bullet3/examples/SharedMemory/PhysicsDirect.cpp
erwincoumans 17219f84c6 make setJointPosMultiDof and setJointVelMultiDof argument const.
add PyBullet.resetJointStateMultiDof / getJointStateMultiDof, for preliminary support for spherical and planar joints
2018-11-10 14:26:31 -08:00

1558 lines
47 KiB
C++

#include "PhysicsDirect.h"
#include "PhysicsClientSharedMemory.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "SharedMemoryCommands.h"
#include "PhysicsCommandProcessorInterface.h"
#include "../Utils/b3Clock.h"
#include "LinearMath/btHashMap.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "../../Extras/Serialize/BulletFileLoader/btBulletFile.h"
#include "../../Extras/Serialize/BulletFileLoader/autogenerated/bullet.h"
#include "BodyJointInfoUtility.h"
#include <string>
#include "SharedMemoryUserData.h"
#include "LinearMath/btQuickprof.h"
struct BodyJointInfoCache2
{
std::string m_baseName;
btAlignedObjectArray<b3JointInfo> m_jointInfo;
std::string m_bodyName;
btAlignedObjectArray<int> m_userDataIds;
~BodyJointInfoCache2()
{
}
};
struct PhysicsDirectInternalData
{
DummyGUIHelper m_noGfx;
btAlignedObjectArray<char> m_serverDNA;
SharedMemoryCommand m_command;
SharedMemoryStatus m_serverStatus;
SharedMemoryCommand m_tmpInfoRequestCommand;
SharedMemoryStatus m_tmpInfoStatus;
bool m_hasStatus;
bool m_verboseOutput;
btAlignedObjectArray<TmpFloat3> m_debugLinesFrom;
btAlignedObjectArray<TmpFloat3> m_debugLinesTo;
btAlignedObjectArray<TmpFloat3> m_debugLinesColor;
btHashMap<btHashInt, BodyJointInfoCache2*> m_bodyJointMap;
btHashMap<btHashInt, b3UserConstraint> m_userConstraintInfoMap;
btAlignedObjectArray<CProfileSample*> m_profileTimings;
btHashMap<btHashString, std::string*> m_profileTimingStringArray;
char m_bulletStreamDataServerToClient[SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE];
btAlignedObjectArray<double> m_cachedMassMatrix;
int m_cachedCameraPixelsWidth;
int m_cachedCameraPixelsHeight;
btAlignedObjectArray<unsigned char> m_cachedCameraPixelsRGBA;
btAlignedObjectArray<float> m_cachedCameraDepthBuffer;
btAlignedObjectArray<int> m_cachedSegmentationMask;
btAlignedObjectArray<b3ContactPointData> m_cachedContactPoints;
btAlignedObjectArray<b3OverlappingObject> m_cachedOverlappingObjects;
btAlignedObjectArray<b3VisualShapeData> m_cachedVisualShapes;
btAlignedObjectArray<b3CollisionShapeData> m_cachedCollisionShapes;
btAlignedObjectArray<b3VRControllerEvent> m_cachedVREvents;
btAlignedObjectArray<b3KeyboardEvent> m_cachedKeyboardEvents;
btAlignedObjectArray<b3MouseEvent> m_cachedMouseEvents;
btAlignedObjectArray<b3RayHitInfo> m_raycastHits;
btHashMap<btHashInt, SharedMemoryUserData> m_userDataMap;
btHashMap<SharedMemoryUserDataHashKey, int> m_userDataHandleLookup;
PhysicsCommandProcessorInterface* m_commandProcessor;
bool m_ownsCommandProcessor;
double m_timeOutInSeconds;
PhysicsDirectInternalData()
: m_hasStatus(false),
m_verboseOutput(false),
m_cachedCameraPixelsWidth(0),
m_cachedCameraPixelsHeight(0),
m_commandProcessor(NULL),
m_ownsCommandProcessor(false),
m_timeOutInSeconds(1e30)
{
memset(&m_command, 0, sizeof(m_command));
memset(&m_serverStatus, 0, sizeof(m_serverStatus));
memset(m_bulletStreamDataServerToClient, 0, sizeof(m_bulletStreamDataServerToClient));
}
};
PhysicsDirect::PhysicsDirect(PhysicsCommandProcessorInterface* physSdk, bool passSdkOwnership)
{
int sz = sizeof(SharedMemoryCommand);
int sz2 = sizeof(SharedMemoryStatus);
m_data = new PhysicsDirectInternalData;
m_data->m_commandProcessor = physSdk;
m_data->m_ownsCommandProcessor = passSdkOwnership;
}
PhysicsDirect::~PhysicsDirect()
{
for (int i = 0; i < m_data->m_profileTimingStringArray.size(); i++)
{
std::string** str = m_data->m_profileTimingStringArray.getAtIndex(i);
if (str)
{
delete *str;
}
}
m_data->m_profileTimingStringArray.clear();
if (m_data->m_commandProcessor->isConnected())
{
m_data->m_commandProcessor->disconnect();
}
if (m_data->m_ownsCommandProcessor)
{
delete m_data->m_commandProcessor;
}
resetData();
delete m_data;
}
void PhysicsDirect::resetData()
{
m_data->m_debugLinesFrom.clear();
m_data->m_debugLinesTo.clear();
m_data->m_debugLinesColor.clear();
for (int i = 0; i < m_data->m_bodyJointMap.size(); i++)
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap.getAtIndex(i);
if (bodyJointsPtr && *bodyJointsPtr)
{
delete (*bodyJointsPtr);
}
}
m_data->m_bodyJointMap.clear();
m_data->m_userConstraintInfoMap.clear();
}
// return true if connection succesfull, can also check 'isConnected'
bool PhysicsDirect::connect()
{
bool connected = m_data->m_commandProcessor->connect();
m_data->m_commandProcessor->setGuiHelper(&m_data->m_noGfx);
if (connected)
//also request serialization data
{
SharedMemoryCommand command;
command.m_type = CMD_REQUEST_INTERNAL_DATA;
bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
if (hasStatus)
{
postProcessStatus(m_data->m_serverStatus);
}
else
{
b3Clock clock;
double timeSec = clock.getTimeInSeconds();
while ((!hasStatus) && (clock.getTimeInSeconds() - timeSec < 10))
{
const SharedMemoryStatus* stat = processServerStatus();
if (stat)
{
hasStatus = true;
}
}
}
}
return connected;
}
// return true if connection succesfull, can also check 'isConnected'
bool PhysicsDirect::connect(struct GUIHelperInterface* guiHelper)
{
bool connected = m_data->m_commandProcessor->connect();
m_data->m_commandProcessor->setGuiHelper(guiHelper);
return connected;
}
void PhysicsDirect::renderScene()
{
int renderFlags = 0;
m_data->m_commandProcessor->renderScene(renderFlags);
}
void PhysicsDirect::debugDraw(int debugDrawMode)
{
m_data->m_commandProcessor->physicsDebugDraw(debugDrawMode);
}
////todo: rename to 'disconnect'
void PhysicsDirect::disconnectSharedMemory()
{
m_data->m_commandProcessor->disconnect();
m_data->m_commandProcessor->setGuiHelper(0);
}
bool PhysicsDirect::isConnected() const
{
return m_data->m_commandProcessor->isConnected();
}
// return non-null if there is a status, nullptr otherwise
const SharedMemoryStatus* PhysicsDirect::processServerStatus()
{
if (!m_data->m_hasStatus)
{
m_data->m_hasStatus = m_data->m_commandProcessor->receiveStatus(m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
}
SharedMemoryStatus* stat = 0;
if (m_data->m_hasStatus)
{
stat = &m_data->m_serverStatus;
postProcessStatus(m_data->m_serverStatus);
m_data->m_hasStatus = false;
}
return stat;
}
SharedMemoryCommand* PhysicsDirect::getAvailableSharedMemoryCommand()
{
return &m_data->m_command;
}
bool PhysicsDirect::canSubmitCommand() const
{
return m_data->m_commandProcessor->isConnected();
}
bool PhysicsDirect::processDebugLines(const struct SharedMemoryCommand& orgCommand)
{
SharedMemoryCommand command = orgCommand;
const SharedMemoryStatus& serverCmd = m_data->m_serverStatus;
do
{
bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double timeOutInSeconds = m_data->m_timeOutInSeconds;
while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
const SharedMemoryStatus* stat = processServerStatus();
if (stat)
{
hasStatus = true;
}
}
m_data->m_hasStatus = hasStatus;
if (hasStatus)
{
btAssert(m_data->m_serverStatus.m_type == CMD_DEBUG_LINES_COMPLETED);
if (m_data->m_verboseOutput)
{
b3Printf("Success receiving %d debug lines",
serverCmd.m_sendDebugLinesArgs.m_numDebugLines);
}
int numLines = serverCmd.m_sendDebugLinesArgs.m_numDebugLines;
float* linesFrom =
(float*)&m_data->m_bulletStreamDataServerToClient[0];
float* linesTo =
(float*)(&m_data->m_bulletStreamDataServerToClient[0] +
numLines * 3 * sizeof(float));
float* linesColor =
(float*)(&m_data->m_bulletStreamDataServerToClient[0] +
2 * numLines * 3 * sizeof(float));
m_data->m_debugLinesFrom.resize(serverCmd.m_sendDebugLinesArgs.m_startingLineIndex +
numLines);
m_data->m_debugLinesTo.resize(serverCmd.m_sendDebugLinesArgs.m_startingLineIndex +
numLines);
m_data->m_debugLinesColor.resize(
serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + numLines);
for (int i = 0; i < numLines; i++)
{
TmpFloat3 from = CreateTmpFloat3(linesFrom[i * 3], linesFrom[i * 3 + 1],
linesFrom[i * 3 + 2]);
TmpFloat3 to =
CreateTmpFloat3(linesTo[i * 3], linesTo[i * 3 + 1], linesTo[i * 3 + 2]);
TmpFloat3 color = CreateTmpFloat3(linesColor[i * 3], linesColor[i * 3 + 1],
linesColor[i * 3 + 2]);
m_data
->m_debugLinesFrom[serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + i] =
from;
m_data->m_debugLinesTo[serverCmd.m_sendDebugLinesArgs.m_startingLineIndex + i] =
to;
m_data->m_debugLinesColor[serverCmd.m_sendDebugLinesArgs.m_startingLineIndex +
i] = color;
}
if (serverCmd.m_sendDebugLinesArgs.m_numRemainingDebugLines > 0)
{
m_data->m_hasStatus = false;
command.m_type = CMD_REQUEST_DEBUG_LINES;
command.m_requestDebugLinesArguments.m_startingLineIndex =
serverCmd.m_sendDebugLinesArgs.m_numDebugLines +
serverCmd.m_sendDebugLinesArgs.m_startingLineIndex;
}
}
} while (serverCmd.m_sendDebugLinesArgs.m_numRemainingDebugLines > 0);
return m_data->m_hasStatus;
}
bool PhysicsDirect::processVisualShapeData(const struct SharedMemoryCommand& orgCommand)
{
SharedMemoryCommand command = orgCommand;
const SharedMemoryStatus& serverCmd = m_data->m_serverStatus;
do
{
bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double timeOutInSeconds = m_data->m_timeOutInSeconds;
while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
const SharedMemoryStatus* stat = processServerStatus();
if (stat)
{
hasStatus = true;
}
}
m_data->m_hasStatus = hasStatus;
if (hasStatus)
{
if (m_data->m_verboseOutput)
{
b3Printf("Visual Shape Information Request OK\n");
}
int startVisualShapeIndex = serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex;
int numVisualShapesCopied = serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied;
m_data->m_cachedVisualShapes.resize(startVisualShapeIndex + numVisualShapesCopied);
b3VisualShapeData* shapeData = (b3VisualShapeData*)&m_data->m_bulletStreamDataServerToClient[0];
for (int i = 0; i < numVisualShapesCopied; i++)
{
m_data->m_cachedVisualShapes[startVisualShapeIndex + i] = shapeData[i];
}
if (serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes > 0 && serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied)
{
m_data->m_hasStatus = false;
command.m_type = CMD_REQUEST_VISUAL_SHAPE_INFO;
command.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex = serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex + serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied;
command.m_requestVisualShapeDataArguments.m_bodyUniqueId = serverCmd.m_sendVisualShapeArgs.m_bodyUniqueId;
}
}
} while (serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes > 0 && serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied);
return m_data->m_hasStatus;
}
bool PhysicsDirect::processOverlappingObjects(const struct SharedMemoryCommand& orgCommand)
{
SharedMemoryCommand command = orgCommand;
const SharedMemoryStatus& serverCmd = m_data->m_serverStatus;
do
{
bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double timeOutInSeconds = m_data->m_timeOutInSeconds;
while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
const SharedMemoryStatus* stat = processServerStatus();
if (stat)
{
hasStatus = true;
}
}
m_data->m_hasStatus = hasStatus;
if (hasStatus)
{
if (m_data->m_verboseOutput)
{
b3Printf("Overlapping Objects Request OK\n");
}
int startOverlapIndex = serverCmd.m_sendOverlappingObjectsArgs.m_startingOverlappingObjectIndex;
int numOverlapCopied = serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied;
m_data->m_cachedOverlappingObjects.resize(startOverlapIndex + numOverlapCopied);
b3OverlappingObject* objects = (b3OverlappingObject*)&m_data->m_bulletStreamDataServerToClient[0];
for (int i = 0; i < numOverlapCopied; i++)
{
m_data->m_cachedOverlappingObjects[startOverlapIndex + i] = objects[i];
}
if (serverCmd.m_sendOverlappingObjectsArgs.m_numRemainingOverlappingObjects > 0 && serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied)
{
m_data->m_hasStatus = false;
command.m_type = CMD_REQUEST_AABB_OVERLAP;
command.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex = serverCmd.m_sendOverlappingObjectsArgs.m_startingOverlappingObjectIndex + serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied;
}
}
} while (serverCmd.m_sendOverlappingObjectsArgs.m_numRemainingOverlappingObjects > 0 && serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied);
return m_data->m_hasStatus;
}
bool PhysicsDirect::processContactPointData(const struct SharedMemoryCommand& orgCommand)
{
SharedMemoryCommand command = orgCommand;
const SharedMemoryStatus& serverCmd = m_data->m_serverStatus;
do
{
bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double timeOutInSeconds = m_data->m_timeOutInSeconds;
while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
const SharedMemoryStatus* stat = processServerStatus();
if (stat)
{
hasStatus = true;
}
}
m_data->m_hasStatus = hasStatus;
if (hasStatus)
{
if (m_data->m_verboseOutput)
{
b3Printf("Contact Point Information Request OK\n");
}
int startContactIndex = serverCmd.m_sendContactPointArgs.m_startingContactPointIndex;
int numContactsCopied = serverCmd.m_sendContactPointArgs.m_numContactPointsCopied;
m_data->m_cachedContactPoints.resize(startContactIndex + numContactsCopied);
b3ContactPointData* contactData = (b3ContactPointData*)&m_data->m_bulletStreamDataServerToClient[0];
for (int i = 0; i < numContactsCopied; i++)
{
m_data->m_cachedContactPoints[startContactIndex + i] = contactData[i];
}
if (serverCmd.m_sendContactPointArgs.m_numRemainingContactPoints > 0 && serverCmd.m_sendContactPointArgs.m_numContactPointsCopied)
{
m_data->m_hasStatus = false;
command.m_type = CMD_REQUEST_CONTACT_POINT_INFORMATION;
command.m_requestContactPointArguments.m_startingContactPointIndex = serverCmd.m_sendContactPointArgs.m_startingContactPointIndex + serverCmd.m_sendContactPointArgs.m_numContactPointsCopied;
command.m_requestContactPointArguments.m_objectAIndexFilter = -1;
command.m_requestContactPointArguments.m_objectBIndexFilter = -1;
}
}
} while (serverCmd.m_sendContactPointArgs.m_numRemainingContactPoints > 0 && serverCmd.m_sendContactPointArgs.m_numContactPointsCopied);
return m_data->m_hasStatus;
}
bool PhysicsDirect::processCamera(const struct SharedMemoryCommand& orgCommand)
{
SharedMemoryCommand command = orgCommand;
const SharedMemoryStatus& serverCmd = m_data->m_serverStatus;
do
{
bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double timeOutInSeconds = m_data->m_timeOutInSeconds;
while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
const SharedMemoryStatus* stat = processServerStatus();
if (stat)
{
hasStatus = true;
}
}
m_data->m_hasStatus = hasStatus;
if (hasStatus)
{
btAssert(m_data->m_serverStatus.m_type == CMD_CAMERA_IMAGE_COMPLETED);
if (m_data->m_verboseOutput)
{
b3Printf("Camera image OK\n");
}
int numBytesPerPixel = 4; //RGBA
int numTotalPixels = serverCmd.m_sendPixelDataArguments.m_startingPixelIndex +
serverCmd.m_sendPixelDataArguments.m_numPixelsCopied +
serverCmd.m_sendPixelDataArguments.m_numRemainingPixels;
m_data->m_cachedCameraPixelsWidth = 0;
m_data->m_cachedCameraPixelsHeight = 0;
int numPixels = serverCmd.m_sendPixelDataArguments.m_imageWidth * serverCmd.m_sendPixelDataArguments.m_imageHeight;
m_data->m_cachedCameraPixelsRGBA.reserve(numPixels * numBytesPerPixel);
m_data->m_cachedCameraDepthBuffer.resize(numTotalPixels);
m_data->m_cachedSegmentationMask.resize(numTotalPixels);
m_data->m_cachedCameraPixelsRGBA.resize(numTotalPixels * numBytesPerPixel);
unsigned char* rgbaPixelsReceived =
(unsigned char*)&m_data->m_bulletStreamDataServerToClient[0];
float* depthBuffer = (float*)&(m_data->m_bulletStreamDataServerToClient[serverCmd.m_sendPixelDataArguments.m_numPixelsCopied * 4]);
int* segmentationMaskBuffer = (int*)&(m_data->m_bulletStreamDataServerToClient[serverCmd.m_sendPixelDataArguments.m_numPixelsCopied * 8]);
// printf("pixel = %d\n", rgbaPixelsReceived[0]);
for (int i = 0; i < serverCmd.m_sendPixelDataArguments.m_numPixelsCopied; i++)
{
m_data->m_cachedCameraDepthBuffer[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex] = depthBuffer[i];
}
for (int i = 0; i < serverCmd.m_sendPixelDataArguments.m_numPixelsCopied; i++)
{
m_data->m_cachedSegmentationMask[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex] = segmentationMaskBuffer[i];
}
for (int i = 0; i < serverCmd.m_sendPixelDataArguments.m_numPixelsCopied * numBytesPerPixel; i++)
{
m_data->m_cachedCameraPixelsRGBA[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex * numBytesPerPixel] = rgbaPixelsReceived[i];
}
if (serverCmd.m_sendPixelDataArguments.m_numRemainingPixels > 0 && serverCmd.m_sendPixelDataArguments.m_numPixelsCopied)
{
m_data->m_hasStatus = false;
// continue requesting remaining pixels
command.m_type = CMD_REQUEST_CAMERA_IMAGE_DATA;
command.m_requestPixelDataArguments.m_startPixelIndex =
serverCmd.m_sendPixelDataArguments.m_startingPixelIndex +
serverCmd.m_sendPixelDataArguments.m_numPixelsCopied;
}
else
{
m_data->m_cachedCameraPixelsWidth = serverCmd.m_sendPixelDataArguments.m_imageWidth;
m_data->m_cachedCameraPixelsHeight = serverCmd.m_sendPixelDataArguments.m_imageHeight;
}
}
} while (serverCmd.m_sendPixelDataArguments.m_numRemainingPixels > 0 && serverCmd.m_sendPixelDataArguments.m_numPixelsCopied);
return m_data->m_hasStatus;
}
void PhysicsDirect::processBodyJointInfo(int bodyUniqueId, const SharedMemoryStatus& serverCmd)
{
BodyJointInfoCache2** cachePtr = m_data->m_bodyJointMap[bodyUniqueId];
//don't process same bodyUniqueId multiple times
if (cachePtr)
{
return;
}
bParse::btBulletFile bf(
&m_data->m_bulletStreamDataServerToClient[0],
serverCmd.m_numDataStreamBytes);
if (m_data->m_serverDNA.size())
{
bf.setFileDNA(false, &m_data->m_serverDNA[0], m_data->m_serverDNA.size());
}
else
{
bf.setFileDNAisMemoryDNA();
}
bf.parse(false);
BodyJointInfoCache2* bodyJoints = new BodyJointInfoCache2;
m_data->m_bodyJointMap.insert(bodyUniqueId, bodyJoints);
bodyJoints->m_bodyName = serverCmd.m_dataStreamArguments.m_bodyName;
for (int i = 0; i < bf.m_multiBodies.size(); i++)
{
int flag = bf.getFlags();
if ((flag & bParse::FD_DOUBLE_PRECISION) != 0)
{
Bullet::btMultiBodyDoubleData* mb =
(Bullet::btMultiBodyDoubleData*)bf.m_multiBodies[i];
if (mb->m_baseName)
{
bodyJoints->m_baseName = mb->m_baseName;
}
addJointInfoFromMultiBodyData(mb, bodyJoints, m_data->m_verboseOutput);
}
else
{
Bullet::btMultiBodyFloatData* mb =
(Bullet::btMultiBodyFloatData*)bf.m_multiBodies[i];
if (mb->m_baseName)
{
bodyJoints->m_baseName = mb->m_baseName;
}
addJointInfoFromMultiBodyData(mb, bodyJoints, m_data->m_verboseOutput);
}
}
if (bf.ok())
{
if (m_data->m_verboseOutput)
{
b3Printf("Received robot description ok!\n");
}
}
else
{
b3Warning("Robot description not received");
}
}
void PhysicsDirect::processAddUserData(const struct SharedMemoryStatus& serverCmd)
{
const UserDataResponseArgs response = serverCmd.m_userDataResponseArgs;
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[response.m_bodyUniqueId];
if (bodyJointsPtr && *bodyJointsPtr)
{
const char* dataStream = m_data->m_bulletStreamDataServerToClient;
SharedMemoryUserData* userData = m_data->m_userDataMap[response.m_userDataId];
if (userData)
{
// Only replace the value.
userData->replaceValue(dataStream, response.m_valueLength, response.m_valueType);
}
else
{
// Add a new user data entry.
const char* key = response.m_key;
m_data->m_userDataMap.insert(response.m_userDataId, SharedMemoryUserData(key, response.m_bodyUniqueId, response.m_linkIndex, response.m_visualShapeIndex));
userData = m_data->m_userDataMap[response.m_userDataId];
userData->replaceValue(dataStream, response.m_valueLength, response.m_valueType);
m_data->m_userDataHandleLookup.insert(SharedMemoryUserDataHashKey(userData), response.m_userDataId);
(*bodyJointsPtr)->m_userDataIds.push_back(response.m_userDataId);
}
}
}
void PhysicsDirect::postProcessStatus(const struct SharedMemoryStatus& serverCmd)
{
switch (serverCmd.m_type)
{
case CMD_REQUEST_RAY_CAST_INTERSECTIONS_COMPLETED:
{
if (m_data->m_verboseOutput)
{
b3Printf("Raycast completed");
}
m_data->m_raycastHits.clear();
b3RayHitInfo* rayHits = (b3RayHitInfo*)m_data->m_bulletStreamDataServerToClient;
for (int i = 0; i < serverCmd.m_raycastHits.m_numRaycastHits; i++)
{
m_data->m_raycastHits.push_back(rayHits[i]);
}
break;
}
case CMD_REQUEST_VR_EVENTS_DATA_COMPLETED:
{
if (m_data->m_verboseOutput)
{
b3Printf("Request VR Events completed");
}
m_data->m_cachedVREvents.resize(serverCmd.m_sendVREvents.m_numVRControllerEvents);
for (int i = 0; i < serverCmd.m_sendVREvents.m_numVRControllerEvents; i++)
{
m_data->m_cachedVREvents[i] = serverCmd.m_sendVREvents.m_controllerEvents[i];
}
break;
}
case CMD_REQUEST_KEYBOARD_EVENTS_DATA_COMPLETED:
{
if (m_data->m_verboseOutput)
{
b3Printf("Request keyboard events completed");
}
m_data->m_cachedKeyboardEvents.resize(serverCmd.m_sendKeyboardEvents.m_numKeyboardEvents);
for (int i = 0; i < serverCmd.m_sendKeyboardEvents.m_numKeyboardEvents; i++)
{
m_data->m_cachedKeyboardEvents[i] = serverCmd.m_sendKeyboardEvents.m_keyboardEvents[i];
}
break;
}
case CMD_REQUEST_MOUSE_EVENTS_DATA_COMPLETED:
{
B3_PROFILE("CMD_REQUEST_MOUSE_EVENTS_DATA_COMPLETED");
if (m_data->m_verboseOutput)
{
b3Printf("Request mouse events completed");
}
m_data->m_cachedMouseEvents.resize(serverCmd.m_sendMouseEvents.m_numMouseEvents);
for (int i = 0; i < serverCmd.m_sendMouseEvents.m_numMouseEvents; i++)
{
m_data->m_cachedMouseEvents[i] = serverCmd.m_sendMouseEvents.m_mouseEvents[i];
}
break;
}
case CMD_REQUEST_INTERNAL_DATA_COMPLETED:
{
if (serverCmd.m_numDataStreamBytes)
{
int numStreamBytes = serverCmd.m_numDataStreamBytes;
m_data->m_serverDNA.resize(numStreamBytes);
for (int i = 0; i < numStreamBytes; i++)
{
m_data->m_serverDNA[i] = m_data->m_bulletStreamDataServerToClient[i];
}
}
break;
}
case CMD_RESET_SIMULATION_COMPLETED:
{
resetData();
break;
}
case CMD_USER_CONSTRAINT_INFO_COMPLETED:
case CMD_USER_CONSTRAINT_COMPLETED:
{
int cid = serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId;
m_data->m_userConstraintInfoMap.insert(cid, serverCmd.m_userConstraintResultArgs);
break;
}
case CMD_REMOVE_USER_CONSTRAINT_COMPLETED:
{
int cid = serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId;
m_data->m_userConstraintInfoMap.remove(cid);
break;
}
case CMD_REMOVE_BODY_FAILED:
{
b3Warning("Remove body failed\n");
break;
}
case CMD_REMOVE_BODY_COMPLETED:
{
for (int i = 0; i < serverCmd.m_removeObjectArgs.m_numBodies; i++)
{
int bodyUniqueId = serverCmd.m_removeObjectArgs.m_bodyUniqueIds[i];
removeCachedBody(bodyUniqueId);
}
for (int i = 0; i < serverCmd.m_removeObjectArgs.m_numUserConstraints; i++)
{
int key = serverCmd.m_removeObjectArgs.m_userConstraintUniqueIds[i];
m_data->m_userConstraintInfoMap.remove(key);
}
break;
}
case CMD_CHANGE_USER_CONSTRAINT_COMPLETED:
{
int cid = serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId;
b3UserConstraint* userConstraintPtr = m_data->m_userConstraintInfoMap[cid];
if (userConstraintPtr)
{
const b3UserConstraint* serverConstraint = &serverCmd.m_userConstraintResultArgs;
if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_PIVOT_IN_B)
{
userConstraintPtr->m_childFrame[0] = serverConstraint->m_childFrame[0];
userConstraintPtr->m_childFrame[1] = serverConstraint->m_childFrame[1];
userConstraintPtr->m_childFrame[2] = serverConstraint->m_childFrame[2];
}
if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B)
{
userConstraintPtr->m_childFrame[3] = serverConstraint->m_childFrame[3];
userConstraintPtr->m_childFrame[4] = serverConstraint->m_childFrame[4];
userConstraintPtr->m_childFrame[5] = serverConstraint->m_childFrame[5];
userConstraintPtr->m_childFrame[6] = serverConstraint->m_childFrame[6];
}
if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE)
{
userConstraintPtr->m_maxAppliedForce = serverConstraint->m_maxAppliedForce;
}
if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO)
{
userConstraintPtr->m_gearRatio = serverConstraint->m_gearRatio;
}
if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET)
{
userConstraintPtr->m_relativePositionTarget = serverConstraint->m_relativePositionTarget;
}
if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_ERP)
{
userConstraintPtr->m_erp = serverConstraint->m_erp;
}
if (serverCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK)
{
userConstraintPtr->m_gearAuxLink = serverConstraint->m_gearAuxLink;
}
}
break;
}
case CMD_USER_CONSTRAINT_REQUEST_STATE_COMPLETED:
{
break;
}
case CMD_SYNC_BODY_INFO_COMPLETED:
case CMD_MJCF_LOADING_COMPLETED:
case CMD_SDF_LOADING_COMPLETED:
{
//we'll stream further info from the physics server
//so serverCmd will be invalid, make a copy
int numConstraints = serverCmd.m_sdfLoadedArgs.m_numUserConstraints;
for (int i = 0; i < numConstraints; i++)
{
int constraintUid = serverCmd.m_sdfLoadedArgs.m_userConstraintUniqueIds[i];
m_data->m_tmpInfoRequestCommand.m_type = CMD_USER_CONSTRAINT;
m_data->m_tmpInfoRequestCommand.m_updateFlags = USER_CONSTRAINT_REQUEST_INFO;
m_data->m_tmpInfoRequestCommand.m_userConstraintArguments.m_userConstraintUniqueId = constraintUid;
bool hasStatus = m_data->m_commandProcessor->processCommand(m_data->m_tmpInfoRequestCommand, m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double timeOutInSeconds = m_data->m_timeOutInSeconds;
while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
hasStatus = m_data->m_commandProcessor->receiveStatus(m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
}
if (hasStatus)
{
int cid = m_data->m_tmpInfoStatus.m_userConstraintResultArgs.m_userConstraintUniqueId;
m_data->m_userConstraintInfoMap.insert(cid, m_data->m_tmpInfoStatus.m_userConstraintResultArgs);
}
}
int numBodies = serverCmd.m_sdfLoadedArgs.m_numBodies;
for (int i = 0; i < numBodies; i++)
{
int bodyUniqueId = serverCmd.m_sdfLoadedArgs.m_bodyUniqueIds[i];
m_data->m_tmpInfoRequestCommand.m_type = CMD_REQUEST_BODY_INFO;
m_data->m_tmpInfoRequestCommand.m_sdfRequestInfoArgs.m_bodyUniqueId = bodyUniqueId;
bool hasStatus = m_data->m_commandProcessor->processCommand(m_data->m_tmpInfoRequestCommand, m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double timeOutInSeconds = m_data->m_timeOutInSeconds;
while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
hasStatus = m_data->m_commandProcessor->receiveStatus(m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
}
if (hasStatus)
{
processBodyJointInfo(bodyUniqueId, m_data->m_tmpInfoStatus);
}
}
break;
}
case CMD_CREATE_MULTI_BODY_COMPLETED:
case CMD_URDF_LOADING_COMPLETED:
{
if (serverCmd.m_numDataStreamBytes > 0)
{
int bodyIndex = serverCmd.m_dataStreamArguments.m_bodyUniqueId;
processBodyJointInfo(bodyIndex, serverCmd);
}
break;
}
case CMD_BULLET_LOADING_FAILED:
{
b3Warning("Couldn't load .bullet file");
break;
}
case CMD_BULLET_LOADING_COMPLETED:
{
break;
}
case CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_COMPLETED:
{
break;
}
case CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_FAILED:
{
b3Warning("requestOpenGLVisualizeCamera failed");
break;
}
case CMD_REMOVE_USER_CONSTRAINT_FAILED:
{
b3Warning("removeConstraint failed");
break;
}
case CMD_CHANGE_USER_CONSTRAINT_FAILED:
{
//b3Warning("changeConstraint failed");
break;
}
case CMD_USER_CONSTRAINT_FAILED:
{
b3Warning("createConstraint failed");
break;
}
case CMD_CREATE_COLLISION_SHAPE_FAILED:
{
b3Warning("createCollisionShape failed");
break;
}
case CMD_CREATE_COLLISION_SHAPE_COMPLETED:
{
break;
}
case CMD_CREATE_VISUAL_SHAPE_FAILED:
{
b3Warning("createVisualShape failed");
break;
}
case CMD_CREATE_VISUAL_SHAPE_COMPLETED:
{
break;
}
case CMD_CREATE_MULTI_BODY_FAILED:
{
b3Warning("createMultiBody failed");
break;
}
case CMD_REQUEST_COLLISION_INFO_COMPLETED:
{
break;
}
case CMD_REQUEST_COLLISION_INFO_FAILED:
{
b3Warning("Request getCollisionInfo failed");
break;
}
case CMD_CUSTOM_COMMAND_COMPLETED:
{
break;
}
case CMD_CUSTOM_COMMAND_FAILED:
{
b3Warning("custom plugin command failed");
break;
}
case CMD_CLIENT_COMMAND_COMPLETED:
{
break;
}
case CMD_CALCULATED_JACOBIAN_COMPLETED:
{
break;
}
case CMD_CALCULATED_JACOBIAN_FAILED:
{
b3Warning("jacobian calculation failed");
break;
}
case CMD_CALCULATED_MASS_MATRIX_FAILED:
{
b3Warning("calculate mass matrix failed");
break;
}
case CMD_CALCULATED_MASS_MATRIX_COMPLETED:
{
double* matrixData = (double*)&m_data->m_bulletStreamDataServerToClient[0];
m_data->m_cachedMassMatrix.resize(serverCmd.m_massMatrixResultArgs.m_dofCount * serverCmd.m_massMatrixResultArgs.m_dofCount);
for (int i = 0; i < serverCmd.m_massMatrixResultArgs.m_dofCount * serverCmd.m_massMatrixResultArgs.m_dofCount; i++)
{
m_data->m_cachedMassMatrix[i] = matrixData[i];
}
break;
}
case CMD_ACTUAL_STATE_UPDATE_COMPLETED:
{
break;
}
case CMD_DESIRED_STATE_RECEIVED_COMPLETED:
{
break;
}
case CMD_STEP_FORWARD_SIMULATION_COMPLETED:
{
break;
}
case CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS_COMPLETED:
{
break;
}
case CMD_SAVE_STATE_COMPLETED:
{
break;
}
case CMD_COLLISION_SHAPE_INFO_FAILED:
{
b3Warning("getCollisionShapeData failed");
break;
}
case CMD_COLLISION_SHAPE_INFO_COMPLETED:
{
B3_PROFILE("CMD_COLLISION_SHAPE_INFO_COMPLETED");
if (m_data->m_verboseOutput)
{
b3Printf("Collision Shape Information Request OK\n");
}
int numCollisionShapesCopied = serverCmd.m_sendCollisionShapeArgs.m_numCollisionShapes;
m_data->m_cachedCollisionShapes.resize(numCollisionShapesCopied);
b3CollisionShapeData* shapeData = (b3CollisionShapeData*)&m_data->m_bulletStreamDataServerToClient[0];
for (int i = 0; i < numCollisionShapesCopied; i++)
{
m_data->m_cachedCollisionShapes[i] = shapeData[i];
}
break;
}
case CMD_RESTORE_STATE_FAILED:
{
b3Warning("restoreState failed");
break;
}
case CMD_RESTORE_STATE_COMPLETED:
{
break;
}
case CMD_BULLET_SAVING_COMPLETED:
{
break;
}
case CMD_LOAD_SOFT_BODY_FAILED:
{
b3Warning("loadSoftBody failed");
break;
}
case CMD_LOAD_SOFT_BODY_COMPLETED:
{
break;
}
case CMD_SYNC_USER_DATA_FAILED:
{
b3Warning("Synchronizing user data failed.");
break;
}
case CMD_ADD_USER_DATA_FAILED:
{
b3Warning("Adding user data failed (do the specified body and link exist?)");
break;
}
case CMD_REMOVE_USER_DATA_FAILED:
{
b3Warning("Removing user data failed");
break;
}
case CMD_ADD_USER_DATA_COMPLETED:
{
processAddUserData(serverCmd);
break;
}
case CMD_SYNC_USER_DATA_COMPLETED:
{
B3_PROFILE("CMD_SYNC_USER_DATA_COMPLETED");
// Remove all cached user data entries.
for (int i = 0; i < m_data->m_bodyJointMap.size(); i++)
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap.getAtIndex(i);
if (bodyJointsPtr && *bodyJointsPtr)
{
(*bodyJointsPtr)->m_userDataIds.clear();
}
m_data->m_userDataMap.clear();
m_data->m_userDataHandleLookup.clear();
}
const int numIdentifiers = serverCmd.m_syncUserDataArgs.m_numUserDataIdentifiers;
int* identifiers = new int[numIdentifiers];
memcpy(identifiers, &m_data->m_bulletStreamDataServerToClient[0], numIdentifiers * sizeof(int));
for (int i = 0; i < numIdentifiers; i++)
{
m_data->m_tmpInfoRequestCommand.m_type = CMD_REQUEST_USER_DATA;
m_data->m_tmpInfoRequestCommand.m_userDataRequestArgs.m_userDataId = identifiers[i];
bool hasStatus = m_data->m_commandProcessor->processCommand(m_data->m_tmpInfoRequestCommand, m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double timeOutInSeconds = m_data->m_timeOutInSeconds;
while ((!hasStatus) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
hasStatus = m_data->m_commandProcessor->receiveStatus(m_data->m_tmpInfoStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
}
if (hasStatus)
{
processAddUserData(m_data->m_tmpInfoStatus);
}
}
delete[] identifiers;
break;
}
case CMD_REMOVE_USER_DATA_COMPLETED:
{
const int userDataId = serverCmd.m_removeUserDataResponseArgs.m_userDataId;
SharedMemoryUserData* userData = m_data->m_userDataMap[userDataId];
if (userData)
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[userData->m_bodyUniqueId];
if (bodyJointsPtr && *bodyJointsPtr)
{
(*bodyJointsPtr)->m_userDataIds.remove(userDataId);
}
m_data->m_userDataHandleLookup.remove(SharedMemoryUserDataHashKey(userData));
m_data->m_userDataMap.remove(userDataId);
}
break;
}
default:
{
//b3Warning("Unknown server status type");
}
};
}
bool PhysicsDirect::submitClientCommand(const struct SharedMemoryCommand& command)
{
if (command.m_type == CMD_REQUEST_DEBUG_LINES)
{
return processDebugLines(command);
}
if (command.m_type == CMD_REQUEST_CAMERA_IMAGE_DATA)
{
return processCamera(command);
}
if (command.m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION)
{
return processContactPointData(command);
}
if (command.m_type == CMD_REQUEST_VISUAL_SHAPE_INFO)
{
return processVisualShapeData(command);
}
if (command.m_type == CMD_REQUEST_AABB_OVERLAP)
{
return processOverlappingObjects(command);
}
bool hasStatus = m_data->m_commandProcessor->processCommand(command, m_data->m_serverStatus, &m_data->m_bulletStreamDataServerToClient[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
m_data->m_hasStatus = hasStatus;
if (m_data->m_ownsCommandProcessor)
{
m_data->m_commandProcessor->reportNotifications();
}
/*if (hasStatus)
{
postProcessStatus(m_data->m_serverStatus);
m_data->m_hasStatus = false;
}
*/
return hasStatus;
}
int PhysicsDirect::getNumBodies() const
{
return m_data->m_bodyJointMap.size();
}
void PhysicsDirect::removeCachedBody(int bodyUniqueId)
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId];
if (bodyJointsPtr && *bodyJointsPtr)
{
for (int i = 0; i < (*bodyJointsPtr)->m_userDataIds.size(); i++)
{
const int userDataId = (*bodyJointsPtr)->m_userDataIds[i];
SharedMemoryUserData* userData = m_data->m_userDataMap[userDataId];
m_data->m_userDataHandleLookup.remove(SharedMemoryUserDataHashKey(userData));
m_data->m_userDataMap.remove(userDataId);
}
delete (*bodyJointsPtr);
m_data->m_bodyJointMap.remove(bodyUniqueId);
}
}
int PhysicsDirect::getNumUserConstraints() const
{
return m_data->m_userConstraintInfoMap.size();
}
int PhysicsDirect::getUserConstraintInfo(int constraintUniqueId, struct b3UserConstraint& info) const
{
b3UserConstraint* constraintPtr = m_data->m_userConstraintInfoMap[constraintUniqueId];
if (constraintPtr)
{
info = *constraintPtr;
return 1;
}
return 0;
}
int PhysicsDirect::getUserConstraintId(int serialIndex) const
{
if ((serialIndex >= 0) && (serialIndex < getNumUserConstraints()))
{
return m_data->m_userConstraintInfoMap.getKeyAtIndex(serialIndex).getUid1();
}
return -1;
}
int PhysicsDirect::getBodyUniqueId(int serialIndex) const
{
if ((serialIndex >= 0) && (serialIndex < getNumBodies()))
{
return m_data->m_bodyJointMap.getKeyAtIndex(serialIndex).getUid1();
}
return -1;
}
bool PhysicsDirect::getBodyInfo(int bodyUniqueId, struct b3BodyInfo& info) const
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId];
if (bodyJointsPtr && *bodyJointsPtr)
{
BodyJointInfoCache2* bodyJoints = *bodyJointsPtr;
strcpy(info.m_baseName, bodyJoints->m_baseName.c_str());
strcpy(info.m_bodyName, bodyJoints->m_bodyName.c_str());
return true;
}
return false;
}
int PhysicsDirect::getNumJoints(int bodyIndex) const
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyIndex];
if (bodyJointsPtr && *bodyJointsPtr)
{
BodyJointInfoCache2* bodyJoints = *bodyJointsPtr;
return bodyJoints->m_jointInfo.size();
}
btAssert(0);
return 0;
}
bool PhysicsDirect::getJointInfo(int bodyIndex, int jointIndex, struct b3JointInfo& info) const
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyIndex];
if (bodyJointsPtr && *bodyJointsPtr)
{
BodyJointInfoCache2* bodyJoints = *bodyJointsPtr;
if ((jointIndex >= 0) && (jointIndex < bodyJoints->m_jointInfo.size()))
{
info = bodyJoints->m_jointInfo[jointIndex];
info.m_qSize = 0;
info.m_uSize = 0;
switch (info.m_jointType)
{
case eSphericalType:
{
info.m_qSize = 4;//quaterion x,y,z,w
info.m_uSize = 3;
break;
}
case ePlanarType:
{
info.m_qSize = 2;
info.m_uSize = 2;
break;
}
case ePrismaticType:
case eRevoluteType:
{
info.m_qSize = 1;
info.m_uSize = 1;
break;
}
default:
{
}
}
return true;
}
}
return false;
}
void PhysicsDirect::setSharedMemoryKey(int key)
{
}
void PhysicsDirect::uploadBulletFileToSharedMemory(const char* data, int len)
{
if (len > SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE)
{
len = SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE;
}
for (int i = 0; i < len; i++)
{
m_data->m_bulletStreamDataServerToClient[i] = data[i];
}
//m_data->m_physicsClient->uploadBulletFileToSharedMemory(data,len);
}
void PhysicsDirect::uploadRaysToSharedMemory(struct SharedMemoryCommand& command, const double* rayFromWorldArray, const double* rayToWorldArray, int numRays)
{
int curNumStreamingRays = command.m_requestRaycastIntersections.m_numStreamingRays;
int newNumRays = curNumStreamingRays + numRays;
btAssert(newNumRays < MAX_RAY_INTERSECTION_BATCH_SIZE_STREAMING);
if (newNumRays < MAX_RAY_INTERSECTION_BATCH_SIZE_STREAMING)
{
for (int i = 0; i < numRays; i++)
{
b3RayData* rayDataStream = (b3RayData*)m_data->m_bulletStreamDataServerToClient;
rayDataStream[curNumStreamingRays + i].m_rayFromPosition[0] = rayFromWorldArray[i * 3 + 0];
rayDataStream[curNumStreamingRays + i].m_rayFromPosition[1] = rayFromWorldArray[i * 3 + 1];
rayDataStream[curNumStreamingRays + i].m_rayFromPosition[2] = rayFromWorldArray[i * 3 + 2];
rayDataStream[curNumStreamingRays + i].m_rayToPosition[0] = rayToWorldArray[i * 3 + 0];
rayDataStream[curNumStreamingRays + i].m_rayToPosition[1] = rayToWorldArray[i * 3 + 1];
rayDataStream[curNumStreamingRays + i].m_rayToPosition[2] = rayToWorldArray[i * 3 + 2];
command.m_requestRaycastIntersections.m_numStreamingRays++;
}
}
}
int PhysicsDirect::getNumDebugLines() const
{
return m_data->m_debugLinesFrom.size();
}
const float* PhysicsDirect::getDebugLinesFrom() const
{
if (getNumDebugLines())
{
return &m_data->m_debugLinesFrom[0].m_x;
}
return 0;
}
const float* PhysicsDirect::getDebugLinesTo() const
{
if (getNumDebugLines())
{
return &m_data->m_debugLinesTo[0].m_x;
}
return 0;
}
const float* PhysicsDirect::getDebugLinesColor() const
{
if (getNumDebugLines())
{
return &m_data->m_debugLinesColor[0].m_x;
}
return 0;
}
void PhysicsDirect::getCachedCameraImage(b3CameraImageData* cameraData)
{
if (cameraData)
{
cameraData->m_pixelWidth = m_data->m_cachedCameraPixelsWidth;
cameraData->m_pixelHeight = m_data->m_cachedCameraPixelsHeight;
cameraData->m_depthValues = m_data->m_cachedCameraDepthBuffer.size() ? &m_data->m_cachedCameraDepthBuffer[0] : 0;
cameraData->m_rgbColorData = m_data->m_cachedCameraPixelsRGBA.size() ? &m_data->m_cachedCameraPixelsRGBA[0] : 0;
cameraData->m_segmentationMaskValues = m_data->m_cachedSegmentationMask.size() ? &m_data->m_cachedSegmentationMask[0] : 0;
}
}
void PhysicsDirect::getCachedContactPointInformation(struct b3ContactInformation* contactPointData)
{
contactPointData->m_numContactPoints = m_data->m_cachedContactPoints.size();
contactPointData->m_contactPointData = contactPointData->m_numContactPoints ? &m_data->m_cachedContactPoints[0] : 0;
}
void PhysicsDirect::getCachedOverlappingObjects(struct b3AABBOverlapData* overlappingObjects)
{
overlappingObjects->m_numOverlappingObjects = m_data->m_cachedOverlappingObjects.size();
overlappingObjects->m_overlappingObjects = m_data->m_cachedOverlappingObjects.size() ? &m_data->m_cachedOverlappingObjects[0] : 0;
}
void PhysicsDirect::getCachedVisualShapeInformation(struct b3VisualShapeInformation* visualShapesInfo)
{
visualShapesInfo->m_numVisualShapes = m_data->m_cachedVisualShapes.size();
visualShapesInfo->m_visualShapeData = visualShapesInfo->m_numVisualShapes ? &m_data->m_cachedVisualShapes[0] : 0;
}
void PhysicsDirect::getCachedCollisionShapeInformation(struct b3CollisionShapeInformation* collisionShapesInfo)
{
collisionShapesInfo->m_numCollisionShapes = m_data->m_cachedCollisionShapes.size();
collisionShapesInfo->m_collisionShapeData = collisionShapesInfo->m_numCollisionShapes ? &m_data->m_cachedCollisionShapes[0] : 0;
}
void PhysicsDirect::getCachedVREvents(struct b3VREventsData* vrEventsData)
{
vrEventsData->m_numControllerEvents = m_data->m_cachedVREvents.size();
vrEventsData->m_controllerEvents = vrEventsData->m_numControllerEvents ? &m_data->m_cachedVREvents[0] : 0;
}
void PhysicsDirect::getCachedKeyboardEvents(struct b3KeyboardEventsData* keyboardEventsData)
{
keyboardEventsData->m_numKeyboardEvents = m_data->m_cachedKeyboardEvents.size();
keyboardEventsData->m_keyboardEvents = keyboardEventsData->m_numKeyboardEvents ? &m_data->m_cachedKeyboardEvents[0] : 0;
}
void PhysicsDirect::getCachedMouseEvents(struct b3MouseEventsData* mouseEventsData)
{
mouseEventsData->m_numMouseEvents = m_data->m_cachedMouseEvents.size();
mouseEventsData->m_mouseEvents = mouseEventsData->m_numMouseEvents ? &m_data->m_cachedMouseEvents[0] : 0;
}
void PhysicsDirect::getCachedRaycastHits(struct b3RaycastInformation* raycastHits)
{
raycastHits->m_numRayHits = m_data->m_raycastHits.size();
raycastHits->m_rayHits = raycastHits->m_numRayHits ? &m_data->m_raycastHits[0] : 0;
}
void PhysicsDirect::getCachedMassMatrix(int dofCountCheck, double* massMatrix)
{
int sz = dofCountCheck * dofCountCheck;
if (sz == m_data->m_cachedMassMatrix.size())
{
for (int i = 0; i < sz; i++)
{
massMatrix[i] = m_data->m_cachedMassMatrix[i];
}
}
}
void PhysicsDirect::setTimeOut(double timeOutInSeconds)
{
m_data->m_timeOutInSeconds = timeOutInSeconds;
}
double PhysicsDirect::getTimeOut() const
{
return m_data->m_timeOutInSeconds;
}
bool PhysicsDirect::getCachedUserData(int userDataId, struct b3UserDataValue& valueOut) const
{
SharedMemoryUserData* userDataPtr = m_data->m_userDataMap[userDataId];
if (!userDataPtr)
{
return false;
}
valueOut.m_type = (userDataPtr)->m_type;
valueOut.m_length = userDataPtr->m_bytes.size();
valueOut.m_data1 = userDataPtr->m_bytes.size() ? &userDataPtr->m_bytes[0] : 0;
return true;
}
int PhysicsDirect::getCachedUserDataId(int bodyUniqueId, int linkIndex, int visualShapeIndex, const char* key) const
{
int* userDataId = m_data->m_userDataHandleLookup.find(SharedMemoryUserDataHashKey(key, bodyUniqueId, linkIndex, visualShapeIndex));
if (!userDataId)
{
return -1;
}
return *userDataId;
}
int PhysicsDirect::getNumUserData(int bodyUniqueId) const
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId];
if (!bodyJointsPtr || !(*bodyJointsPtr))
{
return 0;
}
return (*bodyJointsPtr)->m_userDataIds.size();
}
void PhysicsDirect::getUserDataInfo(int bodyUniqueId, int userDataIndex, const char** keyOut, int* userDataIdOut, int* linkIndexOut, int* visualShapeIndexOut) const
{
BodyJointInfoCache2** bodyJointsPtr = m_data->m_bodyJointMap[bodyUniqueId];
if (!bodyJointsPtr || !(*bodyJointsPtr) || userDataIndex <= 0 || userDataIndex > (*bodyJointsPtr)->m_userDataIds.size())
{
*keyOut = 0;
*userDataIdOut = -1;
return;
}
int userDataId = (*bodyJointsPtr)->m_userDataIds[userDataIndex];
SharedMemoryUserData* userData = m_data->m_userDataMap[userDataId];
*userDataIdOut = userDataId;
*keyOut = userData->m_key.c_str();
*linkIndexOut = userData->m_linkIndex;
*visualShapeIndexOut = userData->m_visualShapeIndex;
}
void PhysicsDirect::pushProfileTiming(const char* timingName)
{
std::string** strPtr = m_data->m_profileTimingStringArray[timingName];
std::string* str = 0;
if (strPtr)
{
str = *strPtr;
}
else
{
str = new std::string(timingName);
m_data->m_profileTimingStringArray.insert(timingName, str);
}
m_data->m_profileTimings.push_back(new CProfileSample(str->c_str()));
}
void PhysicsDirect::popProfileTiming()
{
if (m_data->m_profileTimings.size())
{
CProfileSample* sample = m_data->m_profileTimings[m_data->m_profileTimings.size() - 1];
m_data->m_profileTimings.pop_back();
delete sample;
}
}