now minitaur class can output joint angles, velocities and torques. I also extract evaluate functions to a file

This commit is contained in:
Jie Tan 2017-02-09 14:43:40 -08:00
parent 4df8b27626
commit 509b77054a
3 changed files with 136 additions and 30 deletions

View File

@ -2,15 +2,11 @@ import pybullet as p
import numpy as np
class Minitaur:
def __init__(self):
def __init__(self, urdfRootPath=''):
self.urdfRootPath = urdfRootPath
self.reset()
def reset(self):
self.quadruped = p.loadURDF("quadruped/quadruped.urdf",0,0,.3)
self.kp = 1
self.kd = 0.1
self.maxForce = 3.5
self.motorDir = [1, -1, 1, -1, -1, 1, -1, 1]
def buildJointNameToIdDict(self):
nJoints = p.getNumJoints(self.quadruped)
self.jointNameToId = {}
for i in range(nJoints):
@ -20,13 +16,39 @@ class Minitaur:
for i in range(100):
p.stepSimulation()
def buildMotorIdList(self):
self.motorIdList.append(self.jointNameToId['motor_front_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightR_joint'])
def reset(self):
self.quadruped = p.loadURDF("%s/quadruped/quadruped.urdf" % self.urdfRootPath,0,0,.3)
self.kp = 1
self.kd = 0.1
self.maxForce = 3.5
self.nMotors = 8
self.motorIdList = []
self.motorDir = [1, -1, 1, -1, -1, 1, -1, 1]
self.buildJointNameToIdDict()
self.buildMotorIdList()
def disableAllMotors(self):
nJoints = p.getNumJoints(self.quadruped)
for i in range(nJoints):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=i, controlMode=p.VELOCITY_CONTROL, force=0)
def setMotorAngleById(self, motorId, desiredAngle):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=motorId, controlMode=p.POSITION_CONTROL, targetPosition=desiredAngle, positionGain=self.kp, velocityGain=self.kd, force=self.maxForce)
def setMotorAngleByName(self, motorName, desiredAngle):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=self.jointNameToId[motorName], controlMode=p.POSITION_CONTROL, targetPosition=desiredAngle, positionGain=self.kp, velocityGain=self.kd, force=self.maxForce)
self.setMotorAngleById(self.jointNameToId[motorName], desiredAngle)
def resetPose(self):
#right front leg
@ -76,11 +98,29 @@ class Minitaur:
def applyAction(self, motorCommands):
motorCommandsWithDir = np.multiply(motorCommands, self.motorDir)
self.setMotorAngleByName('motor_front_leftR_joint', motorCommandsWithDir[0])
self.setMotorAngleByName('motor_front_leftL_joint', motorCommandsWithDir[1])
self.setMotorAngleByName('motor_back_leftR_joint', motorCommandsWithDir[2])
self.setMotorAngleByName('motor_back_leftL_joint', motorCommandsWithDir[3])
self.setMotorAngleByName('motor_front_rightL_joint', motorCommandsWithDir[4])
self.setMotorAngleByName('motor_front_rightR_joint', motorCommandsWithDir[5])
self.setMotorAngleByName('motor_back_rightL_joint', motorCommandsWithDir[6])
self.setMotorAngleByName('motor_back_rightR_joint', motorCommandsWithDir[7])
for i in range(self.nMotors):
self.setMotorAngleById(self.motorIdList[i], motorCommandsWithDir[i])
def getMotorAngles(self):
motorAngles = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorAngles.append(jointState[0])
motorAngles = np.multiply(motorAngles, self.motorDir)
return motorAngles
def getMotorVelocities(self):
motorVelocities = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorVelocities.append(jointState[1])
motorVelocities = np.multiply(motorVelocities, self.motorDir)
return motorVelocities
def getMotorTorques(self):
motorTorques = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorTorques.append(jointState[3])
motorTorques = np.multiply(motorTorques, self.motorDir)
return motorTorques

View File

@ -0,0 +1,59 @@
from minitaur import Minitaur
import time
import numpy as np
import pybullet as p
import math
import sys
minitaur = None
def current_position():
global minitaur
position = minitaur.getBasePosition()
return np.asarray(position)
def is_fallen():
global minitaur
orientation = minitaur.getBaseOrientation()
rotMat = p.getMatrixFromQuaterion(orientation)
localUp = rotMat[6:]
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0
def evaluate_params_hop(params, urdfRoot='', timeStep=0.01, maxNumSteps=1000, sleepTime=0):
print('start evaluation')
beforeTime = time.time()
p.resetSimulation()
p.setTimeStep(timeStep)
p.loadURDF("%s/plane.urdf" % urdfRoot)
p.setGravity(0,0,-10)
amplitude = params[0]
speed = params[1]
global minitaur
minitaur = Minitaur(urdfRoot)
start_position = current_position()
last_position = None # for tracing line
for i in range(maxNumSteps):
a1 = math.sin(i*speed)*amplitude+1.57
a2 = math.sin(i*speed+3.14)*amplitude+1.57
joint_values = [a1, 1.57, a2, 1.57, 1.57, a1, 1.57, a2]
minitaur.applyAction(joint_values)
p.stepSimulation()
if (is_fallen()):
break
if i % 100 == 0:
sys.stdout.write('.')
sys.stdout.flush()
time.sleep(sleepTime)
print(' ')
final_distance = np.linalg.norm(start_position - current_position())
elapsedTime = time.time() - beforeTime
print ("trial for amplitude", amplitude, "speed", speed, "final_distance", final_distance, "elapsed_time", elapsedTime)
return final_distance

View File

@ -1,6 +1,7 @@
import pybullet as p
from minitaur import Minitaur
import minitaur_evaluate
import time
import math
import numpy as np
@ -10,24 +11,30 @@ def main(unused_args):
c = p.connect(p.SHARED_MEMORY)
if (c<0):
c = p.connect(p.GUI)
p.resetSimulation()
p.setTimeStep(timeStep)
p.loadURDF("plane.urdf")
p.setGravity(0,0,-10)
minitaur = Minitaur()
amplitude = 0.24795664427
speed = 0.2860877729434
for i in range(1000):
a1 = math.sin(i*speed)*amplitude+1.57
a2 = math.sin(i*speed+3.14)*amplitude+1.57
joint_values = [a1, 1.57, a2, 1.57, 1.57, a1, 1.57, a2]
minitaur.applyAction(joint_values)
p.stepSimulation()
# print(minitaur.getBasePosition())
time.sleep(timeStep)
final_distance = np.linalg.norm(np.asarray(minitaur.getBasePosition()))
final_distance = minitaur_evaluate.evaluate_params_hop(params=[amplitude, speed], timeStep=timeStep, sleepTime=timeStep)
print(final_distance)
# p.resetSimulation()
# p.setTimeStep(timeStep)
# p.loadURDF("plane.urdf")
# p.setGravity(0,0,-10)
# minitaur = Minitaur()
# for i in range(1000):
# a1 = math.sin(i*speed)*amplitude+1.57
# a2 = math.sin(i*speed+3.14)*amplitude+1.57
# joint_values = [a1, 1.57, a2, 1.57, 1.57, a1, 1.57, a2]
# minitaur.applyAction(joint_values)
# torques = minitaur.getMotorTorques()
# print(torques)
# p.stepSimulation()
# time.sleep(timeStep)
# final_distance = np.linalg.norm(np.asarray(minitaur.getBasePosition()))
# print(final_distance)
main(0)