Go to file
Erwin Coumans 2eb019cdc3 Created Wavefront obj to sdf converter, to make it easier to import complex obj models with many materials. See kitchen for example.
Fix in tinyobj, make sure material is initialized
Add fatihrmutfak kitchen model, for Virtual Reality and some research
2017-03-01 10:06:10 -08:00
build3 expose timeout in pybullet/shared memory API 2017-02-24 15:34:11 -08:00
data Created Wavefront obj to sdf converter, to make it easier to import complex obj models with many materials. See kitchen for example. 2017-03-01 10:06:10 -08:00
docs make flag/enable required argument 2017-02-21 17:53:49 -08:00
examples Created Wavefront obj to sdf converter, to make it easier to import complex obj models with many materials. See kitchen for example. 2017-03-01 10:06:10 -08:00
Extras Created Wavefront obj to sdf converter, to make it easier to import complex obj models with many materials. See kitchen for example. 2017-03-01 10:06:10 -08:00
src Add 'extractRotation' based on "A robust method to extract the rotational part of deformations" 2017-02-25 16:57:18 -08:00
test fix Linux premake build 2017-02-22 10:39:37 -08:00
.travis.yml revert numpy test/travis.yml 2016-09-11 10:47:00 +01:00
appveyor.yml Update appveyor.yml 2016-09-11 10:10:25 +01:00
AUTHORS.txt Update AUTHORS.txt 2016-09-25 18:30:54 -07:00
build_cmake_pybullet_double.sh Replace large timeout (1024*1024*1024) using real-time clock timeout (10 seconds default) 2017-02-22 09:33:30 -08:00
build_visual_studio_vr_pybullet_double_cmake.bat expose timeout in pybullet/shared memory API 2017-02-24 15:34:11 -08:00
build_visual_studio_vr_pybullet_double.bat allow to compile/run 64bit version of VR lib, workaround for issue that both 32bit and 64bit version is called openvr_api.dll 2017-02-22 15:50:09 -08:00
build_visual_studio_without_pybullet_vr.bat Created Wavefront obj to sdf converter, to make it easier to import complex obj models with many materials. See kitchen for example. 2017-03-01 10:06:10 -08:00
bullet.pc.cmake pkg-config: Fixing regression introduced by e46b7b2 2016-06-30 14:02:19 -04:00
BulletConfig.cmake.in Add the old Bullet 2.x obsolete demos, and CMake buildsystem files, and gradually move them to newer Bullet 3.x structure 2013-12-19 12:40:59 -08:00
CMakeLists.txt expose timeout in pybullet/shared memory API 2017-02-24 15:34:11 -08:00
Doxyfile add Doxyfile 2015-05-01 16:51:59 -07:00
LICENSE.txt add latex source of Bullet 2.82 quickstart guide, todo: update to current release 2015-04-29 15:12:31 -07:00
README.md Update README.md 2016-11-07 08:42:39 -08:00
UseBullet.cmake fix make install, when using CMake 2014-03-06 11:40:35 -08:00
VERSION Prepare for Bullet 2.86 release, update version to 2.86 (release will be tagged soon) 2017-01-20 11:48:33 -08:00
xcode.command move some easy-to-use build files for Mac OSX, Linux and Windows 2016-05-21 10:45:08 -07:00

Travis Build Status Appveyor Build status

Bullet Physics SDK

This is the official C++ source code repository of the Bullet Physics SDK: real-time collision detection and multi-physics simulation for VR, games, visual effects, robotics, machine learning etc.

New in Bullet 2.85: pybullet Python bindings, improved support for robotics and VR

The Bullet 2 API will stay default and up-to-date while slowly moving to a new API. The steps towards a new API is in a nutshell:

  1. The old Bullet2 demos are being merged into the examples/ExampleBrowser
  2. A new physics-engine agnostic C-API is created, see examples/SharedMemory/PhysicsClientC_API.h
  3. Python bindings in pybullet are on top of this C-API, see examples/pybullet
  4. A Virtual Reality sandbox using openvr for HTC Vive and Oculus Rift is available
  5. The OpenCL examples in the ExampleBrowser can be enabled using --enable_experimental_opencl

You can still use svn or svn externals using the github git repository: use svn co https://github.com/bulletphysics/bullet3/trunk

Requirements for Bullet 2

A C++ compiler for C++ 2003. The library is tested on Windows, Linux, Mac OSX, iOS, Android, but should likely work on any platform with C++ compiler. Some optional demos require OpenGL 2 or OpenGL 3, there are some non-graphical demos and unit tests too.

Contributors and Coding Style information

https://docs.google.com/document/d/1u9vyzPtrVoVhYqQOGNWUgjRbfwfCdIts_NzmvgiJ144/edit

Requirements for experimental OpenCL GPGPU support

The entire collision detection and rigid body dynamics can be executed on the GPU.

A high-end desktop GPU, such as an AMD Radeon 7970 or NVIDIA GTX 680 or better. We succesfully tested the software under Windows, Linux and Mac OSX. The software currently doesn't work on OpenCL CPU devices. It might run on a laptop GPU but performance will not likely be very good. Note that often an OpenCL drivers fails to compile a kernel. Some unit tests exist to track down the issue, but more work is required to cover all OpenCL kernels.

License

All source code files are licensed under the permissive zlib license (http://opensource.org/licenses/Zlib) unless marked differently in a particular folder/file.

Build instructions for Bullet using premake. You can also use cmake instead.

Windows

Click on build_visual_studio.bat and open build3/vs2010/0MySolution.sln

Windows Virtual Reality sandbox for HTC Vive and Oculus Rift

Click on build_visual_studio_vr_pybullet_double.bat and open build3/vs2010/0MySolution.sln Edit this batch file to choose where Python include/lib directories are located. Build and run the App_SharedMemoryPhysics_VR project, preferably in Release/optimized build. You can connect from Python pybullet to the sandbox using:

import pybullet as p
p.connect(p.SHARED_MEMORY)

Linux and Mac OSX gnu make

In a terminal type:

cd build3

Depending on your system (Linux 32bit, 64bit or Mac OSX) use one of the following lines

./premake4_linux gmake
./premake4_linux64 gmake
./premake4_osx gmake

Then

cd gmake
make

Mac OSX Xcode

Click on build3/xcode4.command or in a terminal window execute

./premake_osx xcode4

Usage

The App_ExampleBrowser executables will be located in the bin folder. You can just run it though a terminal/command prompt, or by clicking it.

[--start_demo_name="Demo Name"]     Start with a selected demo  
[--mp4=moviename.mp4]               Create a mp4 movie of the window, requires ffmpeg installed
[--mouse_move_multiplier=0.400000]  Set the mouse move sensitivity
[--mouse_wheel_multiplier=0.01]     Set the mouse wheel sensitivity
[--background_color_red= 0.9]       Set the red component for background color. Same for green and blue
[--fixed_timestep= 0.0]             Use either a real-time delta time (0.0) or a fixed step size (0.016666)

You can use mouse picking to grab objects. When holding the ALT or CONTROL key, you have Maya style camera mouse controls. Press F1 to create a series of screenshots. Hit ESCAPE to exit the demo app.

Check out the docs folder and the Bullet physics forums for further information.