mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-18 21:10:05 +00:00
remove the stub calls from rllab
This commit is contained in:
parent
37a809f5d1
commit
8c27a62e04
@ -1,27 +0,0 @@
|
||||
"""One-line documentation for gym_example module.
|
||||
|
||||
A detailed description of gym_example.
|
||||
"""
|
||||
|
||||
import gym
|
||||
from envs.bullet.minitaur import MinitaurWalkEnv
|
||||
import setuptools
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
|
||||
def main():
|
||||
env = gym.make('MinitaurWalkEnv-v0')
|
||||
for i_episode in range(1):
|
||||
observation = env.reset()
|
||||
done = False
|
||||
while not done:
|
||||
print(observation)
|
||||
action = np.array([1.3, 0, 0, 0, 1.3, 0, 0, 0, 1.3, 3.14, 0, 0, 1.3, 3.14, 0, 0])
|
||||
print(action)
|
||||
observation, reward, done, info = env.step(action)
|
||||
if done:
|
||||
print("Episode finished after {} timesteps".format(t+1))
|
||||
break
|
||||
|
||||
main()
|
@ -3,12 +3,7 @@ from rllab.algos.trpo import TRPO
|
||||
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
|
||||
from rllab.envs.gym_env import GymEnv
|
||||
from rllab.envs.normalized_env import normalize
|
||||
from rllab.misc.instrument import stub, run_experiment_lite
|
||||
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
stub(globals())
|
||||
|
||||
env = normalize(GymEnv("CartPoleBulletEnv-v0"))
|
||||
|
||||
@ -33,19 +28,4 @@ algo = TRPO(
|
||||
# plot=True,
|
||||
)
|
||||
|
||||
#cmdStartBulletServer=['~/Projects/rllab/bullet_examples/run_physics_server.sh']
|
||||
#subprocess.Popen(cmdStartBulletServer, shell=True)
|
||||
#time.sleep(1)
|
||||
|
||||
|
||||
run_experiment_lite(
|
||||
algo.train(),
|
||||
# Number of parallel workers for sampling
|
||||
n_parallel=1,
|
||||
# Only keep the snapshot parameters for the last iteration
|
||||
snapshot_mode="last",
|
||||
# Specifies the seed for the experiment. If this is not provided, a random seed
|
||||
# will be used
|
||||
seed=1,
|
||||
# plot=True,
|
||||
)
|
||||
algo.train()
|
||||
|
@ -6,9 +6,6 @@ from sandbox.rocky.tf.envs.base import TfEnv
|
||||
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
|
||||
from rllab.envs.gym_env import GymEnv
|
||||
from rllab.envs.normalized_env import normalize
|
||||
from rllab.misc.instrument import stub, run_experiment_lite
|
||||
|
||||
stub(globals())
|
||||
|
||||
env = TfEnv(normalize(GymEnv("CartPoleBulletEnv-v0")))
|
||||
|
||||
@ -35,14 +32,4 @@ algo = TRPO(
|
||||
#plot=True,
|
||||
)
|
||||
|
||||
run_experiment_lite(
|
||||
algo.train(),
|
||||
# Number of parallel workers for sampling
|
||||
n_parallel=1,
|
||||
# Only keep the snapshot parameters for the last iteration
|
||||
snapshot_mode="last",
|
||||
# Specifies the seed for the experiment. If this is not provided, a random seed
|
||||
# will be used
|
||||
seed=1,
|
||||
#plot=True,
|
||||
)
|
||||
algo.train()
|
||||
|
Loading…
Reference in New Issue
Block a user