bullet3/examples/SharedMemory/RobotControlExample.cpp
= 003a42478b another step closer to useable shared memory C API
(force/torque sensor needs new API)
in a nutshell, users of shared memory physics API should not
directly poke into shared memory, not fill 'SharedMemorCommand'
nor read SharedMemoryStatus directly. The C-API declares 'handles' for those,
to avoid it from happening.
2015-09-16 23:09:10 -07:00

671 lines
20 KiB
C++

#include "RobotControlExample.h"
#if 0
#include "../CommonInterfaces/CommonParameterInterface.h"
#include "PhysicsServer.h"
#include "PhysicsClient.h"
#include "SharedMemoryCommon.h"
#include "../Utils/b3Clock.h"
#include "PhysicsClientC_API.h"
#include "../Utils/b3ResourcePath.h"
#include <string>
//const char* blaatnaam = "basename";
#define SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE 1024
struct MyMotorInfo
{
std::string m_jointName;
btScalar m_velTarget;
btScalar m_posTarget;
btScalar m_kp;
btScalar m_kd;
btScalar m_maxForce;
int m_uIndex;
int m_posIndex;
int m_jointIndex;
btScalar m_measuredJointPosition;
btScalar m_measuredJointVelocity;
btVector3 m_measuredJointForce;
btVector3 m_measuredJointTorque;
};
#define MAX_NUM_MOTORS 128
class RobotControlExample : public SharedMemoryCommon
{
PhysicsServerSharedMemory m_physicsServer;
PhysicsClientSharedMemory m_physicsClient;
b3Clock m_realtimeClock;
int m_sequenceNumberGenerator;
bool m_wantsShutdown;
btAlignedObjectArray<SharedMemoryCommand> m_userCommandRequests;
void createButton(const char* name, int id, bool isTrigger );
public:
//@todo, add accessor methods
MyMotorInfo m_motorTargetState[MAX_NUM_MOTORS];
int m_numMotors;
int m_option;
bool m_verboseOutput;
RobotControlExample(GUIHelperInterface* helper, int option);
virtual ~RobotControlExample();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
void prepareControlCommand(SharedMemoryCommand& cmd);
void enqueueCommand(const SharedMemoryCommand& orgCommand)
{
m_userCommandRequests.push_back(orgCommand);
SharedMemoryCommand& cmd = m_userCommandRequests[m_userCommandRequests.size()-1];
cmd.m_sequenceNumber = m_sequenceNumberGenerator++;
cmd.m_timeStamp = m_realtimeClock.getTimeMicroseconds();
if (m_verboseOutput)
{
b3Printf("User put command request %d on queue (queue length = %d)\n",cmd.m_type, m_userCommandRequests.size());
}
}
virtual void resetCamera()
{
float dist = 5;
float pitch = 50;
float yaw = 35;
float targetPos[3]={0,0,0};//-3,2.8,-2.5};
m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
}
virtual bool wantsTermination();
virtual bool isConnected();
virtual void renderScene()
{
m_physicsServer.renderScene();
}
virtual void exitPhysics(){}
virtual void physicsDebugDraw(int debugFlags)
{
m_physicsServer.physicsDebugDraw(debugFlags);
}
virtual bool mouseMoveCallback(float x,float y){return false;};
virtual bool mouseButtonCallback(int button, int state, float x, float y){return false;}
virtual bool keyboardCallback(int key, int state){return false;}
virtual void setSharedMemoryKey(int key)
{
m_physicsServer.setSharedMemoryKey(key);
m_physicsClient.setSharedMemoryKey(key);
}
};
bool RobotControlExample::isConnected()
{
return m_physicsClient.isConnected();
}
void MyCallback2(int buttonId, bool buttonState, void* userPtr)
{
RobotControlExample* cl = (RobotControlExample*) userPtr;
SharedMemoryCommand command;
switch (buttonId)
{
case CMD_LOAD_URDF:
{
command.m_type =CMD_LOAD_URDF;
command.m_updateFlags = URDF_ARGS_FILE_NAME|URDF_ARGS_INITIAL_POSITION|URDF_ARGS_INITIAL_ORIENTATION;
sprintf(command.m_urdfArguments.m_urdfFileName,"r2d2.urdf");//kuka_lwr/kuka.urdf");//r2d2.urdf");
command.m_urdfArguments.m_initialPosition[0] = 0.0;
command.m_urdfArguments.m_initialPosition[1] = 0.0;
command.m_urdfArguments.m_initialPosition[2] = 0.0;
command.m_urdfArguments.m_initialOrientation[0] = 0.0;
command.m_urdfArguments.m_initialOrientation[1] = 0.0;
command.m_urdfArguments.m_initialOrientation[2] = 0.0;
command.m_urdfArguments.m_initialOrientation[3] = 1.0;
command.m_urdfArguments.m_useFixedBase = false;
command.m_urdfArguments.m_useMultiBody = true;
cl->enqueueCommand(command);
break;
}
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
//#ifdef USE_C_API
b3InitPhysicsParamCommand(&command);
b3PhysicsParamSetGravity(&command, 1,1,-10);
// #else
//
// command.m_type = CMD_SEND_PHYSICS_SIMULATION_PARAMETERS;
// command.m_physSimParamArgs.m_gravityAcceleration[0] = 0;
// command.m_physSimParamArgs.m_gravityAcceleration[1] = 0;
// command.m_physSimParamArgs.m_gravityAcceleration[2] = -10;
// command.m_physSimParamArgs.m_updateFlags = SIM_PARAM_UPDATE_GRAVITY;
// #endif // USE_C_API
cl->enqueueCommand(command);
break;
};
case CMD_INIT_POSE:
{
///@todo: implement this
command.m_type = CMD_INIT_POSE;
cl->enqueueCommand(command);
break;
}
case CMD_CREATE_BOX_COLLISION_SHAPE:
{
command.m_type =CMD_CREATE_BOX_COLLISION_SHAPE;
command.m_updateFlags = BOX_SHAPE_HAS_INITIAL_POSITION;
command.m_createBoxShapeArguments.m_initialPosition[0] = 0;
command.m_createBoxShapeArguments.m_initialPosition[1] = 0;
command.m_createBoxShapeArguments.m_initialPosition[2] = -3;
cl->enqueueCommand(command);
break;
}
case CMD_REQUEST_ACTUAL_STATE:
{
command.m_type =CMD_REQUEST_ACTUAL_STATE;
cl->enqueueCommand(command);
break;
};
case CMD_STEP_FORWARD_SIMULATION:
{
command.m_type =CMD_STEP_FORWARD_SIMULATION;
cl->enqueueCommand(command);
break;
}
case CMD_SEND_DESIRED_STATE:
{
command.m_type =CMD_SEND_DESIRED_STATE;
cl->prepareControlCommand(command);
cl->enqueueCommand(command);
break;
}
case CMD_SEND_BULLET_DATA_STREAM:
{
command.m_type = buttonId;
sprintf(command.m_dataStreamArguments.m_bulletFileName,"slope.bullet");
command.m_dataStreamArguments.m_streamChunkLength = 0;
cl->enqueueCommand(command);
break;
}
default:
{
b3Error("Unknown buttonId");
btAssert(0);
}
};
}
void RobotControlExample::prepareControlCommand(SharedMemoryCommand& command)
{
for (int i=0;i<MAX_DEGREE_OF_FREEDOM;i++)
{
command.m_sendDesiredStateCommandArgument.m_desiredStateQdot[i] = 0;
command.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[i] = 0;
}
switch (m_option)
{
case ROBOT_VELOCITY_CONTROL:
{
command.m_sendDesiredStateCommandArgument.m_controlMode = CONTROL_MODE_VELOCITY;
for (int i=0;i<MAX_DEGREE_OF_FREEDOM;i++)
{
command.m_sendDesiredStateCommandArgument.m_desiredStateQdot[i] = 0;
command.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[i] = 1000;
}
for (int i=0;i<m_numMotors;i++)
{
btScalar targetVel = m_motorTargetState[i].m_velTarget;
int uIndex = m_motorTargetState[i].m_uIndex;
command.m_sendDesiredStateCommandArgument.m_desiredStateQdot[uIndex] = targetVel;
}
break;
}
case ROBOT_PD_CONTROL:
{
command.m_sendDesiredStateCommandArgument.m_controlMode = CONTROL_MODE_POSITION_VELOCITY_PD;
for (int i=0;i<m_numMotors;i++)
{
int uIndex = m_motorTargetState[i].m_uIndex;
command.m_sendDesiredStateCommandArgument.m_Kp[uIndex] = m_motorTargetState[i].m_kp;
command.m_sendDesiredStateCommandArgument.m_Kd[uIndex] = m_motorTargetState[i].m_kd;
command.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[uIndex] = 10000;//max force
btScalar targetVel = m_motorTargetState[i].m_velTarget;
command.m_sendDesiredStateCommandArgument.m_desiredStateQdot[uIndex] = targetVel;
int posIndex = m_motorTargetState[i].m_posIndex;
btScalar targetPos = m_motorTargetState[i].m_posTarget;
command.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex] = targetPos;
}
break;
}
case ROBOT_PING_PONG_JOINT_FEEDBACK:
{
command.m_sendDesiredStateCommandArgument.m_controlMode = CONTROL_MODE_VELOCITY;
for (int i=0;i<MAX_DEGREE_OF_FREEDOM;i++)
{
command.m_sendDesiredStateCommandArgument.m_desiredStateQdot[i] = 0;
command.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[i] = 1000;
}
for (int i=0;i<m_numMotors;i++)
{
btScalar targetVel = m_motorTargetState[i].m_velTarget;
int uIndex = m_motorTargetState[i].m_uIndex;
command.m_sendDesiredStateCommandArgument.m_desiredStateQdot[uIndex] = m_motorTargetState[i].m_velTarget;
}
break;
}
default:
{
b3Warning("Unknown control mode in RobotControlExample::prepareControlCommand");
}
};
}
void RobotControlExample::createButton(const char* name, int buttonId, bool isTrigger )
{
ButtonParams button(name,buttonId, isTrigger);
button.m_callback = MyCallback2;
button.m_userPointer = this;
m_guiHelper->getParameterInterface()->registerButtonParameter(button);
}
RobotControlExample::RobotControlExample(GUIHelperInterface* helper, int option)
:SharedMemoryCommon(helper),
m_wantsShutdown(false),
m_sequenceNumberGenerator(0),
m_numMotors(0),
m_option(option),
m_verboseOutput(false)
{
bool useServer = true;
}
RobotControlExample::~RobotControlExample()
{
bool deInitializeSharedMemory = true;
m_physicsClient.disconnectSharedMemory();
m_physicsServer.disconnectSharedMemory(deInitializeSharedMemory);
}
void RobotControlExample::initPhysics()
{
///for this testing we use Z-axis up
int upAxis = 2;
m_guiHelper->setUpAxis(upAxis);
/* createEmptyDynamicsWorld();
//todo: create a special debug drawer that will cache the lines, so we can send the debug info over the wire
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
btVector3 grav(0,0,0);
grav[upAxis] = 0;//-9.8;
this->m_dynamicsWorld->setGravity(grav);
*/
m_physicsServer.connectSharedMemory( m_guiHelper);
if (m_guiHelper && m_guiHelper->getParameterInterface())
{
bool isTrigger = false;
createButton("Load URDF",CMD_LOAD_URDF, isTrigger);
createButton("Step Sim",CMD_STEP_FORWARD_SIMULATION, isTrigger);
createButton("Send Bullet Stream",CMD_SEND_BULLET_DATA_STREAM, isTrigger);
createButton("Get State",CMD_REQUEST_ACTUAL_STATE, isTrigger);
createButton("Send Desired State",CMD_SEND_DESIRED_STATE, isTrigger);
createButton("Create Box Collider",CMD_CREATE_BOX_COLLISION_SHAPE,isTrigger);
createButton("Set Physics Params",CMD_SEND_PHYSICS_SIMULATION_PARAMETERS,isTrigger);
createButton("Init Pose",CMD_INIT_POSE,isTrigger);
} else
{
/*
m_userCommandRequests.push_back(CMD_LOAD_URDF);
m_userCommandRequests.push_back(CMD_REQUEST_ACTUAL_STATE);
m_userCommandRequests.push_back(CMD_SEND_DESIRED_STATE);
m_userCommandRequests.push_back(CMD_REQUEST_ACTUAL_STATE);
//m_userCommandRequests.push_back(CMD_SET_JOINT_FEEDBACK);
m_userCommandRequests.push_back(CMD_CREATE_BOX_COLLISION_SHAPE);
//m_userCommandRequests.push_back(CMD_CREATE_RIGID_BODY);
m_userCommandRequests.push_back(CMD_STEP_FORWARD_SIMULATION);
m_userCommandRequests.push_back(CMD_REQUEST_ACTUAL_STATE);
m_userCommandRequests.push_back(CMD_SHUTDOWN);
*/
}
if (!m_physicsClient.connect())
{
b3Warning("Cannot eonnect to physics client");
}
}
bool RobotControlExample::wantsTermination()
{
return m_wantsShutdown;
}
void RobotControlExample::stepSimulation(float deltaTime)
{
m_physicsServer.processClientCommands();
if (m_physicsClient.isConnected())
{
SharedMemoryStatus status;
bool hasStatus = m_physicsClient.processServerStatus(status);
if ((m_option==ROBOT_PING_PONG_JOINT_FEEDBACK) && hasStatus && status.m_type == CMD_ACTUAL_STATE_UPDATE_COMPLETED)
{
//update sensor feedback: joint force/torque data and measured joint positions
for (int i=0;i<m_numMotors;i++)
{
int jointIndex = m_motorTargetState[i].m_jointIndex;
int positionIndex = m_motorTargetState[i].m_posIndex;
int velocityIndex = m_motorTargetState[i].m_uIndex;
m_motorTargetState[i].m_measuredJointPosition = status.m_sendActualStateArgs.m_actualStateQ[positionIndex];
m_motorTargetState[i].m_measuredJointVelocity = status.m_sendActualStateArgs.m_actualStateQdot[velocityIndex];
m_motorTargetState[i].m_measuredJointForce.setValue(status.m_sendActualStateArgs.m_jointReactionForces[6*jointIndex],
status.m_sendActualStateArgs.m_jointReactionForces[6*jointIndex+1],
status.m_sendActualStateArgs.m_jointReactionForces[6*jointIndex+2]);
m_motorTargetState[i].m_measuredJointTorque.setValue(status.m_sendActualStateArgs.m_jointReactionForces[6*jointIndex+3],
status.m_sendActualStateArgs.m_jointReactionForces[6*jointIndex+4],
status.m_sendActualStateArgs.m_jointReactionForces[6*jointIndex+5]);
if (m_motorTargetState[i].m_measuredJointPosition>0.1)
{
m_motorTargetState[i].m_velTarget = -1.5;
} else
{
m_motorTargetState[i].m_velTarget = 1.5;
}
b3Printf("Joint Force (Linear) [%s]=(%f,%f,%f)\n",m_motorTargetState[i].m_jointName.c_str(),m_motorTargetState[i].m_measuredJointForce.x(),m_motorTargetState[i].m_measuredJointForce.y(),m_motorTargetState[i].m_measuredJointForce.z());
b3Printf("Joint Torque (Angular) [%s]=(%f,%f,%f)\n",m_motorTargetState[i].m_jointName.c_str(),m_motorTargetState[i].m_measuredJointTorque.x(),m_motorTargetState[i].m_measuredJointTorque.y(),m_motorTargetState[i].m_measuredJointTorque.z());
}
}
if (hasStatus && status.m_type == CMD_URDF_LOADING_COMPLETED)
{
SharedMemoryCommand sensorCommand;
sensorCommand.m_type = CMD_CREATE_SENSOR;
sensorCommand.m_createSensorArguments.m_numJointSensorChanges = 0;
for (int jointIndex=0;jointIndex<m_physicsClient.getNumJoints();jointIndex++)
{
b3JointInfo info;
m_physicsClient.getJointInfo(jointIndex,info);
if (m_verboseOutput)
{
b3Printf("Joint %s at q-index %d and u-index %d\n",info.m_jointName,info.m_qIndex,info.m_uIndex);
}
if (info.m_flags & JOINT_HAS_MOTORIZED_POWER)
{
if (m_numMotors<MAX_NUM_MOTORS)
{
switch (m_option)
{
case ROBOT_VELOCITY_CONTROL:
{
char motorName[1024];
sprintf(motorName,"%s q'", info.m_jointName);
MyMotorInfo* motorInfo = &m_motorTargetState[m_numMotors];
motorInfo->m_jointName = info.m_jointName;
motorInfo->m_velTarget = 0.f;
motorInfo->m_posTarget = 0.f;
motorInfo->m_uIndex = info.m_uIndex;
SliderParams slider(motorName,&motorInfo->m_velTarget);
slider.m_minVal=-4;
slider.m_maxVal=4;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
m_numMotors++;
break;
}
case ROBOT_PD_CONTROL:
{
char motorName[1024];
MyMotorInfo* motorInfo = &m_motorTargetState[m_numMotors];
motorInfo->m_jointName = info.m_jointName;
motorInfo->m_velTarget = 0.f;
motorInfo->m_posTarget = 0.f;
motorInfo->m_uIndex = info.m_uIndex;
motorInfo->m_posIndex = info.m_qIndex;
motorInfo->m_kp = 1;
motorInfo->m_kd = 0;
{
sprintf(motorName,"%s kp", info.m_jointName);
SliderParams slider(motorName,&motorInfo->m_kp);
slider.m_minVal=0;
slider.m_maxVal=1;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
{
sprintf(motorName,"%s q", info.m_jointName);
SliderParams slider(motorName,&motorInfo->m_posTarget);
slider.m_minVal=-SIMD_PI;
slider.m_maxVal=SIMD_PI;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
{
sprintf(motorName,"%s kd", info.m_jointName);
SliderParams slider(motorName,&motorInfo->m_kd);
slider.m_minVal=0;
slider.m_maxVal=1;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
{
sprintf(motorName,"%s q'", info.m_jointName);
SliderParams slider(motorName,&motorInfo->m_velTarget);
slider.m_minVal=-10;
slider.m_maxVal=10;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
m_numMotors++;
break;
}
case ROBOT_PING_PONG_JOINT_FEEDBACK:
{
if (info.m_flags & JOINT_HAS_MOTORIZED_POWER)
{
if (m_numMotors<MAX_NUM_MOTORS)
{
MyMotorInfo* motorInfo = &m_motorTargetState[m_numMotors];
motorInfo->m_jointName = info.m_jointName;
motorInfo->m_velTarget = 0.f;
motorInfo->m_posTarget = 0.f;
motorInfo->m_uIndex = info.m_uIndex;
motorInfo->m_posIndex = info.m_qIndex;
motorInfo->m_jointIndex = jointIndex;
sensorCommand.m_createSensorArguments.m_sensorType[sensorCommand.m_createSensorArguments.m_numJointSensorChanges] = SENSOR_FORCE_TORQUE;
sensorCommand.m_createSensorArguments.m_jointIndex[sensorCommand.m_createSensorArguments.m_numJointSensorChanges] = jointIndex;
sensorCommand.m_createSensorArguments.m_enableJointForceSensor[sensorCommand.m_createSensorArguments.m_numJointSensorChanges] = true;
sensorCommand.m_createSensorArguments.m_numJointSensorChanges++;
m_numMotors++;
}
}
break;
}
default:
{
b3Warning("Unknown control mode in RobotControlExample::stepSimulation");
}
};
}
}
}
if (sensorCommand.m_createSensorArguments.m_numJointSensorChanges)
{
enqueueCommand(sensorCommand);
}
}
if (m_physicsClient.canSubmitCommand())
{
if (m_userCommandRequests.size())
{
if (m_verboseOutput)
{
b3Printf("Outstanding user command requests: %d\n", m_userCommandRequests.size());
}
SharedMemoryCommand cmd = m_userCommandRequests[0];
//a manual 'pop_front', we don't use 'remove' because it will re-order the commands
for (int i=1;i<m_userCommandRequests.size();i++)
{
m_userCommandRequests[i-1] = m_userCommandRequests[i];
}
m_userCommandRequests.pop_back();
if (cmd.m_type == CMD_CREATE_SENSOR)
{
b3Printf("CMD_CREATE_SENSOR!\n");
}
if (cmd.m_type == CMD_SEND_BULLET_DATA_STREAM)
{
char relativeFileName[1024];
bool fileFound = b3ResourcePath::findResourcePath(cmd.m_dataStreamArguments.m_bulletFileName,relativeFileName,1024);
if (fileFound)
{
FILE *fp = fopen(relativeFileName, "rb");
if (fp)
{
fseek(fp, 0L, SEEK_END);
int mFileLen = ftell(fp);
fseek(fp, 0L, SEEK_SET);
if (mFileLen<SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE)
{
char* data = (char*)malloc(mFileLen);
fread(data, mFileLen, 1, fp);
fclose(fp);
cmd.m_dataStreamArguments.m_streamChunkLength = mFileLen;
m_physicsClient.uploadBulletFileToSharedMemory(data,mFileLen);
if (m_verboseOutput)
{
b3Printf("Loaded bullet data chunks into shared memory\n");
}
free(data);
} else
{
b3Warning("Bullet file size (%d) exceeds of streaming memory chunk size (%d)\n", mFileLen,SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
}
} else
{
b3Warning("Cannot open file %s\n", relativeFileName);
}
} else
{
b3Warning("Cannot find file %s\n", cmd.m_dataStreamArguments.m_bulletFileName);
}
}
m_physicsClient.submitClientCommand(cmd);
} else
{
if (m_numMotors)
{
SharedMemoryCommand command;
command.m_type =CMD_SEND_DESIRED_STATE;
prepareControlCommand(command);
enqueueCommand(command);
command.m_type =CMD_STEP_FORWARD_SIMULATION;
enqueueCommand(command);
command.m_type = CMD_REQUEST_ACTUAL_STATE;
enqueueCommand(command);
}
}
}
}
}
extern int gSharedMemoryKey;
class CommonExampleInterface* RobotControlExampleCreateFunc(struct CommonExampleOptions& options)
{
RobotControlExample* example = new RobotControlExample(options.m_guiHelper, options.m_option);
if (gSharedMemoryKey>=0)
{
example->setSharedMemoryKey(gSharedMemoryKey);
}
return example;
}
#endif