prepare small experiment with block solver

This commit is contained in:
erwincoumans 2019-02-26 23:27:05 -08:00
parent c44471c38c
commit d7e087de16
20 changed files with 2877 additions and 800 deletions

View File

@ -115,7 +115,7 @@ void BlockSolverExample::initPhysics()
}
if (m_option&BLOCK_SOLVER_BLOCK)
{
//m_solver = new btBlockSolver();
m_solver = new btBlockSolver();
}
btAssert(m_solver);

View File

@ -3,7 +3,7 @@
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
class btBlockSolver : public btConstraintSolver
class btBlockSolver : public btMultiBodyConstraintSolver
{
struct btBlockSolverInternalData* m_data;

View File

@ -0,0 +1,335 @@
#include "BoxStacks.h"
#include "../OpenGLWindow/SimpleOpenGL3App.h"
#include "btBulletDynamicsCommon.h"
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
#include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
#include "BulletDynamics/Featherstone/btMultiBody.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyBlockConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyLink.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.h"
#include "../OpenGLWindow/GLInstancingRenderer.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
class BoxStacks : public CommonMultiBodyBase
{
public:
BoxStacks(GUIHelperInterface* helper);
virtual ~BoxStacks();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 1;
float pitch = -35;
float yaw = 50;
float targetPos[3] = {-3, 2.8, -2.5};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
void createBoxStack(int numBoxes, btScalar centerX, btScalar centerY);
btMultiBody* createFeatherstoneMultiBody(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical = false, bool fixedBase = false);
void createGround(const btVector3& halfExtents = btVector3(50, 50, 50), btScalar zOffSet = btScalar(-1.55));
void addColliders(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents);
};
static bool g_fixedBase = true;
static bool g_firstInit = true;
static float scaling = 0.4f;
static float friction = 1.;
static int g_constraintSolverType = 0;
BoxStacks::BoxStacks(GUIHelperInterface* helper)
: CommonMultiBodyBase(helper)
{
m_guiHelper->setUpAxis(1);
}
BoxStacks::~BoxStacks()
{
// Do nothing
}
void BoxStacks::stepSimulation(float deltaTime)
{
//use a smaller internal timestep, there are stability issues
float internalTimeStep = 1. / 240.f;
m_dynamicsWorld->stepSimulation(deltaTime, 10, internalTimeStep);
}
void BoxStacks::initPhysics()
{
m_guiHelper->setUpAxis(1);
if (g_firstInit)
{
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10. * scaling));
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50);
g_firstInit = false;
}
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
if (g_constraintSolverType == 3)
{
g_constraintSolverType = 0;
g_fixedBase = !g_fixedBase;
}
btMLCPSolverInterface* mlcp;
switch (g_constraintSolverType++)
{
case 0:
m_solver = new btMultiBodyConstraintSolver;
b3Printf("Constraint Solver: Sequential Impulse");
break;
case 1:
mlcp = new btSolveProjectedGaussSeidel();
m_solver = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + PGS");
break;
default:
mlcp = new btDantzigSolver();
m_solver = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + Dantzig");
break;
}
m_solver = new btMultiBodyBlockConstraintSolver();
btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_dynamicsWorld = world;
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->setGravity(btVector3(btScalar(0), btScalar(-9.81), btScalar(0)));
m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4); //todo: what value is good?
/// Create a few basic rigid bodies
btVector3 groundHalfExtents(50, 50, 50);
btCollisionShape* groundShape = new btBoxShape(groundHalfExtents);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, -50, 00));
btVector3 linkHalfExtents(btScalar(0.05), btScalar(0.37), btScalar(0.1));
btVector3 baseHalfExtents(btScalar(0.05), btScalar(0.37), btScalar(0.1));
createBoxStack(1, 0, 0);
btScalar groundHeight = btScalar(-51.55);
btScalar mass = btScalar(0.0);
btVector3 localInertia(0, 0, 0);
groundShape->calculateLocalInertia(mass, localInertia);
// Using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, groundHeight, 0));
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
// Add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body, 1, 1 + 2);
createGround();
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
void BoxStacks::createBoxStack(int numBoxes, btScalar centerX, btScalar centerZ)
{
//create a few dynamic rigidbodies
// Re-using the same collision is better for memory usage and performance
const btScalar boxHalfSize = btScalar(0.1);
btBoxShape* colShape = createBoxShape(btVector3(boxHalfSize, boxHalfSize, boxHalfSize));
m_collisionShapes.push_back(colShape);
/// Create Dynamic Objects
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.0);
btVector3 localInertia(0, 0, 0);
colShape->calculateLocalInertia(mass,localInertia);
for (int i = 0; i < numBoxes; ++i)
{
startTransform.setOrigin(btVector3(centerX, 1+btScalar(btScalar(2) * boxHalfSize * i), centerZ));
createRigidBody(mass, startTransform, colShape);
}
}
btMultiBody* BoxStacks::createFeatherstoneMultiBody(btMultiBodyDynamicsWorld* pWorld, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical, bool fixedBase)
{
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 1.f;
if (baseMass)
{
btCollisionShape* pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag);
delete pTempBox;
}
bool canSleep = false;
btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, fixedBase, canSleep);
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
//init the links
btVector3 hingeJointAxis(1, 0, 0);
float linkMass = 1.f;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape* pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag);
delete pTempBox;
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//////
btScalar q0 = 0.f * SIMD_PI / 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
/////
for (int i = 0; i < numLinks; ++i)
{
if (!spherical)
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, true);
else
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, true);
}
pMultiBody->finalizeMultiDof();
///
pWorld->addMultiBody(pMultiBody);
///
return pMultiBody;
}
void BoxStacks::createGround(const btVector3& halfExtents, btScalar zOffSet)
{
btCollisionShape* groundShape = new btBoxShape(halfExtents);
m_collisionShapes.push_back(groundShape);
// rigidbody is dynamic if and only if mass is non zero, otherwise static
btScalar mass(0.);
const bool isDynamic = (mass != 0.f);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
groundShape->calculateLocalInertia(mass, localInertia);
// using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, -halfExtents.z() + zOffSet, 0));
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
// add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body, 1, 1 + 2);
}
void BoxStacks::addColliders(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents)
{
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
{
btScalar quat[4] = {-world_to_local[0].x(), -world_to_local[0].y(), -world_to_local[0].z(), world_to_local[0].w()};
if (1)
{
btCollisionShape* box = new btBoxShape(baseHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(local_origin[0]);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
pWorld->addCollisionObject(col, 2, 1 + 2);
col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i + 1];
btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};
btCollisionShape* box = new btBoxShape(linkHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
col->setFriction(friction);
pWorld->addCollisionObject(col, 2, 1 + 2);
pMultiBody->getLink(i).m_collider = col;
}
}
CommonExampleInterface* BoxStacksCreateFunc(CommonExampleOptions& options)
{
return new BoxStacks(options.m_guiHelper);
}

View File

@ -0,0 +1,7 @@
#ifndef CONSTRAINT_SOLVERS_BOX_STACKS_DEMO_H
#define CONSTRAINT_SOLVERS_BOX_STACKS_DEMO_H
class CommonExampleInterface* BoxStacksCreateFunc(struct CommonExampleOptions& options);
#endif // CONSTRAINT_SOLVERS_BOX_STACKS_DEMO_H

View File

@ -0,0 +1,224 @@
#include "BoxStacks_MLCP.h"
#include "../OpenGLWindow/SimpleOpenGL3App.h"
#include "btBulletDynamicsCommon.h"
#include "BulletDynamics/Featherstone/btMultiBody.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyBlockConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
#include "../RobotSimulator/b3RobotSimulatorClientAPI.h"
#include "../Importers/ImportURDFDemo/BulletUrdfImporter.h"
#include "../Importers/ImportURDFDemo/MyMultiBodyCreator.h"
#include "../Importers/ImportURDFDemo/URDF2Bullet.h"
#include "BulletDynamics/MLCPSolvers/btLemkeSolver.h"
#include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
class BoxStacks_MLCP : public CommonMultiBodyBase
{
public:
BoxStacks_MLCP(GUIHelperInterface* helper);
virtual ~BoxStacks_MLCP();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 2;
float pitch = -35;
float yaw = 50;
float targetPos[3] = {0, 0, 0};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
btMultiBody* createMultiBody(btScalar mass, const btTransform& trans, btCollisionShape* collisionShape);
btMultiBody* loadRobot(std::string filepath = "kuka_iiwa/model.urdf");
};
static int g_constraintSolverType = 0;
BoxStacks_MLCP::BoxStacks_MLCP(GUIHelperInterface* helper)
: CommonMultiBodyBase(helper)
{
}
BoxStacks_MLCP::~BoxStacks_MLCP()
{
// Do nothing
}
void BoxStacks_MLCP::stepSimulation(float deltaTime)
{
float internalTimeStep = 1. / 240.f;
m_dynamicsWorld->stepSimulation(deltaTime, 10, internalTimeStep);
for (int i = 0; i < m_dynamicsWorld->getNumMultibodies(); i++)
{
btVector3 pos = m_dynamicsWorld->getMultiBody(i)->getBaseWorldTransform().getOrigin();
printf("pos[%d]=%f,%f,%f\n", i, pos.x(), pos.y(), pos.z());
}
}
void BoxStacks_MLCP::initPhysics()
{
m_guiHelper->setUpAxis(2);
createEmptyDynamicsWorld();
m_dynamicsWorld->getSolverInfo().m_numIterations = 50;
if (g_constraintSolverType == 5)
{
g_constraintSolverType = 0;
}
btMultiBodyConstraintSolver* sol = 0;
btMLCPSolverInterface* mlcp;
switch (g_constraintSolverType++)
{
case 0:
sol = new btMultiBodyConstraintSolver;
b3Printf("Constraint Solver: Sequential Impulse");
break;
case 1:
mlcp = new btSolveProjectedGaussSeidel();
sol = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + PGS");
break;
case 2:
mlcp = new btDantzigSolver();
sol = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + Dantzig");
break;
case 3:
mlcp = new btLemkeSolver();
sol = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + Lemke");
break;
default:
sol = new btMultiBodyBlockConstraintSolver();
b3Printf("btMultiBodyBlockConstraintSolver");
break;
}
m_solver = sol;
btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, sol, m_collisionConfiguration);
m_dynamicsWorld = world;
m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4);
m_dynamicsWorld->setGravity(btVector3(0,0,-10));
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
if (m_dynamicsWorld->getDebugDrawer())
m_dynamicsWorld->getDebugDrawer()->setDebugMode(btIDebugDraw::DBG_DrawWireframe+btIDebugDraw::DBG_DrawContactPoints);
///create a few basic rigid bodies
bool loadPlaneFromURDF = true;
if (loadPlaneFromURDF)
{
loadRobot("plane.urdf");
} else
{
btBoxShape* groundShape = createBoxShape(btVector3(btScalar(50.), btScalar(50.), btScalar(50.)));
m_collisionShapes.push_back(groundShape);
btScalar mass = 0;
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0, 0, -50));
btMultiBody* body = createMultiBody(mass, tr, groundShape);
}
{
btBoxShape* boxShape = createBoxShape(btVector3(btScalar(.1), btScalar(.1), btScalar(.1)));
m_collisionShapes.push_back(boxShape);
btScalar mass = 10;
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0, 0, 0.5));
btMultiBody* body = createMultiBody(mass, tr, boxShape);
}
{
btMultiBody* mb = loadRobot("cube_small.urdf");
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0, 0, 1.));
mb->setBaseWorldTransform(tr);
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
btMultiBody* BoxStacks_MLCP::createMultiBody(btScalar mass, const btTransform& trans, btCollisionShape* collisionShape)
{
btVector3 inertia;
collisionShape->calculateLocalInertia(mass, inertia);
bool canSleep = false;
bool isDynamic = mass > 0;
btMultiBody* mb = new btMultiBody(0, mass, inertia, !isDynamic,canSleep);
btMultiBodyLinkCollider* collider = new btMultiBodyLinkCollider(mb, -1);
collider->setWorldTransform(trans);
mb->setBaseWorldTransform(trans);
collider->setCollisionShape(collisionShape);
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
this->m_dynamicsWorld->addCollisionObject(collider, collisionFilterGroup, collisionFilterMask);
mb->setBaseCollider(collider);
mb->finalizeMultiDof();
this->m_dynamicsWorld->addMultiBody(mb);
m_dynamicsWorld->forwardKinematics();
return mb;
}
btMultiBody*BoxStacks_MLCP::loadRobot(std::string filepath)
{
btMultiBody* m_multiBody = 0;
BulletURDFImporter u2b(m_guiHelper,0,0,1,0);
bool loadOk = u2b.loadURDF(filepath.c_str());// lwr / kuka.urdf");
if (loadOk)
{
int rootLinkIndex = u2b.getRootLinkIndex();
b3Printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_guiHelper);
btTransform identityTrans;
identityTrans.setIdentity();
ConvertURDF2Bullet(u2b,creation, identityTrans,m_dynamicsWorld,true,u2b.getPathPrefix());
for (int i = 0; i < u2b.getNumAllocatedCollisionShapes(); i++)
{
m_collisionShapes.push_back(u2b.getAllocatedCollisionShape(i));
}
m_multiBody = creation.getBulletMultiBody();
if (m_multiBody)
{
b3Printf("Root link name = %s",u2b.getLinkName(u2b.getRootLinkIndex()).c_str());
}
}
return m_multiBody;
}
CommonExampleInterface* BoxStacks_MLCPCreateFunc(CommonExampleOptions& options)
{
return new BoxStacks_MLCP(options.m_guiHelper);
}

View File

@ -0,0 +1,7 @@
#ifndef CONSTRAINT_SOLVERS_BOX_STACKS_MLCP_DEMO_H
#define CONSTRAINT_SOLVERS_BOX_STACKS_MLCP_DEMO_H
class CommonExampleInterface* BoxStacks_MLCPCreateFunc(struct CommonExampleOptions& options);
#endif // CONSTRAINT_SOLVERS_BOX_STACKS_DEMO_H

View File

@ -0,0 +1,335 @@
#include "Grasp_Block.h"
#include "../OpenGLWindow/SimpleOpenGL3App.h"
#include "btBulletDynamicsCommon.h"
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
#include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
#include "BulletDynamics/Featherstone/btMultiBody.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyBlockConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyLink.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.h"
#include "../OpenGLWindow/GLInstancingRenderer.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
class Grasp_Block : public CommonMultiBodyBase
{
public:
Grasp_Block(GUIHelperInterface* helper);
virtual ~Grasp_Block();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 1;
float pitch = -35;
float yaw = 50;
float targetPos[3] = {-3, 2.8, -2.5};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
void createBoxStack(int numBoxes, btScalar centerX, btScalar centerY);
btMultiBody* createFeatherstoneMultiBody(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical = false, bool fixedBase = false);
void createGround(const btVector3& halfExtents = btVector3(50, 50, 50), btScalar zOffSet = btScalar(-1.55));
void addColliders(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents);
};
static bool g_fixedBase = true;
static bool g_firstInit = true;
static float scaling = 0.4f;
static float friction = 1.;
static int g_constraintSolverType = 0;
Grasp_Block::Grasp_Block(GUIHelperInterface* helper)
: CommonMultiBodyBase(helper)
{
m_guiHelper->setUpAxis(1);
}
Grasp_Block::~Grasp_Block()
{
// Do nothing
}
void Grasp_Block::stepSimulation(float deltaTime)
{
//use a smaller internal timestep, there are stability issues
float internalTimeStep = 1. / 240.f;
m_dynamicsWorld->stepSimulation(deltaTime, 10, internalTimeStep);
}
void Grasp_Block::initPhysics()
{
m_guiHelper->setUpAxis(1);
if (g_firstInit)
{
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10. * scaling));
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50);
g_firstInit = false;
}
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
if (g_constraintSolverType == 3)
{
g_constraintSolverType = 0;
g_fixedBase = !g_fixedBase;
}
btMLCPSolverInterface* mlcp;
switch (g_constraintSolverType++)
{
case 0:
m_solver = new btMultiBodyConstraintSolver;
b3Printf("Constraint Solver: Sequential Impulse");
break;
case 1:
mlcp = new btSolveProjectedGaussSeidel();
m_solver = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + PGS");
break;
default:
mlcp = new btDantzigSolver();
m_solver = new btMultiBodyMLCPConstraintSolver(mlcp);
b3Printf("Constraint Solver: MLCP + Dantzig");
break;
}
m_solver = new btMultiBodyBlockConstraintSolver();
btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_dynamicsWorld = world;
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->setGravity(btVector3(btScalar(0), btScalar(-9.81), btScalar(0)));
m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4); //todo: what value is good?
/// Create a few basic rigid bodies
btVector3 groundHalfExtents(50, 50, 50);
btCollisionShape* groundShape = new btBoxShape(groundHalfExtents);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, -50, 00));
btVector3 linkHalfExtents(btScalar(0.05), btScalar(0.37), btScalar(0.1));
btVector3 baseHalfExtents(btScalar(0.05), btScalar(0.37), btScalar(0.1));
// createBoxStack(5, 0, 0);
btScalar groundHeight = btScalar(-51.55);
btScalar mass = btScalar(0.0);
btVector3 localInertia(0, 0, 0);
groundShape->calculateLocalInertia(mass, localInertia);
// Using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, groundHeight, 0));
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
// Add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body, 1, 1 + 2);
createGround();
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
void Grasp_Block::createBoxStack(int numBoxes, btScalar centerX, btScalar centerZ)
{
//create a few dynamic rigidbodies
// Re-using the same collision is better for memory usage and performance
const btScalar boxHalfSize = btScalar(0.1);
btBoxShape* colShape = createBoxShape(btVector3(boxHalfSize, boxHalfSize, boxHalfSize));
m_collisionShapes.push_back(colShape);
/// Create Dynamic Objects
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.0);
btVector3 localInertia(0, 0, 0);
colShape->calculateLocalInertia(mass,localInertia);
for (int i = 0; i < numBoxes; ++i)
{
startTransform.setOrigin(btVector3(centerX, btScalar(btScalar(2) * boxHalfSize * i), centerZ));
createRigidBody(mass, startTransform, colShape);
}
}
btMultiBody* Grasp_Block::createFeatherstoneMultiBody(btMultiBodyDynamicsWorld* pWorld, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical, bool fixedBase)
{
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 1.f;
if (baseMass)
{
btCollisionShape* pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag);
delete pTempBox;
}
bool canSleep = false;
btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, fixedBase, canSleep);
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
//init the links
btVector3 hingeJointAxis(1, 0, 0);
float linkMass = 1.f;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape* pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag);
delete pTempBox;
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//////
btScalar q0 = 0.f * SIMD_PI / 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
/////
for (int i = 0; i < numLinks; ++i)
{
if (!spherical)
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, true);
else
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, true);
}
pMultiBody->finalizeMultiDof();
///
pWorld->addMultiBody(pMultiBody);
///
return pMultiBody;
}
void Grasp_Block::createGround(const btVector3& halfExtents, btScalar zOffSet)
{
btCollisionShape* groundShape = new btBoxShape(halfExtents);
m_collisionShapes.push_back(groundShape);
// rigidbody is dynamic if and only if mass is non zero, otherwise static
btScalar mass(0.);
const bool isDynamic = (mass != 0.f);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
groundShape->calculateLocalInertia(mass, localInertia);
// using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, -halfExtents.z() + zOffSet, 0));
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
// add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body, 1, 1 + 2);
}
void Grasp_Block::addColliders(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents)
{
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
{
btScalar quat[4] = {-world_to_local[0].x(), -world_to_local[0].y(), -world_to_local[0].z(), world_to_local[0].w()};
if (1)
{
btCollisionShape* box = new btBoxShape(baseHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(local_origin[0]);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
pWorld->addCollisionObject(col, 2, 1 + 2);
col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i + 1];
btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};
btCollisionShape* box = new btBoxShape(linkHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
col->setFriction(friction);
pWorld->addCollisionObject(col, 2, 1 + 2);
pMultiBody->getLink(i).m_collider = col;
}
}
CommonExampleInterface* Grasp_BlockCreateFunc(CommonExampleOptions& options)
{
return new Grasp_Block(options.m_guiHelper);
}

View File

@ -0,0 +1,7 @@
#ifndef CONSTRAINT_SOLVERS_GRASP_BLOCK_DEMO_H
#define CONSTRAINT_SOLVERS_GRASP_BLOCK_DEMO_H
class CommonExampleInterface* Grasp_BlockCreateFunc(struct CommonExampleOptions& options);
#endif // CONSTRAINT_SOLVERS_GRASP_BLOCK_DEMO_H

View File

@ -7,6 +7,7 @@
#include "BulletDynamics/Featherstone/btMultiBody.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyBlockConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
@ -112,12 +113,13 @@ void SerialChains::initPhysics()
b3Printf("Constraint Solver: MLCP + Dantzig");
break;
}
m_solver = new btMultiBodyBlockConstraintSolver();
btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_dynamicsWorld = world;
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->setGravity(btVector3(0, -10, 0));
m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4); //todo: what value is good?
m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4); //todo: what value is good?
///create a few basic rigid bodies
btVector3 groundHalfExtents(50, 50, 50);
@ -237,6 +239,53 @@ void SerialChains::initPhysics()
createGround();
{
btVector3 halfExtents(.5,.5,.5);
btBoxShape* colShape = new btBoxShape(halfExtents);
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
m_collisionShapes.push_back(colShape);
/// Create Dynamic Objects
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.f);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
colShape->calculateLocalInertia(mass,localInertia);
startTransform.setOrigin(btVector3(
btScalar(0.0),
0.0,
btScalar(0.0)));
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
// btRigidBody* body = new btRigidBody(rbInfo);
// m_dynamicsWorld->addRigidBody(body);//,1,1+2);
{
btVector3 pointInA = -linkHalfExtents;
// btVector3 pointInB = halfExtents;
btMatrix3x3 frameInA;
btMatrix3x3 frameInB;
frameInA.setIdentity();
frameInB.setIdentity();
btVector3 jointAxis(1.0,0.0,0.0);
//btMultiBodySliderConstraint* p2p = new btMultiBodySliderConstraint(mbC,numLinks-1,body,pointInA,pointInB,frameInA,frameInB,jointAxis);
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(mbC1, numLinks- 1 , mbC2, numLinks - 1, pointInA, pointInA);
p2p->setMaxAppliedImpulse(20.0);
m_dynamicsWorld->addMultiBodyConstraint(p2p);
}
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
/////////////////////////////////////////////////////////////////

View File

@ -202,6 +202,10 @@ SET(BulletExampleBrowser_SRCS
../MultiThreadedDemo/MultiThreadedDemo.h
../MultiThreadedDemo/CommonRigidBodyMTBase.cpp
../MultiThreadedDemo/CommonRigidBodyMTBase.h
../ConstraintSolvers/BoxStacks.cpp
../ConstraintSolvers/BoxStacks_MLCP.cpp
../ConstraintSolvers/Grasp_Block.cpp
../ConstraintSolvers/SerialChains.cpp
../BlockSolver/btBlockSolver.cpp
../BlockSolver/btBlockSolver.h
../BlockSolver/BlockSolverExample.cpp
@ -337,7 +341,6 @@ SET(BulletExampleBrowser_SRCS
../MultiBody/InvertedPendulumPDControl.cpp
../MultiBody/InvertedPendulumPDControl.h
../MultiBody/MultiBodyConstraintFeedback.cpp
../MultiBody/SerialChains.cpp
../MultiBody/MultiDofDemo.cpp
../MultiBody/MultiDofDemo.h
../RigidBody/RigidBodySoftContact.cpp

View File

@ -21,6 +21,10 @@
#include "../Importers/ImportSDFDemo/ImportSDFSetup.h"
#include "../Importers/ImportMJCFDemo/ImportMJCFSetup.h"
#include "../Collision/CollisionTutorialBullet2.h"
#include "../ConstraintSolvers/SerialChains.h"
#include "../ConstraintSolvers/BoxStacks.h"
#include "../ConstraintSolvers/BoxStacks_MLCP.h"
#include "../ConstraintSolvers/Grasp_Block.h"
#include "../GyroscopicDemo/GyroscopicSetup.h"
#include "../Constraints/Dof6Spring2Setup.h"
#include "../Constraints/ConstraintPhysicsSetup.h"
@ -30,7 +34,7 @@
#include "../MultiBody/MultiBodyConstraintFeedback.h"
#include "../MultiBody/MultiDofDemo.h"
#include "../MultiBody/InvertedPendulumPDControl.h"
#include "../MultiBody/SerialChains.h"
#include "../RigidBody/RigidBodySoftContact.h"
#include "../VoronoiFracture/VoronoiFractureDemo.h"
#include "../SoftDemo/SoftDemo.h"
@ -137,7 +141,13 @@ static ExampleEntry gDefaultExamples[] =
ExampleEntry(1, "Constraint Feedback", "The example shows how to receive joint reaction forces in a btMultiBody. Also the applied impulse is available for a btMultiBodyJointMotor", MultiBodyConstraintFeedbackCreateFunc),
ExampleEntry(1, "Inverted Pendulum PD", "Keep an inverted pendulum up using open loop PD control", InvertedPendulumPDControlCreateFunc),
ExampleEntry(1, "MultiBody Soft Contact", "Using the error correction parameter (ERP) and constraint force mixing (CFM) values for contacts to simulate compliant contact.", MultiBodySoftContactCreateFunc, 0),
ExampleEntry(0, "Constraint Solvers"),
ExampleEntry(1, "Serial Chains", "Show colliding two serial chains using different constraint solvers.", SerialChainsCreateFunc, 0),
ExampleEntry(1, "Box Stack", "Show box stacks with different constraint solvers for each stack.", BoxStacksCreateFunc, 0),
ExampleEntry(1, "Box Stack MLCP", "Show box stacks with different constraint solvers for each stack.", BoxStacks_MLCPCreateFunc, 0),
ExampleEntry(1, "Grasp Block", "Show box stacks with different constraint solvers for each stack.", Grasp_BlockCreateFunc, 0),
ExampleEntry(0, "Physics Client-Server"),
ExampleEntry(1, "Physics Server", "Create a physics server that communicates with a physics client over shared memory. You can connect to the server using pybullet, a PhysicsClient or a UDP/TCP Bridge.",

View File

@ -163,6 +163,7 @@ project "App_BulletExampleBrowser"
"../Collision/*",
"../RoboticsLearning/*",
"../BlockSolver/*",
"../ConstraintSolvers/*",
"../Collision/Internal/*",
"../Benchmarks/*",
"../MultiThreadedDemo/*",

View File

@ -32,6 +32,7 @@ SET(BulletDynamics_SRCS
Vehicle/btWheelInfo.cpp
Featherstone/btMultiBody.cpp
Featherstone/btMultiBodyConstraint.cpp
Featherstone/btMultiBodyBlockConstraintSolver.cpp
Featherstone/btMultiBodyConstraintSolver.cpp
Featherstone/btMultiBodyDynamicsWorld.cpp
Featherstone/btMultiBodyFixedConstraint.cpp

View File

@ -931,10 +931,32 @@ int btSISolverSingleIterationData::getSolverBody(btCollisionObject& body) const
return solverBodyId;
#else // BT_THREADSAFE
int solverBodyIdA = -1;
btAssert(body.getCompanionId() >= 0);
//body has already been converted
solverBodyIdA = body.getCompanionId();
btAssert(solverBodyIdA < m_tmpSolverBodyPool.size());
if (body.getCompanionId() >= 0)
{
//body has already been converted
solverBodyIdA = body.getCompanionId();
btAssert(solverBodyIdA < m_tmpSolverBodyPool.size());
}
else
{
btRigidBody* rb = btRigidBody::upcast(&body);
//convert both active and kinematic objects (for their velocity)
if (rb && (rb->getInvMass() || rb->isKinematicObject()))
{
btAssert(0);
}
else
{
if (m_fixedBodyId < 0)
{
btAssert(0);
}
return m_fixedBodyId;
// return 0;//assume first one is a fixed solver body
}
}
return solverBodyIdA;
#endif // BT_THREADSAFE
}
@ -1822,7 +1844,16 @@ void btSequentialImpulseConstraintSolver::convertBodies(btCollisionObject** bodi
convertBodiesInternal(siData, bodies, numBodies, infoGlobal);
}
btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
solveGroupConvertConstraintPrestep(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
solveGroupConvertConstraints(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
solveGroupConvertConstraintPoststep(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
return 0.;
}
btScalar btSequentialImpulseConstraintSolver::solveGroupConvertConstraints(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
m_fixedBodyId = -1;
BT_PROFILE("solveGroupCacheFriendlySetup");
@ -1912,6 +1943,17 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
convertContacts(manifoldPtr, numManifolds, infoGlobal);
return 0.f;
}
btScalar btSequentialImpulseConstraintSolver::solveGroupConvertConstraintPrestep(btCollisionObject** /*bodies*/, int /*numBodies*/, btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/, btTypedConstraint** /*constraints*/, int /*numConstraints*/, const btContactSolverInfo& /*infoGlobal*/, btIDebugDraw* /*debugDrawer*/)
{
return 0;
}
btScalar btSequentialImpulseConstraintSolver::solveGroupConvertConstraintPoststep(btCollisionObject** /*bodies*/, int /*numBodies*/, btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/, btTypedConstraint** /*constraints*/, int /*numConstraints*/, const btContactSolverInfo& infoGlobal, btIDebugDraw* /*debugDrawer*/)
{
// btContactSolverInfo info = infoGlobal;
int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
@ -1942,9 +1984,8 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
}
return 0.f;
return 0;
}
btScalar btSequentialImpulseConstraintSolver::solveSingleIterationInternal(btSISolverSingleIterationData& siData, int iteration, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal)
{
BT_PROFILE("solveSingleIteration");
@ -2372,3 +2413,33 @@ void btSequentialImpulseConstraintSolver::reset()
{
m_btSeed2 = 0;
}
btScalar btSequentialImpulseConstraintSolver::solveGroupConvertBackPrestep(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal)
{
return btScalar(0);
}
btScalar btSequentialImpulseConstraintSolver::solveGroupConvertBack(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal)
{
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
writeBackContacts(0, m_tmpSolverContactConstraintPool.size(), infoGlobal);
}
writeBackJoints(0, m_tmpSolverNonContactConstraintPool.size(), infoGlobal);
writeBackBodies(0, m_tmpSolverBodyPool.size(), infoGlobal);
return btScalar(0);
}
btScalar btSequentialImpulseConstraintSolver::solveGroupConvertBackPoststep(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal)
{
m_tmpSolverContactConstraintPool.resizeNoInitialize(0);
m_tmpSolverNonContactConstraintPool.resizeNoInitialize(0);
m_tmpSolverContactFrictionConstraintPool.resizeNoInitialize(0);
m_tmpSolverContactRollingFrictionConstraintPool.resizeNoInitialize(0);
m_tmpSolverBodyPool.resizeNoInitialize(0);
return btScalar(0);
}

View File

@ -185,7 +185,7 @@ protected:
return m_resolveSplitPenetrationImpulse(bodyA, bodyB, contactConstraint);
}
protected:
public:
void writeBackContacts(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
void writeBackJoints(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
@ -296,6 +296,14 @@ public:
static btSingleConstraintRowSolver getScalarSplitPenetrationImpulseGeneric();
static btSingleConstraintRowSolver getSSE2SplitPenetrationImpulseGeneric();
virtual btScalar solveGroupConvertConstraintPrestep(btCollisionObject** /*bodies*/, int /*numBodies*/, btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/, btTypedConstraint** /*constraints*/, int /*numConstraints*/, const btContactSolverInfo& /*infoGlobal*/, btIDebugDraw* /*debugDrawer*/);
virtual btScalar solveGroupConvertConstraintPoststep(btCollisionObject** /*bodies*/, int /*numBodies*/, btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/, btTypedConstraint** /*constraints*/, int /*numConstraints*/, const btContactSolverInfo& infoGlobal, btIDebugDraw* /*debugDrawer*/);
virtual btScalar solveGroupConvertConstraints(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
virtual btScalar solveGroupConvertBackPrestep(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
virtual btScalar solveGroupConvertBack(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
virtual btScalar solveGroupConvertBackPoststep(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
};
#endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H

View File

@ -0,0 +1,760 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2018 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btMultiBodyBlockConstraintSolver.h"
#include <string.h>
#include "LinearMath/btQuickprof.h"
#include "btMultiBodyMLCPConstraintSolver.h"
#include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
static void rigidBodyNotSupported()
{
printf("Attempts to use rigid body for block solver, which is not supported yet.\n");
btAssert(false);
}
btMultiBodyConstraintBlock::btMultiBodyConstraintBlock()
: m_constraintConfigId(-1)
{
// Do nothing
}
btMultiBodyConstraintBlock::btMultiBodyConstraintBlock(
btTypedConstraint** m_constraints,
int m_numConstraints,
btAlignedObjectArray<btSolverBody>* m_solverBodyPool,
btConstraintArray& m_nonContactConstraints,
btConstraintArray& m_normalContactConstraints,
btConstraintArray& m_frictionContactConstraints,
btConstraintArray& m_rollingFrictionContactConstraints,
btMultiBodyConstraint** m_multiBodyConstraints,
int m_numMultiBodyConstraints,
btAlignedObjectArray<btMultiBodySolverConstraint>& m_multiBodyNonContactConstraints,
btAlignedObjectArray<btMultiBodySolverConstraint>& m_multiBodyNormalContactConstraints,
btAlignedObjectArray<btMultiBodySolverConstraint>& m_multiBodyFrictionContactConstraints,
btAlignedObjectArray<btMultiBodySolverConstraint>& m_multiBodyTorsionalFrictionContactConstraints,
btMultiBodyJacobianData* m_data)
: m_constraintConfigId(-1)
{
// Do nothing
}
static void copyConstraintDynamicDataToBlock(btAlignedObjectArray<btMultiBodySolverConstraint*>& originalConstraints, const btAlignedObjectArray<btMultiBodySolverConstraint>& blockConstraints)
{
btAssert(originalConstraints.size() == blockConstraints.size());
for (int i = 0; i < blockConstraints.size(); ++i)
{
btMultiBodySolverConstraint& originalConstraint = *originalConstraints[i];
const btMultiBodySolverConstraint& blockConstraint = blockConstraints[i];
blockConstraint.m_appliedImpulse = originalConstraint.m_appliedImpulse;
blockConstraint.m_appliedPushImpulse = originalConstraint.m_appliedPushImpulse;
}
}
void debugPrint(const btScalar* data, int size)
{
for (int i = 0; i < size; ++i)
{
printf("\t%.5f", data[i]);
if (i != size - 1)
printf(",");
}
printf("\n");
}
void debugPrintDiff(const btScalar* dataA, const btScalar* dataB, int size, bool ignoreZero = false)
{
for (int i = 0; i < size; ++i)
{
if (ignoreZero)
{
if (btFabs(dataA[i] - dataB[i]) < 1e-9)
continue;
}
printf("\t%f", dataA[i] - dataB[i]);
if (i != size - 1)
printf(",");
}
printf("\n");
}
void btMultiBodyConstraintBlock::copyDynamicDataFromOriginalToBlock()
{
copyConstraintDynamicDataToBlock(m_originalMultiBodyNormalContactConstraintPtrs, m_internalData.m_multiBodyNormalContactConstraints);
copyConstraintDynamicDataToBlock(m_originalMultiBodyFrictionContactConstraintPtrs, m_internalData.m_multiBodyFrictionContactConstraints);
copyConstraintDynamicDataToBlock(m_originalMultiBodyTorsionalFrictionContactConstraintPtrs, m_internalData.m_multiBodyTorsionalFrictionContactConstraints);
btAssert(m_multiBodies.size() == m_originalDeltaVelIndices.size());
btAssert(m_multiBodies.size() == m_deltaVelIndices.size());
for (int i = 0; i < m_multiBodies.size(); ++i)
{
btMultiBody* multiBody = m_multiBodies[i];
const int ndof = multiBody->getNumDofs() + 6;
btMultiBodyJacobianData& originalData = m_internalData.m_data; // TODO(JS): WRONG !!
btAlignedObjectArray<btScalar>& originaDeltaVelocities = originalData.m_deltaVelocities;
btAlignedObjectArray<btScalar>& blockDeltaVelocities = m_internalData.m_data.m_deltaVelocities;
const int originalIndex = m_originalDeltaVelIndices[i];
const int blockIndex = m_deltaVelIndices[i];
const btScalar* originalDeltaVelocitiesPtr = &originaDeltaVelocities[originalIndex];
btScalar* blockDeltaVelocitiesPtr = &blockDeltaVelocities[blockIndex];
// printf("[ original --> block ]\n");
// printf("original: ");
// debugPrint(originalDeltaVelocitiesPtr, ndof);
// printf("block: ");
// debugPrint(blockDeltaVelocitiesPtr, ndof);
// printf("diff: ");
// debugPrintDiff(originalDeltaVelocitiesPtr, blockDeltaVelocitiesPtr, ndof, true);
// printf("\n");
memcpy(blockDeltaVelocitiesPtr, originalDeltaVelocitiesPtr, ndof * sizeof(btScalar));
}
}
static void copyConstraintDynamicDataFromToOriginal(btAlignedObjectArray<btMultiBodySolverConstraint*>& originalConstraints, const btAlignedObjectArray<btMultiBodySolverConstraint>& blockConstraints)
{
btAssert(originalConstraints.size() == blockConstraints.size());
for (int i = 0; i < blockConstraints.size(); ++i)
{
btMultiBodySolverConstraint& originalConstraint = *originalConstraints[i];
const btMultiBodySolverConstraint& blockConstraint = blockConstraints[i];
originalConstraint.m_appliedImpulse = blockConstraint.m_appliedImpulse;
originalConstraint.m_appliedPushImpulse = blockConstraint.m_appliedPushImpulse;
}
}
void btMultiBodyConstraintBlock::copyDynamicDataFromBlockToOriginal()
{
copyConstraintDynamicDataFromToOriginal(m_originalMultiBodyNormalContactConstraintPtrs, m_internalData.m_multiBodyNormalContactConstraints);
copyConstraintDynamicDataFromToOriginal(m_originalMultiBodyFrictionContactConstraintPtrs, m_internalData.m_multiBodyFrictionContactConstraints);
copyConstraintDynamicDataFromToOriginal(m_originalMultiBodyTorsionalFrictionContactConstraintPtrs, m_internalData.m_multiBodyTorsionalFrictionContactConstraints);
btAssert(m_multiBodies.size() == m_originalDeltaVelIndices.size());
btAssert(m_multiBodies.size() == m_deltaVelIndices.size());
for (int i = 0; i < m_multiBodies.size(); ++i)
{
btMultiBody* multiBody = m_multiBodies[i];
const int ndof = multiBody->getNumDofs() + 6;
btMultiBodyJacobianData& originalData = m_internalData.m_data;
btAlignedObjectArray<btScalar>& originaDeltaVelocities = originalData.m_deltaVelocities;
btAlignedObjectArray<btScalar>& blockDeltaVelocities = m_internalData.m_data.m_deltaVelocities;
const int originalIndex = m_originalDeltaVelIndices[i];
const int blockIndex = m_deltaVelIndices[i];
btScalar* originalDeltaVelocitiesPtr = &originaDeltaVelocities[originalIndex];
const btScalar* blockDeltaVelocitiesPtr = &blockDeltaVelocities[blockIndex];
// printf("[ block --> original ]\n");
// printf("original: ");
// debugPrint(originalDeltaVelocitiesPtr, ndof);
// printf("block: ");
// debugPrint(blockDeltaVelocitiesPtr, ndof);
// printf("diff: ");
// debugPrintDiff(originalDeltaVelocitiesPtr, blockDeltaVelocitiesPtr, ndof, true);
// printf("\n");
memcpy(originalDeltaVelocitiesPtr, blockDeltaVelocitiesPtr, ndof * sizeof(btScalar));
}
}
btSingleBlockSplittingPolicy::btSingleBlockSplittingPolicy(btMultiBodyConstraintSolver* solver)
: m_solver(solver)
{
// Do nothing
}
btSingleBlockSplittingPolicy::~btSingleBlockSplittingPolicy()
{
// Do nothing
}
void btSingleBlockSplittingPolicy::split(btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& blockInput, const btAlignedObjectArray<btBlockConstraintSolverConfig>& availableConfigs, btAlignedObjectArray<btMultiBodyConstraintBlock>& blocksOutput)
{
btMultiBodyConstraintBlock newBlock;
// newBlock.m_originalInternalDataBlock = blockInput;
// m_solver->setMultiBodyInternalConstraintData(newBlock.m_originalInternalDataBlock);
newBlock.m_solver = m_solver;
// newBlock.m_constraints = blockInput.m_constraints;
// newBlock.m_numConstraints = blockInput.m_numConstraints;
// newBlock.m_multiBodyConstraints = blockInput.m_multiBodyConstraints;
// newBlock.m_numMultiBodyConstraints = blockInput.m_numMultiBodyConstraints;
blocksOutput.push_back(newBlock);
}
btDoubleBlockSplittingPolicy::btDoubleBlockSplittingPolicy(btMultiBodyConstraintSolver* solver)
: m_solver(solver)
{
// Do nothing
}
btDoubleBlockSplittingPolicy::~btDoubleBlockSplittingPolicy()
{
// Do nothing
}
template <typename ArrayT>
void splitContactConstraints(const ArrayT& input, ArrayT& output1, ArrayT& output2)
{
const int totalSize = input.size();
const int halfSize = totalSize / 2;
output1.resize(halfSize);
output2.resize(totalSize - halfSize);
for (int i = 0; i < halfSize; ++i)
{
output1[i] = input[i];
}
for (int i = halfSize; i < totalSize; ++i)
{
output2[i - halfSize] = input[i];
}
}
btMultiBodyConstraintBlock initializeConstraintBlock(btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& input)
{
btMultiBodyConstraintBlock output;
// MultiBody
output.m_internalData.m_multiBodyConstraints = input.m_multiBodyConstraints;
output.m_internalData.m_numMultiBodyConstraints = input.m_numMultiBodyConstraints;
//output.m_multiBodyConstraintSet.m_data = input.m_multiBodyConstraintSet.m_data;
btAssert(output.m_internalData.m_multiBodyNormalContactConstraints.size() == 0);
btAssert(output.m_internalData.m_multiBodyFrictionContactConstraints.size() == 0);
return output;
}
static void setupBlockMultiBodyJacobianData(
btMultiBody* multiBody,
btAlignedObjectArray<btMultiBody*>& multiBodySet,
btAlignedObjectArray<int>& blockDeltaVelIndices,
int& blockDeltaVelIndex,
int& blockJacobianIndex,
btMultiBodyJacobianData& blockJacobianData,
btAlignedObjectArray<int>& originalDeltaVelIndices,
const int originalDeltaVelIndex,
const int originalJacobianIndex,
const btMultiBodyJacobianData& originalJacobianData)
{
const int ndof = multiBody->getNumDofs() + 6;
btAlignedObjectArray<btScalar>& blockJacobians = blockJacobianData.m_jacobians;
btAlignedObjectArray<btScalar>& blockDeltaVelocities = blockJacobianData.m_deltaVelocities;
btAlignedObjectArray<btScalar>& blockDeltaVelocitiesUnitImpulse = blockJacobianData.m_deltaVelocitiesUnitImpulse;
const btAlignedObjectArray<btScalar>& originalJacobians = originalJacobianData.m_jacobians;
const btAlignedObjectArray<btScalar>& originalDeltaVelocitiesUnitImpulse = originalJacobianData.m_deltaVelocitiesUnitImpulse;
int indexInBlock = -1;
for (int i = 0; i < multiBodySet.size(); ++i)
{
if (multiBody == multiBodySet[i])
{
indexInBlock = i;
break;
}
}
if (indexInBlock == -1)
{
blockDeltaVelIndex = blockDeltaVelocities.size();
blockDeltaVelocities.resize(blockDeltaVelocities.size() + ndof);
multiBodySet.push_back(multiBody);
originalDeltaVelIndices.push_back(originalDeltaVelIndex);
blockDeltaVelIndices.push_back(blockDeltaVelIndex);
}
else
{
blockDeltaVelIndex = blockDeltaVelIndices[indexInBlock];
}
blockJacobianIndex = blockJacobians.size();
blockJacobians.resize(blockJacobians.size() + ndof);
blockDeltaVelocitiesUnitImpulse.resize(blockDeltaVelocitiesUnitImpulse.size() + ndof);
btAssert(blockJacobians.size() == blockDeltaVelocitiesUnitImpulse.size());
btScalar* blockJacobiansRawPtr = &blockJacobians[blockJacobianIndex];
const btScalar* originalJacobiansRawPtr = &originalJacobians[originalJacobianIndex];
memcpy(blockJacobiansRawPtr, originalJacobiansRawPtr, ndof * sizeof(btScalar));
btScalar* blockDeltaVelUnitImp = &blockDeltaVelocitiesUnitImpulse[blockJacobianIndex];
const btScalar* originalDeltaVelUnitImp = &originalDeltaVelocitiesUnitImpulse[originalJacobianIndex];
memcpy(blockDeltaVelUnitImp, originalDeltaVelUnitImp, ndof * sizeof(btScalar));
btAssert(blockJacobians.size() >= blockDeltaVelocities.size());
}
static void setupMultiBodyBlockConstraintData(
btMultiBodyConstraintBlock& block,
btAlignedObjectArray<btMultiBody*>& blockMultiBodySet,
btAlignedObjectArray<int>& blockDeltaVelIndices,
btMultiBodySolverConstraint& blockContactConstraint,
btMultiBodyJacobianData& blockJacobianData,
int blockFrictionIndex,
btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& originalInternalData,
btAlignedObjectArray<int>& originalDeltaVelIndices,
const btMultiBodySolverConstraint& originalContactConstraint,
const btMultiBodyJacobianData& originalJacobianData)
{
// Copy all the values. Some values will be updated below if necessary.
blockContactConstraint = originalContactConstraint;
blockContactConstraint.m_frictionIndex = blockFrictionIndex;
btMultiBody* multiBodyA = blockContactConstraint.m_multiBodyA;
if (multiBodyA)
{
setupBlockMultiBodyJacobianData(
multiBodyA,
blockMultiBodySet,
blockDeltaVelIndices,
blockContactConstraint.m_deltaVelAindex,
blockContactConstraint.m_jacAindex,
blockJacobianData,
originalDeltaVelIndices,
originalContactConstraint.m_deltaVelAindex,
originalContactConstraint.m_jacAindex,
originalJacobianData);
}
else
{
rigidBodyNotSupported();
}
btMultiBody* multiBodyB = blockContactConstraint.m_multiBodyB;
if (multiBodyB)
{
setupBlockMultiBodyJacobianData(
multiBodyB,
blockMultiBodySet,
blockDeltaVelIndices,
blockContactConstraint.m_deltaVelBindex,
blockContactConstraint.m_jacBindex,
blockJacobianData,
originalDeltaVelIndices,
originalContactConstraint.m_deltaVelBindex,
originalContactConstraint.m_jacBindex,
originalJacobianData);
}
else
{
rigidBodyNotSupported();
}
}
void btDoubleBlockSplittingPolicy::split(
btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& originalInternalData,
const btAlignedObjectArray<btBlockConstraintSolverConfig>& availableConfigs,
btAlignedObjectArray<btMultiBodyConstraintBlock>& subBlocks)
{
btMultiBodyConstraintBlock constraintBlock1 = initializeConstraintBlock(originalInternalData);
btMultiBodyConstraintBlock constraintBlock2 = initializeConstraintBlock(originalInternalData);
btMultiBodyConstraintBlock constraintBlock3 = initializeConstraintBlock(originalInternalData);
constraintBlock1.m_solver = m_solver;
constraintBlock2.m_solver = m_solver;
constraintBlock3.m_solver = m_solver;
btDantzigSolver* mlcp = new btDantzigSolver();
btMultiBodyMLCPConstraintSolver* sol = new btMultiBodyMLCPConstraintSolver(mlcp);
// constraintBlock2.m_solver = sol;
const int totalMultiBodyContactConstraintSize = originalInternalData.m_multiBodyNormalContactConstraints.size();
const int halfMultiBodyContactConstraintSize = totalMultiBodyContactConstraintSize / 2;
for (int i = 0; i < halfMultiBodyContactConstraintSize; ++i)
{
copyMultiBodyContactConstraint(constraintBlock1, originalInternalData, i);
}
for (int i = halfMultiBodyContactConstraintSize; i < totalMultiBodyContactConstraintSize; ++i)
{
copyMultiBodyContactConstraint(constraintBlock2, originalInternalData, i);
}
const int totalMultiBodyNonContactConstraintSize = originalInternalData.m_multiBodyNonContactConstraints.size();
for (int i = 0; i < totalMultiBodyNonContactConstraintSize; ++i)
{
// copyMultiBodyNonContactConstraint(constraintBlock3, originalInternalData, i);
}
// for (int i = 0; i < totalMultiBodyContactConstraintSize; ++i)
// {
// if (strcmp(originalInternalData.m_multiBodyNormalContactConstraints[i].m_multiBodyA->getBaseName(), "group1") == 0)
// copyMultiBodyContactConstraint(constraintBlock1, originalInternalData, i);
// else
// copyMultiBodyContactConstraint(constraintBlock2, originalInternalData, i);
// }
subBlocks.push_back(constraintBlock1);
subBlocks.push_back(constraintBlock2);
subBlocks.push_back(constraintBlock3);
}
btMultiBodyBlockSplittingPolicy::~btMultiBodyBlockSplittingPolicy()
{
// Do nothing
}
void btMultiBodyBlockSplittingPolicy::copyMultiBodyNonContactConstraint(btMultiBodyConstraintBlock& block, btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& originalInternalData, int originalNonContactConstraintIndex)
{
btAlignedObjectArray<btMultiBodySolverConstraint>& originalNonContactConstraints = originalInternalData.m_multiBodyNonContactConstraints;
const btMultiBodyJacobianData& originalJacobianData = originalInternalData.m_data;
btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& blockInternalData = block.m_internalData;
btAlignedObjectArray<btMultiBodySolverConstraint>& blockNonContactConstraints = blockInternalData.m_multiBodyNonContactConstraints;
btAlignedObjectArray<btMultiBodySolverConstraint*>& blockOriginalNonContactConstraintPtrs = block.m_originalMultiBodyNonContactConstraintPtrs;
btMultiBodyJacobianData& blockJacobianData = block.m_internalData.m_data;
btAlignedObjectArray<btMultiBody*>& blockMultiBodySet = block.m_multiBodies;
const int blockFrictionIndex = blockNonContactConstraints.size();
btMultiBodySolverConstraint& originalNonContactConstraint = originalNonContactConstraints[originalNonContactConstraintIndex];
btMultiBodySolverConstraint& blockNonContactConstraint = blockNonContactConstraints.expandNonInitializing();
blockOriginalNonContactConstraintPtrs.push_back(&originalNonContactConstraint);
setupMultiBodyBlockConstraintData(
block,
blockMultiBodySet,
block.m_deltaVelIndices,
blockNonContactConstraint,
blockJacobianData,
blockFrictionIndex,
originalInternalData,
block.m_originalDeltaVelIndices,
originalNonContactConstraint,
originalJacobianData);
}
void btMultiBodyBlockSplittingPolicy::copyMultiBodyContactConstraint(btMultiBodyConstraintBlock& block, btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& originalInternalData, int originalNormalContactConstraintIndex)
{
btAlignedObjectArray<btMultiBodySolverConstraint>& originalNormalContactConstraints = originalInternalData.m_multiBodyNormalContactConstraints;
btAlignedObjectArray<btMultiBodySolverConstraint>& originalFrictionContactConstraints = originalInternalData.m_multiBodyFrictionContactConstraints;
btAlignedObjectArray<btMultiBodySolverConstraint>& originalTortionalFrictionContactConstraints = originalInternalData.m_multiBodyTorsionalFrictionContactConstraints;
const btMultiBodyJacobianData& originalJacobianData = originalInternalData.m_data;
btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& blockInternalData = block.m_internalData;
btAlignedObjectArray<btMultiBodySolverConstraint>& blockNormalContactConstraints = blockInternalData.m_multiBodyNormalContactConstraints;
btAlignedObjectArray<btMultiBodySolverConstraint>& blockFrictionContactConstraints = blockInternalData.m_multiBodyFrictionContactConstraints;
btAlignedObjectArray<btMultiBodySolverConstraint>& blockTortionalFrictionContactConstraints = blockInternalData.m_multiBodyTorsionalFrictionContactConstraints;
btAlignedObjectArray<btMultiBodySolverConstraint*>& blockOriginalNormalContactConstraintPtrs = block.m_originalMultiBodyNormalContactConstraintPtrs;
btAlignedObjectArray<btMultiBodySolverConstraint*>& blockOriginalFrictionContactConstraintPtrs = block.m_originalMultiBodyFrictionContactConstraintPtrs;
btAlignedObjectArray<btMultiBodySolverConstraint*>& blockOriginalTorsionalFrictionContactConstraintPtrs = block.m_originalMultiBodyTorsionalFrictionContactConstraintPtrs;
btMultiBodyJacobianData& blockJacobianData = block.m_internalData.m_data;
const int numFrictionPerContact = originalNormalContactConstraints.size() == originalFrictionContactConstraints.size() ? 1 : 2;
btAlignedObjectArray<btMultiBody*>& blockMultiBodySet = block.m_multiBodies;
const int blockFrictionIndex = blockNormalContactConstraints.size();
//-- 1. Normal contact
btMultiBodySolverConstraint& originalNormalContactConstraint = originalNormalContactConstraints[originalNormalContactConstraintIndex];
btMultiBodySolverConstraint& blockNormalContactConstraint = blockNormalContactConstraints.expandNonInitializing();
blockOriginalNormalContactConstraintPtrs.push_back(&originalNormalContactConstraint);
setupMultiBodyBlockConstraintData(
block,
blockMultiBodySet,
block.m_deltaVelIndices,
blockNormalContactConstraint,
blockJacobianData,
blockFrictionIndex,
originalInternalData,
block.m_originalDeltaVelIndices,
originalNormalContactConstraint,
originalJacobianData);
//-- 2. Friction contacts
btAssert(originalFrictionContactConstraints.size() != 0);
const int originalFrictionContactConstraintIndex1 = originalNormalContactConstraintIndex * numFrictionPerContact;
btMultiBodySolverConstraint& originalFrictionContactConstraint = originalFrictionContactConstraints[originalFrictionContactConstraintIndex1];
blockOriginalFrictionContactConstraintPtrs.push_back(&originalFrictionContactConstraint);
btMultiBodySolverConstraint& blockFrictionContactConstraint1 = blockFrictionContactConstraints.expandNonInitializing();
setupMultiBodyBlockConstraintData(
block,
blockMultiBodySet,
block.m_deltaVelIndices,
blockFrictionContactConstraint1,
blockJacobianData,
blockFrictionIndex,
originalInternalData,
block.m_originalDeltaVelIndices,
originalFrictionContactConstraint,
originalJacobianData);
if (numFrictionPerContact == 2)
{
const int originalFrictionContactConstraintIndex2 = originalFrictionContactConstraintIndex1 + 1;
btMultiBodySolverConstraint& originalFrictionContactConstraint = originalFrictionContactConstraints[originalFrictionContactConstraintIndex2];
blockOriginalFrictionContactConstraintPtrs.push_back(&originalFrictionContactConstraint);
btMultiBodySolverConstraint& blockFrictionContactConstraint2 = blockFrictionContactConstraints.expandNonInitializing();
setupMultiBodyBlockConstraintData(
block,
blockMultiBodySet,
block.m_deltaVelIndices,
blockFrictionContactConstraint2,
blockJacobianData,
blockFrictionIndex,
originalInternalData,
block.m_originalDeltaVelIndices,
originalFrictionContactConstraint,
originalJacobianData);
}
// TODO(JS): Torsional friction contact constraints
}
btMultiBodyBlockConstraintSolver::btMultiBodyBlockConstraintSolver()
{
// Do nothing
}
btMultiBodyBlockConstraintSolver::~btMultiBodyBlockConstraintSolver()
{
// Do nothing
}
btScalar btMultiBodyBlockConstraintSolver::solveGroupConvertConstraintPoststep(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
return btMultiBodyConstraintSolver::solveGroupConvertConstraintPoststep(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
}
void btMultiBodyBlockConstraintSolver::solveMultiBodyGroup(
btCollisionObject** bodies,
int numBodies,
btPersistentManifold** manifold,
int numManifolds,
btTypedConstraint** constraints,
int numConstraints,
btMultiBodyConstraint** multiBodyConstraints,
int numMultiBodyConstraints,
const btContactSolverInfo& info,
btIDebugDraw* debugDrawer,
btDispatcher* /*dispatcher*/)
{
m_tmpMultiBodyConstraints = multiBodyConstraints;
m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
// 1. Convert rigid bodies/multibodies, joints, contacts into constraints.
solveGroupCacheFriendlySetup(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
// 2. Split constraints into constraint blocks
btMultiBodyInternalConstraintData originalInternalDataCopy;
getMultiBodyInternalConstraintData(originalInternalDataCopy);
btAlignedObjectArray<btBlockConstraintSolverConfig> configs;
// TODO(JS): This is just for test
//m_splittingPolicy = new btSingleBlockSplittingPolicy(new btMultiBodyConstraintSolver());
// btDantzigSolver* mlcp = new btDantzigSolver();
// btMultiBodyMLCPConstraintSolver* sol = new btMultiBodyMLCPConstraintSolver(mlcp);
// m_splittingPolicy = new btDoubleBlockSplittingPolicy(sol);
m_splittingPolicy = new btDoubleBlockSplittingPolicy(new btMultiBodyConstraintSolver());
btAssert(m_splittingPolicy);
m_blocks.resize(0);
m_splittingPolicy->split(originalInternalDataCopy, configs, m_blocks);
// for (int i = 0; i < m_blocks.size(); ++i)
// {
// btMultiBodyConstraintBlock& block = m_blocks[i];
// btMultiBodyConstraintSolver* solver = block.m_solver;
// btAssert(solver);
// solver->solveGroupConvertConstraintPrestep(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
// copyDynamicDataFromOriginalToBlock(block);
//// block.copyDynamicDataFromOriginalToBlock();
// solver->setMultiBodyInternalConstraintData(block.m_internalData, false);
// solver->solveGroupConvertConstraintPoststep(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
// }
// 3. Gauss-Seidel iterations
const int maxIterations = m_maxOverrideNumSolverIterations > info.m_numIterations ? m_maxOverrideNumSolverIterations : info.m_numIterations;
m_leastSquaresResidual = 0;
for (int iteration = 0; iteration < maxIterations; ++iteration)
{
for (int i = 0; i < m_blocks.size(); ++i)
{
// Change the sweep direction every iteration
const int index = iteration & 1 ? m_blocks.size() - 1 - i : i;
btMultiBodyConstraintBlock& block = m_blocks[index];
btMultiBodyConstraintSolver* solver = block.m_solver;
btAssert(solver);
solver->solveGroupConvertConstraintPrestep(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
copyDynamicDataFromOriginalToBlock(block);
solver->setMultiBodyInternalConstraintData(block.m_internalData, false);
solver->solveGroupConvertConstraintPoststep(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
// TODO(JS): Add split impulse
btScalar newSquaredResidual = solver->solveGroupCacheFriendlyIterations(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
m_leastSquaresResidual = btMax(m_leastSquaresResidual, newSquaredResidual);
solver->solveGroupConvertBackPrestep(bodies, numBodies, info);
solver->solveGroupConvertBack(bodies, numBodies, info);
solver->getMultiBodyInternalConstraintData(block.m_internalData, false);
copyDynamicDataFromBlockToOriginal(block);
solver->solveGroupConvertBackPoststep(bodies, numBodies, info);
}
if (m_leastSquaresResidual <= info.m_leastSquaresResidualThreshold || (iteration >= (maxIterations - 1)))
{
#ifdef VERBOSE_RESIDUAL_PRINTF
printf("residual = %f at iteration #%d\n", m_leastSquaresResidual, iteration);
#endif
break;
}
}
// solveGroupConvertBackPrestep(bodies, numBodies, info);
// solveGroupConvertBack(bodies, numBodies, info);
// getMultiBodyInternalConstraintData(block.m_internalData, false);
// copyDynamicDataFromBlockToOriginal(block);
// solveGroupConvertBackPoststep(bodies, numBodies, info);
solveGroupCacheFriendlyFinish(bodies, numBodies, info);
m_tmpMultiBodyConstraints = 0;
m_tmpNumMultiBodyConstraints = 0;
}
void btMultiBodyBlockConstraintSolver::setSplittingPolicy(btMultiBodyBlockSplittingPolicy* policy)
{
m_splittingPolicy = policy;
}
void btMultiBodyBlockConstraintSolver::copyDynamicDataFromOriginalToBlock(btMultiBodyConstraintBlock& block)
{
copyConstraintDynamicDataToBlock(block.m_originalMultiBodyNormalContactConstraintPtrs, block.m_internalData.m_multiBodyNormalContactConstraints);
copyConstraintDynamicDataToBlock(block.m_originalMultiBodyFrictionContactConstraintPtrs, block.m_internalData.m_multiBodyFrictionContactConstraints);
copyConstraintDynamicDataToBlock(block.m_originalMultiBodyTorsionalFrictionContactConstraintPtrs, block.m_internalData.m_multiBodyTorsionalFrictionContactConstraints);
btAssert(block.m_multiBodies.size() == block.m_originalDeltaVelIndices.size());
btAssert(block.m_multiBodies.size() == block.m_deltaVelIndices.size());
for (int i = 0; i < block.m_multiBodies.size(); ++i)
{
btMultiBody* multiBody = block.m_multiBodies[i];
const int ndof = multiBody->getNumDofs() + 6;
btMultiBodyJacobianData& originalData = m_data; // TODO(JS): WRONG !!
btAlignedObjectArray<btScalar>& originaDeltaVelocities = originalData.m_deltaVelocities;
btAlignedObjectArray<btScalar>& blockDeltaVelocities = block.m_internalData.m_data.m_deltaVelocities;
const int originalIndex = block.m_originalDeltaVelIndices[i];
const int blockIndex = block.m_deltaVelIndices[i];
const btScalar* originalDeltaVelocitiesPtr = &originaDeltaVelocities[originalIndex];
btScalar* blockDeltaVelocitiesPtr = &blockDeltaVelocities[blockIndex];
// printf("[ original --> block ]\n");
// printf("original: ");
// debugPrint(originalDeltaVelocitiesPtr, ndof);
// printf("block: ");
// debugPrint(blockDeltaVelocitiesPtr, ndof);
// printf("diff: ");
// debugPrintDiff(originalDeltaVelocitiesPtr, blockDeltaVelocitiesPtr, ndof, true);
// printf("\n");
memcpy(blockDeltaVelocitiesPtr, originalDeltaVelocitiesPtr, ndof * sizeof(btScalar));
}
}
void btMultiBodyBlockConstraintSolver::copyDynamicDataFromBlockToOriginal(btMultiBodyConstraintBlock& block)
{
copyConstraintDynamicDataFromToOriginal(block.m_originalMultiBodyNormalContactConstraintPtrs, block.m_internalData.m_multiBodyNormalContactConstraints);
copyConstraintDynamicDataFromToOriginal(block.m_originalMultiBodyFrictionContactConstraintPtrs, block.m_internalData.m_multiBodyFrictionContactConstraints);
copyConstraintDynamicDataFromToOriginal(block.m_originalMultiBodyTorsionalFrictionContactConstraintPtrs, block.m_internalData.m_multiBodyTorsionalFrictionContactConstraints);
btAssert(block.m_multiBodies.size() == block.m_originalDeltaVelIndices.size());
btAssert(block.m_multiBodies.size() == block.m_deltaVelIndices.size());
for (int i = 0; i < block.m_multiBodies.size(); ++i)
{
btMultiBody* multiBody = block.m_multiBodies[i];
const int ndof = multiBody->getNumDofs() + 6;
btMultiBodyJacobianData& originalData = m_data;
btAlignedObjectArray<btScalar>& originaDeltaVelocities = originalData.m_deltaVelocities;
btAlignedObjectArray<btScalar>& blockDeltaVelocities = block.m_internalData.m_data.m_deltaVelocities;
const int originalIndex = block.m_originalDeltaVelIndices[i];
const int blockIndex = block.m_deltaVelIndices[i];
btScalar* originalDeltaVelocitiesPtr = &originaDeltaVelocities[originalIndex];
const btScalar* blockDeltaVelocitiesPtr = &blockDeltaVelocities[blockIndex];
// printf("[ block --> original ]\n");
// printf("original: ");
// debugPrint(originalDeltaVelocitiesPtr, ndof);
// printf("block: ");
// debugPrint(blockDeltaVelocitiesPtr, ndof);
// printf("diff: ");
// debugPrintDiff(originalDeltaVelocitiesPtr, blockDeltaVelocitiesPtr, ndof, true);
// printf("\n");
memcpy(originalDeltaVelocitiesPtr, blockDeltaVelocitiesPtr, ndof * sizeof(btScalar));
}
}
int btMultiBodyBlockConstraintSolver::addConfig(btBlockConstraintSolverConfig& config)
{
m_configs.push_back(config);
return m_configs.size();
}
int btMultiBodyBlockConstraintSolver::getNumConfigs() const
{
return m_configs.size();
}
void btMultiBodyBlockConstraintSolver::removeConfig(int configIndex)
{
m_configs.removeAtIndex(configIndex);
}

View File

@ -0,0 +1,186 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2018 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_MULTIBODY_BLOCK_CONSTRAINT_SOLVER_H
#define BT_MULTIBODY_BLOCK_CONSTRAINT_SOLVER_H
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
struct btBlockConstraintSolverConfig
{
int m_solverType; //SI or MLCP Dantzig
//to be decided: full or subset of
btContactSolverInfo m_info;
};
struct btMultiBodyConstraintBlock
{
/// \{ \name Multi-body Data
btAlignedObjectArray<btMultiBody*> m_multiBodies;
btAlignedObjectArray<int> m_originalDeltaVelIndices;
btAlignedObjectArray<int> m_deltaVelIndices;
// btMultiBodyJacobianData* m_originalDataPtr;
btAlignedObjectArray<btMultiBodySolverConstraint*> m_originalMultiBodyNonContactConstraintPtrs;
btAlignedObjectArray<btMultiBodySolverConstraint*> m_originalMultiBodyNormalContactConstraintPtrs;
btAlignedObjectArray<btMultiBodySolverConstraint*> m_originalMultiBodyFrictionContactConstraintPtrs;
btAlignedObjectArray<btMultiBodySolverConstraint*> m_originalMultiBodyTorsionalFrictionContactConstraintPtrs;
/// \}
btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData m_internalData;
/// Constraint solver
btMultiBodyConstraintSolver* m_solver;
bool m_ownSolver = false;
// TODO(JS): If this is true, then don't copy all the constraint data, but
// only dynamic data
// TODO(JS): not utilized yet
/// Index to constraint solver configuration
int m_constraintConfigId;
/// Default constructor
btMultiBodyConstraintBlock();
/// Constructor
btMultiBodyConstraintBlock(
btTypedConstraint** m_constraints,
int m_numConstraints,
btAlignedObjectArray<btSolverBody>* m_solverBodyPool,
btConstraintArray& m_originalNonContactConstraints,
btConstraintArray& m_originalNormalContactConstraints,
btConstraintArray& m_originalFrictionContactConstraints,
btConstraintArray& m_orginalRollingFrictionContactConstraints,
btMultiBodyConstraint** m_multiBodyConstraints,
int m_numMultiBodyConstraints,
btAlignedObjectArray<btMultiBodySolverConstraint>& m_multiBodyNonContactConstraints,
btAlignedObjectArray<btMultiBodySolverConstraint>& m_multiBodyNormalContactConstraints,
btAlignedObjectArray<btMultiBodySolverConstraint>& m_multiBodyFrictionContactConstraints,
btAlignedObjectArray<btMultiBodySolverConstraint>& m_multiBodyTorsionalFrictionContactConstraints,
btMultiBodyJacobianData* m_data);
void copyDynamicDataFromOriginalToBlock();
void copyDynamicDataFromBlockToOriginal();
};
class btMultiBodyBlockSplittingPolicy
{
public:
/// Destructor
virtual ~btMultiBodyBlockSplittingPolicy();
/// Splits a set of constraints into multiple subsets.
///
/// \param[in] blockInput
/// \param[in] availableConfigs
/// \param[in,out] blocksOutput The splitted blocks. This function adds blocks without clearning the array
/// beforehand. Clearning the array is the caller's responsibility.
virtual void split(btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& blockInput, const btAlignedObjectArray<btBlockConstraintSolverConfig>& availableConfigs, btAlignedObjectArray<btMultiBodyConstraintBlock>& blocksOutput) = 0;
protected:
void copyMultiBodyNonContactConstraint(
btMultiBodyConstraintBlock& block,
btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& originalInternalData,
int originalNonContactConstraintIndex);
void copyMultiBodyContactConstraint(
btMultiBodyConstraintBlock& block,
btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& originalInternalData,
int originalNormalContactConstraintIndex);
};
class btSingleBlockSplittingPolicy : public btMultiBodyBlockSplittingPolicy
{
protected:
btMultiBodyConstraintSolver* m_solver;
public:
/// Constructor
btSingleBlockSplittingPolicy(btMultiBodyConstraintSolver* solver);
/// Destructor
virtual ~btSingleBlockSplittingPolicy();
// Documentation inherited
virtual void split(btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& blockInput, const btAlignedObjectArray<btBlockConstraintSolverConfig>& availableConfigs, btAlignedObjectArray<btMultiBodyConstraintBlock>& blocksOutput);
};
class btDoubleBlockSplittingPolicy : public btMultiBodyBlockSplittingPolicy
{
protected:
btMultiBodyConstraintSolver* m_solver;
public:
/// Constructor
btDoubleBlockSplittingPolicy(btMultiBodyConstraintSolver* solver);
/// Destructor
virtual ~btDoubleBlockSplittingPolicy();
// Documentation inherited
virtual void split(btMultiBodyConstraintSolver::btMultiBodyInternalConstraintData& blockInput, const btAlignedObjectArray<btBlockConstraintSolverConfig>& availableConfigs, btAlignedObjectArray<btMultiBodyConstraintBlock>& blocksOutput);
};
class btMultiBodyBlockConstraintSolver : public btMultiBodyConstraintSolver
{
protected:
/// Splitting policy. Assumed not a null.
btMultiBodyBlockSplittingPolicy* m_splittingPolicy;
/// Array of constraint configurations for constraint blocks.
btAlignedObjectArray<btBlockConstraintSolverConfig> m_configs;
/// Array of constraint blocks.
btAlignedObjectArray<btMultiBodyConstraintBlock> m_blocks;
public:
/// Constructor
btMultiBodyBlockConstraintSolver();
/// Destructor
virtual ~btMultiBodyBlockConstraintSolver();
virtual btScalar solveGroupConvertConstraintPoststep(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
protected:
// Documentation inherited.
virtual void solveMultiBodyGroup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher);
/// Sets the splitting policy.
virtual void setSplittingPolicy(btMultiBodyBlockSplittingPolicy* policy);
void copyDynamicDataFromOriginalToBlock(btMultiBodyConstraintBlock& block);
void copyDynamicDataFromBlockToOriginal(btMultiBodyConstraintBlock& block);
/// Adds a constraint block configuration and returns the total number of configurations added to this solver.
virtual int addConfig(btBlockConstraintSolverConfig& config);
/// Returns the number of configurations added to this solver.
virtual int getNumConfigs() const;
/// Removes an configuration at \c configIndex
///
/// \param[in] configIndex The configuration indext in the range of [0, numConfigs). Passing out of the range is an
/// undefined behavior.
virtual void removeConfig(int configIndex);
};
#endif // BT_MULTIBODY_BLOCK_CONSTRAINT_SOLVER_H

File diff suppressed because it is too large Load Diff

View File

@ -28,68 +28,111 @@ class btMultiBody;
ATTRIBUTE_ALIGNED16(class)
btMultiBodyConstraintSolver : public btSequentialImpulseConstraintSolver
{
protected:
btMultiBodyConstraintArray m_multiBodyNonContactConstraints;
btMultiBodyConstraintArray m_multiBodyNormalContactConstraints;
btMultiBodyConstraintArray m_multiBodyFrictionContactConstraints;
btMultiBodyConstraintArray m_multiBodyTorsionalFrictionContactConstraints;
btMultiBodyConstraintArray m_multiBodyNonContactConstraints;
btMultiBodyJacobianData m_data;
btMultiBodyConstraintArray m_multiBodyNormalContactConstraints;
btMultiBodyConstraintArray m_multiBodyFrictionContactConstraints;
btMultiBodyConstraintArray m_multiBodyTorsionalFrictionContactConstraints;
btMultiBodyJacobianData m_data;
//temp storage for multi body constraints for a specific island/group called by 'solveGroup'
btMultiBodyConstraint** m_tmpMultiBodyConstraints;
int m_tmpNumMultiBodyConstraints;
btMultiBodyConstraint** m_tmpMultiBodyConstraints;
int m_tmpNumMultiBodyConstraints;
btScalar resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c);
//solve 2 friction directions and clamp against the implicit friction cone
btScalar resolveConeFrictionConstraintRows(const btMultiBodySolverConstraint& cA1, const btMultiBodySolverConstraint& cB);
void convertContacts(btPersistentManifold * *manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
void convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal);
btMultiBodySolverConstraint& addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0, btScalar cfmSlip=0);
btMultiBodySolverConstraint& addMultiBodyFrictionConstraint(const btVector3& normalAxis, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
btMultiBodySolverConstraint& addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,
btScalar combinedTorsionalFriction,
btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0, btScalar cfmSlip=0);
btMultiBodySolverConstraint& addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp,
btScalar combinedTorsionalFriction,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
void setupMultiBodyJointLimitConstraint(btMultiBodySolverConstraint& constraintRow,
btScalar* jacA,btScalar* jacB,
btScalar penetration,btScalar combinedFrictionCoeff, btScalar combinedRestitutionCoeff,
const btContactSolverInfo& infoGlobal);
void setupMultiBodyJointLimitConstraint(btMultiBodySolverConstraint & constraintRow,
btScalar * jacA, btScalar * jacB,
btScalar penetration, btScalar combinedFrictionCoeff, btScalar combinedRestitutionCoeff,
const btContactSolverInfo& infoGlobal);
void setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
const btVector3& contactNormal,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
btScalar& relaxation,
bool isFriction, btScalar desiredVelocity=0, btScalar cfmSlip=0);
//either rolling or spinning friction
void setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint& solverConstraint,
const btVector3& contactNormal,
btManifoldPoint& cp,
btScalar combinedTorsionalFriction,
const btContactSolverInfo& infoGlobal,
btScalar& relaxation,
bool isFriction, btScalar desiredVelocity=0, btScalar cfmSlip=0);
void setupMultiBodyContactConstraint(btMultiBodySolverConstraint & solverConstraint,
const btVector3& contactNormal,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
btScalar& relaxation,
bool isFriction, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
//either rolling or spinning friction
void setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint & solverConstraint,
const btVector3& contactNormal,
btManifoldPoint& cp,
btScalar combinedTorsionalFriction,
const btContactSolverInfo& infoGlobal,
btScalar& relaxation,
bool isFriction, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
void convertMultiBodyContact(btPersistentManifold * manifold, const btContactSolverInfo& infoGlobal);
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
// virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
void applyDeltaVee(btScalar * deltaV, btScalar impulse, int velocityIndex, int ndof);
void writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint & constraint, btScalar deltaTime);
void convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
// virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
void applyDeltaVee(btScalar* deltaV, btScalar impulse, int velocityIndex, int ndof);
void writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint& constraint, btScalar deltaTime);
public:
struct btMultiBodyInternalConstraintData
{
/// Multibody (joint) constraints. This is shared by all the blocks.
btMultiBodyConstraint** m_multiBodyConstraints;
/// Number of multibody (joint) constraints. This is shared by all the
/// blocks.
int m_numMultiBodyConstraints;
/// Array of multibody non-contact constraints
btAlignedObjectArray<btMultiBodySolverConstraint> m_multiBodyNonContactConstraints;
/// Array of multibody normal contact constraints
btAlignedObjectArray<btMultiBodySolverConstraint> m_multiBodyNormalContactConstraints;
/// Array of multibody friction contact constraints
btAlignedObjectArray<btMultiBodySolverConstraint> m_multiBodyFrictionContactConstraints;
/// Array of multibody rolling friction contact constraints
btAlignedObjectArray<btMultiBodySolverConstraint> m_multiBodyTorsionalFrictionContactConstraints;
/// Pointer to the block constraint solver's multi body Jacobian data, which
/// is shared by all the constraint blocks.
btMultiBodyJacobianData m_data;
};
BT_DECLARE_ALIGNED_ALLOCATOR();
///this method should not be called, it was just used during porting/integration of Featherstone btMultiBody, providing backwards compatibility but no support for btMultiBodyConstraint (only contact constraints)
virtual btScalar solveGroup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher);
virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal);
/// Copies internal constraint data from \p proxy
virtual void setMultiBodyInternalConstraintData(const btMultiBodyInternalConstraintData& proxy, bool onlyDynamicData = false);
virtual void solveMultiBodyGroup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher);
/// Copies internal constraint data to \p proxy
virtual void getMultiBodyInternalConstraintData(btMultiBodyInternalConstraintData& data, bool onlyDynamicData = false);
///this method should not be called, it was just used during porting/integration of Featherstone btMultiBody, providing backwards compatibility but no support for btMultiBodyConstraint (only contact constraints)
virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
virtual btScalar solveGroupConvertConstraintPrestep(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
virtual btScalar solveGroupConvertConstraintPoststep(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
virtual btScalar solveSingleIterationNew(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
virtual void solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
};
#endif //BT_MULTIBODY_CONSTRAINT_SOLVER_H
#endif //BT_MULTIBODY_CONSTRAINT_SOLVER_H