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_PICK_BODY;
command->m_pickBodyArguments.m_rayFromWorld[0] = rayFromWorldX;
command->m_pickBodyArguments.m_rayFromWorld[1] = rayFromWorldY;
command->m_pickBodyArguments.m_rayFromWorld[2] = rayFromWorldZ;
command->m_pickBodyArguments.m_rayToWorld[0] = rayToWorldX;
command->m_pickBodyArguments.m_rayToWorld[1] = rayToWorldY;
command->m_pickBodyArguments.m_rayToWorld[2] = rayToWorldZ;
return (b3SharedMemoryCommandHandle)command;
}
b3SharedMemoryCommandHandle b3MovePickedBody(b3PhysicsClientHandle physClient, double rayFromWorldX,
double rayFromWorldY, double rayFromWorldZ,
double rayToWorldX, double rayToWorldY,
double rayToWorldZ)
{
PhysicsClient *cl = (PhysicsClient *)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand *command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_MOVE_PICKED_BODY;
command->m_pickBodyArguments.m_rayFromWorld[0] = rayFromWorldX;
command->m_pickBodyArguments.m_rayFromWorld[1] = rayFromWorldY;
command->m_pickBodyArguments.m_rayFromWorld[2] = rayFromWorldZ;
command->m_pickBodyArguments.m_rayToWorld[0] = rayToWorldX;
command->m_pickBodyArguments.m_rayToWorld[1] = rayToWorldY;
command->m_pickBodyArguments.m_rayToWorld[2] = rayToWorldZ;
return (b3SharedMemoryCommandHandle)command;
}
b3SharedMemoryCommandHandle b3RemovePickingConstraint(b3PhysicsClientHandle physClient)
{
PhysicsClient *cl = (PhysicsClient *)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand *command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REMOVE_PICKING_CONSTRAINT_BODY;
return (b3SharedMemoryCommandHandle)command;
}
b3SharedMemoryCommandHandle b3InitRequestDebugLinesCommand(b3PhysicsClientHandle physClient, int debugMode)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type =CMD_REQUEST_DEBUG_LINES;
command->m_requestDebugLinesArguments.m_debugMode = debugMode;
command->m_requestDebugLinesArguments.m_startingLineIndex = 0;
return (b3SharedMemoryCommandHandle) command;
}
void b3GetDebugLines(b3PhysicsClientHandle physClient, struct b3DebugLines* lines)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(lines);
if (lines)
{
lines->m_numDebugLines = cl->getNumDebugLines();
lines->m_linesFrom = cl->getDebugLinesFrom();
lines->m_linesTo = cl->getDebugLinesTo();
lines->m_linesColor = cl->getDebugLinesColor();
}
}
/// Add/remove user-specific debug lines and debug text messages
b3SharedMemoryCommandHandle b3InitUserDebugDrawAddLine3D(b3PhysicsClientHandle physClient, double fromXYZ[3], double toXYZ[3], double colorRGB[3], double lineWidth, double lifeTime)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type =CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_HAS_LINE; //USER_DEBUG_HAS_TEXT
command->m_userDebugDrawArgs.m_debugLineFromXYZ[0] = fromXYZ[0];
command->m_userDebugDrawArgs.m_debugLineFromXYZ[1] = fromXYZ[1];
command->m_userDebugDrawArgs.m_debugLineFromXYZ[2] = fromXYZ[2];
command->m_userDebugDrawArgs.m_debugLineToXYZ[0] = toXYZ[0];
command->m_userDebugDrawArgs.m_debugLineToXYZ[1] = toXYZ[1];
command->m_userDebugDrawArgs.m_debugLineToXYZ[2] = toXYZ[2];
command->m_userDebugDrawArgs.m_debugLineColorRGB[0] = colorRGB[0];
command->m_userDebugDrawArgs.m_debugLineColorRGB[1] = colorRGB[1];
command->m_userDebugDrawArgs.m_debugLineColorRGB[2] = colorRGB[2];
command->m_userDebugDrawArgs.m_lineWidth = lineWidth;
command->m_userDebugDrawArgs.m_lifeTime = lifeTime;
return (b3SharedMemoryCommandHandle) command;
}
b3SharedMemoryCommandHandle b3InitUserDebugDrawAddText3D(b3PhysicsClientHandle physClient, const char* txt, double positionXYZ[3], double colorRGB[3], double textSize, double lifeTime)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type =CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_HAS_TEXT;
int len = strlen(txt);
if (len<MAX_FILENAME_LENGTH)
{
strcpy(command->m_userDebugDrawArgs.m_text,txt);
} else
{
command->m_userDebugDrawArgs.m_text[0] = 0;
}
command->m_userDebugDrawArgs.m_textPositionXYZ[0] = positionXYZ[0];
command->m_userDebugDrawArgs.m_textPositionXYZ[1] = positionXYZ[1];
command->m_userDebugDrawArgs.m_textPositionXYZ[2] = positionXYZ[2];
command->m_userDebugDrawArgs.m_textColorRGB[0] = colorRGB[0];
command->m_userDebugDrawArgs.m_textColorRGB[1] = colorRGB[1];
command->m_userDebugDrawArgs.m_textColorRGB[2] = colorRGB[2];
command->m_userDebugDrawArgs.m_textSize = textSize;
command->m_userDebugDrawArgs.m_lifeTime = lifeTime;
return (b3SharedMemoryCommandHandle) command;
}
b3SharedMemoryCommandHandle b3InitUserDebugDrawRemove(b3PhysicsClientHandle physClient, int debugItemUniqueId)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type =CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_REMOVE_ONE_ITEM;
command->m_userDebugDrawArgs.m_removeItemUniqueId = debugItemUniqueId;
return (b3SharedMemoryCommandHandle) command;
}
b3SharedMemoryCommandHandle b3InitUserDebugDrawRemoveAll(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type =CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_REMOVE_ALL;
return (b3SharedMemoryCommandHandle) command;
}
int b3GetDebugItemUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status->m_type == CMD_USER_DEBUG_DRAW_COMPLETED);
if (status->m_type != CMD_USER_DEBUG_DRAW_COMPLETED)
return -1;
return status->m_userDebugDrawArgs.m_debugItemUniqueId;
}
///request an image from a simulated camera, using a software renderer.
b3SharedMemoryCommandHandle b3InitRequestCameraImage(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type =CMD_REQUEST_CAMERA_IMAGE_DATA;
command->m_requestPixelDataArguments.m_startPixelIndex = 0;
command->m_updateFlags = 0;//REQUEST_PIXEL_ARGS_USE_HARDWARE_OPENGL;
return (b3SharedMemoryCommandHandle) command;
}
void b3RequestCameraImageSelectRenderer(b3SharedMemoryCommandHandle commandHandle, int renderer)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3Assert(renderer>(1<<15));
command->m_updateFlags |= renderer;
}
2016-06-01 18:04:10 +00:00
void b3RequestCameraImageSetCameraMatrices(b3SharedMemoryCommandHandle commandHandle, float viewMatrix[16], float projectionMatrix[16])
{
2016-06-01 18:04:10 +00:00
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
for (int i=0;i<16;i++)
{
command->m_requestPixelDataArguments.m_projectionMatrix[i] = projectionMatrix[i];
command->m_requestPixelDataArguments.m_viewMatrix[i] = viewMatrix[i];
}
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
void b3RequestCameraImageSetLightDirection(b3SharedMemoryCommandHandle commandHandle, const float lightDirection[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
for (int i = 0; i<3; i++)
{
command->m_requestPixelDataArguments.m_lightDirection[i] = lightDirection[i];
}
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_LIGHT_DIRECTION;
}
void b3RequestCameraImageSetLightColor(b3SharedMemoryCommandHandle commandHandle, const float lightColor[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
for (int i = 0; i<3; i++)
{
command->m_requestPixelDataArguments.m_lightColor[i] = lightColor[i];
}
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_LIGHT_COLOR;
}
void b3ComputeViewMatrixFromPositions(const float cameraPosition[3], const float cameraTargetPosition[3], const float cameraUp[3], float viewMatrix[16])
{
b3Vector3 eye = b3MakeVector3(cameraPosition[0], cameraPosition[1], cameraPosition[2]);
b3Vector3 center = b3MakeVector3(cameraTargetPosition[0], cameraTargetPosition[1], cameraTargetPosition[2]);
b3Vector3 up = b3MakeVector3(cameraUp[0], cameraUp[1], cameraUp[2]);
b3Vector3 f = (center - eye).normalized();
b3Vector3 u = up.normalized();
b3Vector3 s = (f.cross(u)).normalized();
u = s.cross(f);
viewMatrix[0 * 4 + 0] = s.x;
viewMatrix[1 * 4 + 0] = s.y;
viewMatrix[2 * 4 + 0] = s.z;
viewMatrix[0 * 4 + 1] = u.x;
viewMatrix[1 * 4 + 1] = u.y;
viewMatrix[2 * 4 + 1] = u.z;
viewMatrix[0 * 4 + 2] = -f.x;
viewMatrix[1 * 4 + 2] = -f.y;
viewMatrix[2 * 4 + 2] = -f.z;
viewMatrix[0 * 4 + 3] = 0.f;
viewMatrix[1 * 4 + 3] = 0.f;
viewMatrix[2 * 4 + 3] = 0.f;
viewMatrix[3 * 4 + 0] = -s.dot(eye);
viewMatrix[3 * 4 + 1] = -u.dot(eye);
viewMatrix[3 * 4 + 2] = f.dot(eye);
viewMatrix[3 * 4 + 3] = 1.f;
}
void b3ComputeViewMatrixFromYawPitchRoll(const float cameraTargetPosition[3], float distance, float yaw, float pitch, float roll, int upAxis, float viewMatrix[16])
{
b3Vector3 camUpVector;
b3Vector3 camForward;
b3Vector3 camPos;
b3Vector3 camTargetPos = b3MakeVector3(cameraTargetPosition[0], cameraTargetPosition[1], cameraTargetPosition[2]);
b3Vector3 eyePos = b3MakeVector3(0, 0, 0);
int forwardAxis(-1);
{
switch (upAxis)
{
case 1:
{
forwardAxis = 0;
eyePos[forwardAxis] = -distance;
camForward = b3MakeVector3(eyePos[0], eyePos[1], eyePos[2]);
if (camForward.length2() < B3_EPSILON)
{
camForward.setValue(1.f, 0.f, 0.f);
}
else
{
camForward.normalize();
}
b3Scalar rollRad = roll * b3Scalar(0.01745329251994329547);
b3Quaternion rollRot(camForward, rollRad);
camUpVector = b3QuatRotate(rollRot, b3MakeVector3(0, 1, 0));
//gLightPos = b3MakeVector3(-50.f,100,30);
break;
}
case 2:
{
forwardAxis = 1;
eyePos[forwardAxis] = -distance;
camForward = b3MakeVector3(eyePos[0], eyePos[1], eyePos[2]);
if (camForward.length2() < B3_EPSILON)
{
camForward.setValue(1.f, 0.f, 0.f);
}
else
{
camForward.normalize();
}
b3Scalar rollRad = roll * b3Scalar(0.01745329251994329547);
b3Quaternion rollRot(camForward, rollRad);
camUpVector = b3QuatRotate(rollRot, b3MakeVector3(0, 0, 1));
//gLightPos = b3MakeVector3(-50.f,30,100);
break;
}
default:
{
//b3Assert(0);
return;
}
};
}
b3Scalar yawRad = yaw * b3Scalar(0.01745329251994329547);// rads per deg
b3Scalar pitchRad = pitch * b3Scalar(0.01745329251994329547);// rads per deg
b3Quaternion pitchRot(camUpVector, pitchRad);
b3Vector3 right = camUpVector.cross(camForward);
b3Quaternion yawRot(right, -yawRad);
eyePos = b3Matrix3x3(pitchRot) * b3Matrix3x3(yawRot) * eyePos;
camPos = eyePos;
camPos += camTargetPos;
float camPosf[4] = { camPos[0],camPos[1],camPos[2],0 };
float camPosTargetf[4] = { camTargetPos[0],camTargetPos[1],camTargetPos[2],0 };
float camUpf[4] = { camUpVector[0],camUpVector[1],camUpVector[2],0 };
b3ComputeViewMatrixFromPositions(camPosf, camPosTargetf, camUpf,viewMatrix);
}
void b3ComputeProjectionMatrix(float left, float right, float bottom, float top, float nearVal, float farVal, float projectionMatrix[16])
{
projectionMatrix[0 * 4 + 0] = (float(2) * nearVal) / (right - left);
projectionMatrix[0 * 4 + 1] = float(0);
projectionMatrix[0 * 4 + 2] = float(0);
projectionMatrix[0 * 4 + 3] = float(0);
projectionMatrix[1 * 4 + 0] = float(0);
projectionMatrix[1 * 4 + 1] = (float(2) * nearVal) / (top - bottom);
projectionMatrix[1 * 4 + 2] = float(0);
projectionMatrix[1 * 4 + 3] = float(0);
projectionMatrix[2 * 4 + 0] = (right + left) / (right - left);
projectionMatrix[2 * 4 + 1] = (top + bottom) / (top - bottom);
projectionMatrix[2 * 4 + 2] = -(farVal + nearVal) / (farVal - nearVal);
projectionMatrix[2 * 4 + 3] = float(-1);
projectionMatrix[3 * 4 + 0] = float(0);
projectionMatrix[3 * 4 + 1] = float(0);
projectionMatrix[3 * 4 + 2] = -(float(2) * farVal * nearVal) / (farVal - nearVal);
projectionMatrix[3 * 4 + 3] = float(0);
}
void b3ComputeProjectionMatrixFOV(float fov, float aspect, float nearVal, float farVal, float projectionMatrix[16])
{
float yScale = 1.0 / tan((3.141592538 / 180.0) * fov / 2);
float xScale = yScale / aspect;
projectionMatrix[0 * 4 + 0] = xScale;
projectionMatrix[0 * 4 + 1] = float(0);
projectionMatrix[0 * 4 + 2] = float(0);
projectionMatrix[0 * 4 + 3] = float(0);
projectionMatrix[1 * 4 + 0] = float(0);
projectionMatrix[1 * 4 + 1] = yScale;
projectionMatrix[1 * 4 + 2] = float(0);
projectionMatrix[1 * 4 + 3] = float(0);
projectionMatrix[2 * 4 + 0] = 0;
projectionMatrix[2 * 4 + 1] = 0;
projectionMatrix[2 * 4 + 2] = (nearVal + farVal) / (nearVal - farVal);
projectionMatrix[2 * 4 + 3] = float(-1);
projectionMatrix[3 * 4 + 0] = float(0);
projectionMatrix[3 * 4 + 1] = float(0);
projectionMatrix[3 * 4 + 2] = (float(2) * farVal * nearVal) / (nearVal - farVal);
projectionMatrix[3 * 4 + 3] = float(0);
}
void b3RequestCameraImageSetViewMatrix2(b3SharedMemoryCommandHandle commandHandle, const float cameraTargetPosition[3], float distance, float yaw, float pitch, float roll, int upAxis)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3ComputeViewMatrixFromYawPitchRoll(cameraTargetPosition, distance, yaw, pitch, roll, upAxis, command->m_requestPixelDataArguments.m_viewMatrix);
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
void b3RequestCameraImageSetViewMatrix(b3SharedMemoryCommandHandle commandHandle, const float cameraPosition[3], const float cameraTargetPosition[3], const float cameraUp[3])
{
float viewMatrix[16];
b3ComputeViewMatrixFromPositions(cameraPosition, cameraTargetPosition, cameraUp, viewMatrix);
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3ComputeViewMatrixFromPositions(cameraPosition, cameraTargetPosition, cameraUp, command->m_requestPixelDataArguments.m_viewMatrix);
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
void b3RequestCameraImageSetProjectionMatrix(b3SharedMemoryCommandHandle commandHandle, float left, float right, float bottom, float top, float nearVal, float farVal)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3ComputeProjectionMatrix(left, right, bottom, top, nearVal, farVal, command->m_requestPixelDataArguments.m_projectionMatrix);
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
void b3RequestCameraImageSetFOVProjectionMatrix(b3SharedMemoryCommandHandle commandHandle, float fov, float aspect, float nearVal, float farVal)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3ComputeProjectionMatrixFOV(fov, aspect, nearVal, farVal, command->m_requestPixelDataArguments.m_projectionMatrix);
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
void b3RequestCameraImageSetPixelResolution(b3SharedMemoryCommandHandle commandHandle, int width, int height )
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
command->m_requestPixelDataArguments.m_pixelWidth = width;
command->m_requestPixelDataArguments.m_pixelHeight = height;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT;
}
void b3GetCameraImageData(b3PhysicsClientHandle physClient, struct b3CameraImageData* imageData)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
if (cl)
{
cl->getCachedCameraImage(imageData);
}
}
///request an contact point information
b3SharedMemoryCommandHandle b3InitRequestContactPointInformation(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type =CMD_REQUEST_CONTACT_POINT_INFORMATION;
command->m_requestContactPointArguments.m_startingContactPointIndex = 0;
command->m_requestContactPointArguments.m_objectAIndexFilter = -1;
command->m_requestContactPointArguments.m_objectBIndexFilter = -1;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle) command;
}
void b3SetContactFilterBodyA(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_requestContactPointArguments.m_objectAIndexFilter = bodyUniqueIdA;
}
void b3SetContactFilterBodyB(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdB)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_requestContactPointArguments.m_objectBIndexFilter = bodyUniqueIdB;
}
2016-11-10 05:01:04 +00:00
///compute the closest points between two bodies
b3SharedMemoryCommandHandle b3InitClosestDistanceQuery(b3PhysicsClientHandle physClient)
{
b3SharedMemoryCommandHandle commandHandle =b3InitRequestContactPointInformation(physClient);
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags = CMD_REQUEST_CONTACT_POINT_HAS_QUERY_MODE;
command->m_requestContactPointArguments.m_mode = CONTACT_QUERY_MODE_COMPUTE_CLOSEST_POINTS;
return commandHandle;
}
void b3SetClosestDistanceFilterBodyA(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA)
{
b3SetContactFilterBodyA(commandHandle,bodyUniqueIdA);
}
void b3SetClosestDistanceFilterBodyB(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdB)
{
b3SetContactFilterBodyB(commandHandle,bodyUniqueIdB);
}
void b3SetClosestDistanceThreshold(b3SharedMemoryCommandHandle commandHandle, double distance)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags += CMD_REQUEST_CONTACT_POINT_HAS_CLOSEST_DISTANCE_THRESHOLD;
command->m_requestContactPointArguments.m_closestDistanceThreshold = distance;
}
///get all the bodies that touch a given axis aligned bounding box specified in world space (min and max coordinates)
b3SharedMemoryCommandHandle b3InitAABBOverlapQuery(b3PhysicsClientHandle physClient, const double aabbMin[3], const double aabbMax[3])
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
2016-11-10 05:01:04 +00:00
b3Assert(command);
command->m_type = CMD_REQUEST_AABB_OVERLAP;
command->m_updateFlags = 0;
command->m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex = 0;
command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[0] = aabbMin[0];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[1] = aabbMin[1];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[2] = aabbMin[2];
2016-11-10 05:01:04 +00:00
command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[0] = aabbMax[0];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[1] = aabbMax[1];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[2] = aabbMax[2];
return (b3SharedMemoryCommandHandle)command;
2016-11-10 05:01:04 +00:00
}
void b3GetAABBOverlapResults(b3PhysicsClientHandle physClient, struct b3AABBOverlapData* data)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedOverlappingObjects(data);
}
2016-11-10 05:01:04 +00:00
}
void b3GetContactPointInformation(b3PhysicsClientHandle physClient, struct b3ContactInformation* contactPointData)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
if (cl)
{
cl->getCachedContactPointInformation(contactPointData);
}
}
2016-11-10 05:01:04 +00:00
void b3GetClosestPointInformation(b3PhysicsClientHandle physClient, struct b3ContactInformation* contactPointInfo)
{
b3GetContactPointInformation(physClient,contactPointInfo);
}
//request visual shape information
b3SharedMemoryCommandHandle b3InitRequestVisualShapeInformation(b3PhysicsClientHandle physClient, int bodyUniqueIdA)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_VISUAL_SHAPE_INFO;
command->m_requestVisualShapeDataArguments.m_bodyUniqueId = bodyUniqueIdA;
command->m_requestVisualShapeDataArguments.m_startingVisualShapeIndex = 0;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle) command;
}
void b3GetVisualShapeInformation(b3PhysicsClientHandle physClient, struct b3VisualShapeInformation* visualShapeInfo)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedVisualShapeInformation(visualShapeInfo);
}
}
2016-10-21 06:40:30 +00:00
b3SharedMemoryCommandHandle b3InitLoadTexture(b3PhysicsClientHandle physClient, const char* filename)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
2016-10-21 06:40:30 +00:00
command->m_type = CMD_LOAD_TEXTURE;
int len = strlen(filename);
if (len<MAX_FILENAME_LENGTH)
{
strcpy(command->m_loadTextureArguments.m_textureFileName,filename);
} else
{
command->m_loadTextureArguments.m_textureFileName[0] = 0;
}
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle) command;
2016-10-21 06:40:30 +00:00
}
b3SharedMemoryCommandHandle b3InitUpdateVisualShape(b3PhysicsClientHandle physClient, int bodyUniqueId, int jointIndex, int shapeIndex, int textureUniqueId)
2016-10-21 06:40:30 +00:00
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_UPDATE_VISUAL_SHAPE;
2016-10-21 06:40:30 +00:00
command->m_updateVisualShapeDataArguments.m_bodyUniqueId = bodyUniqueId;
command->m_updateVisualShapeDataArguments.m_jointIndex = jointIndex;
command->m_updateVisualShapeDataArguments.m_shapeIndex = shapeIndex;
2016-10-21 06:40:30 +00:00
command->m_updateVisualShapeDataArguments.m_textureUniqueId = textureUniqueId;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle) command;
}
b3SharedMemoryCommandHandle b3ApplyExternalForceCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_APPLY_EXTERNAL_FORCE;
command->m_updateFlags = 0;
command->m_externalForceArguments.m_numForcesAndTorques = 0;
return (b3SharedMemoryCommandHandle) command;
}
void b3ApplyExternalForce(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkId, const double force[3], const double position[3], int flag)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_APPLY_EXTERNAL_FORCE);
int index = command->m_externalForceArguments.m_numForcesAndTorques;
command->m_externalForceArguments.m_bodyUniqueIds[index] = bodyUniqueId;
command->m_externalForceArguments.m_linkIds[index] = linkId;
command->m_externalForceArguments.m_forceFlags[index] = EF_FORCE+flag;
for (int i = 0; i < 3; ++i) {
command->m_externalForceArguments.m_forcesAndTorques[index+i] = force[i];
command->m_externalForceArguments.m_positions[index+i] = position[i];
}
command->m_externalForceArguments.m_numForcesAndTorques++;
}
void b3ApplyExternalTorque(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkId, const double torque[3], int flag)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_APPLY_EXTERNAL_FORCE);
int index = command->m_externalForceArguments.m_numForcesAndTorques;
command->m_externalForceArguments.m_bodyUniqueIds[index] = bodyUniqueId;
command->m_externalForceArguments.m_linkIds[index] = linkId;
command->m_externalForceArguments.m_forceFlags[index] = EF_TORQUE+flag;
for (int i = 0; i < 3; ++i) {
command->m_externalForceArguments.m_forcesAndTorques[index+i] = torque[i];
}
command->m_externalForceArguments.m_numForcesAndTorques++;
}
///compute the forces to achieve an acceleration, given a state q and qdot using inverse dynamics
b3SharedMemoryCommandHandle b3CalculateInverseDynamicsCommandInit(b3PhysicsClientHandle physClient, int bodyIndex,
const double* jointPositionsQ, const double* jointVelocitiesQdot, const double* jointAccelerations)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CALCULATE_INVERSE_DYNAMICS;
command->m_updateFlags = 0;
command->m_calculateInverseDynamicsArguments.m_bodyUniqueId = bodyIndex;
int numJoints = cl->getNumJoints(bodyIndex);
for (int i = 0; i < numJoints;i++)
{
command->m_calculateInverseDynamicsArguments.m_jointPositionsQ[i] = jointPositionsQ[i];
command->m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i] = jointVelocitiesQdot[i];
command->m_calculateInverseDynamicsArguments.m_jointAccelerations[i] = jointAccelerations[i];
}
return (b3SharedMemoryCommandHandle)command;
}
int b3GetStatusInverseDynamicsJointForces(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* dofCount,
double* jointForces)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status->m_type == CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED);
if (status->m_type != CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED)
return false;
if (dofCount)
{
*dofCount = status->m_inverseDynamicsResultArgs.m_dofCount;
}
if (bodyUniqueId)
{
*bodyUniqueId = status->m_inverseDynamicsResultArgs.m_bodyUniqueId;
}
if (jointForces)
{
for (int i = 0; i < status->m_inverseDynamicsResultArgs.m_dofCount; i++)
{
jointForces[i] = status->m_inverseDynamicsResultArgs.m_jointForces[i];
}
}
return true;
}
b3SharedMemoryCommandHandle b3CalculateJacobianCommandInit(b3PhysicsClientHandle physClient, int bodyIndex, int linkIndex, const double* localPosition, const double* jointPositionsQ, const double* jointVelocitiesQdot, const double* jointAccelerations)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CALCULATE_JACOBIAN;
command->m_updateFlags = 0;
command->m_calculateJacobianArguments.m_bodyUniqueId = bodyIndex;
command->m_calculateJacobianArguments.m_linkIndex = linkIndex;
command->m_calculateJacobianArguments.m_localPosition[0] = localPosition[0];
command->m_calculateJacobianArguments.m_localPosition[1] = localPosition[1];
command->m_calculateJacobianArguments.m_localPosition[2] = localPosition[2];
int numJoints = cl->getNumJoints(bodyIndex);
for (int i = 0; i < numJoints;i++)
{
command->m_calculateJacobianArguments.m_jointPositionsQ[i] = jointPositionsQ[i];
command->m_calculateJacobianArguments.m_jointVelocitiesQdot[i] = jointVelocitiesQdot[i];
command->m_calculateJacobianArguments.m_jointAccelerations[i] = jointAccelerations[i];
}
return (b3SharedMemoryCommandHandle)command;
}
int b3GetStatusJacobian(b3SharedMemoryStatusHandle statusHandle, double* linearJacobian, double* angularJacobian)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status->m_type == CMD_CALCULATED_JACOBIAN_COMPLETED);
if (status->m_type != CMD_CALCULATED_JACOBIAN_COMPLETED)
return false;
if (linearJacobian)
{
for (int i = 0; i < status->m_jacobianResultArgs.m_dofCount*3; i++)
{
linearJacobian[i] = status->m_jacobianResultArgs.m_linearJacobian[i];
}
}
if (angularJacobian)
{
for (int i = 0; i < status->m_jacobianResultArgs.m_dofCount*3; i++)
{
angularJacobian[i] = status->m_jacobianResultArgs.m_angularJacobian[i];
}
}
return true;
}
///compute the joint positions to move the end effector to a desired target using inverse kinematics
b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyIndex)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CALCULATE_INVERSE_KINEMATICS;
command->m_updateFlags = 0;
command->m_calculateInverseKinematicsArguments.m_bodyUniqueId = bodyIndex;
return (b3SharedMemoryCommandHandle)command;
}
void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
}
void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION+IK_HAS_TARGET_ORIENTATION;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
2016-09-20 00:04:05 +00:00
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = targetOrientation[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = targetOrientation[3];
}
void b3CalculateInverseKinematicsPosWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[3], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION+IK_HAS_NULL_SPACE_VELOCITY;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
for (int i = 0; i < numDof; ++i)
{
command->m_calculateInverseKinematicsArguments.m_lowerLimit[i] = lowerLimit[i];
command->m_calculateInverseKinematicsArguments.m_upperLimit[i] = upperLimit[i];
command->m_calculateInverseKinematicsArguments.m_jointRange[i] = jointRange[i];
command->m_calculateInverseKinematicsArguments.m_restPose[i] = restPose[i];
}
}
void b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION+IK_HAS_TARGET_ORIENTATION+IK_HAS_NULL_SPACE_VELOCITY;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = targetOrientation[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = targetOrientation[3];
for (int i = 0; i < numDof; ++i)
{
command->m_calculateInverseKinematicsArguments.m_lowerLimit[i] = lowerLimit[i];
command->m_calculateInverseKinematicsArguments.m_upperLimit[i] = upperLimit[i];
command->m_calculateInverseKinematicsArguments.m_jointRange[i] = jointRange[i];
command->m_calculateInverseKinematicsArguments.m_restPose[i] = restPose[i];
}
}
int b3GetStatusInverseKinematicsJointPositions(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* dofCount,
double* jointPositions)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status->m_type == CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED);
if (status->m_type != CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED)
return false;
if (dofCount)
{
*dofCount = status->m_inverseKinematicsResultArgs.m_dofCount;
}
if (bodyUniqueId)
{
*bodyUniqueId = status->m_inverseKinematicsResultArgs.m_bodyUniqueId;
}
if (jointPositions)
{
for (int i = 0; i < status->m_inverseKinematicsResultArgs.m_dofCount; i++)
{
jointPositions[i] = status->m_inverseKinematicsResultArgs.m_jointPositions[i];
}
}
return true;
}