mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-14 22:00:05 +00:00
75e86051c2
Uses Kuka IIWA model description and 4 methods: Selectively Damped Least Squares,Damped Least Squares, Jacobi Transpose, Jacobi Pseudo Inverse Tweak some PD values in Inverse Dynamics example and Robot example.
982 lines
25 KiB
C++
982 lines
25 KiB
C++
/*
|
|
*
|
|
* Mathematics Subpackage (VrMath)
|
|
*
|
|
*
|
|
* Author: Samuel R. Buss, sbuss@ucsd.edu.
|
|
* Web page: http://math.ucsd.edu/~sbuss/MathCG
|
|
*
|
|
*
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
//
|
|
// Linear Algebra Classes over R2
|
|
//
|
|
//
|
|
// A. Vector and Position classes
|
|
//
|
|
// A.1. VectorR2: a column vector of length 2
|
|
//
|
|
// A.2. VectorHgR2 - homogenous vector for R2 (a 3-Vector)
|
|
//
|
|
// B. Matrix Classes
|
|
//
|
|
// B.1 LinearMapR2 - arbitrary linear map; 2x2 real matrix
|
|
//
|
|
// B.2 RotationMapR2 - orthonormal 2x2 matrix
|
|
//
|
|
|
|
#ifndef LINEAR_R2_H
|
|
#define LINEAR_R2_H
|
|
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
#include <iostream>
|
|
#include "MathMisc.h"
|
|
using namespace std;
|
|
|
|
class VectorR2; // R2 Vector
|
|
class VectorHgR2;
|
|
class Matrix2x2;
|
|
class LinearMapR2; // 2x2 real matrix
|
|
class AffineMapR3; // Affine Map (3x4 Matrix)
|
|
class RotationMapR2; // 2x2 rotation map
|
|
|
|
// **************************************
|
|
// VectorR2 class *
|
|
// * * * * * * * * * * * * * * * * * * **
|
|
|
|
class VectorR2 {
|
|
|
|
public:
|
|
double x, y; // The x & y coordinates.
|
|
|
|
public:
|
|
VectorR2( ) : x(0.0), y(0.0) {}
|
|
VectorR2( double xVal, double yVal )
|
|
: x(xVal), y(yVal) {}
|
|
VectorR2( const VectorHgR2& uH );
|
|
|
|
VectorR2& SetZero() { x=0.0; y=0.0; return *this;}
|
|
VectorR2& Set( double xx, double yy )
|
|
{ x=xx; y=yy; return *this;}
|
|
VectorR2& Load( const double* v );
|
|
VectorR2& Load( const float* v );
|
|
void Dump( double* v ) const;
|
|
void Dump( float* v ) const;
|
|
|
|
static const VectorR2 Zero;
|
|
static const VectorR2 UnitX;
|
|
static const VectorR2 UnitY;
|
|
static const VectorR2 NegUnitX;
|
|
static const VectorR2 NegUnitY;
|
|
|
|
VectorR2& operator+= ( const VectorR2& v )
|
|
{ x+=v.x; y+=v.y; return(*this); }
|
|
VectorR2& operator-= ( const VectorR2& v )
|
|
{ x-=v.x; y-=v.y; return(*this); }
|
|
VectorR2& operator*= ( double m )
|
|
{ x*=m; y*=m; return(*this); }
|
|
VectorR2& operator/= ( double m )
|
|
{ register double mInv = 1.0/m;
|
|
x*=mInv; y*=mInv;
|
|
return(*this); }
|
|
VectorR2 operator- () const { return ( VectorR2(-x, -y) ); }
|
|
VectorR2& ArrayProd(const VectorR2&); // Component-wise product
|
|
|
|
VectorR2& AddScaled( const VectorR2& u, double s );
|
|
|
|
double Norm() const { return ( sqrt( x*x + y*y ) ); }
|
|
double L1Norm() const { return (Max(fabs(x),fabs(y))); }
|
|
double Dist( const VectorR2& u ) const; // Distance from u
|
|
double DistSq( const VectorR2& u ) const; // Distance from u
|
|
double NormSq() const { return ( x*x + y*y ); }
|
|
double MaxAbs() const;
|
|
VectorR2& Normalize () { *this /= Norm(); return *this;} // No error checking
|
|
VectorR2& MakeUnit(); // Normalize() with error checking
|
|
VectorR2& ReNormalize();
|
|
bool IsUnit( double tolerance = 1.0e-15 ) const
|
|
{ register double norm = Norm();
|
|
return ( 1.0+tolerance>=norm && norm>=1.0-tolerance ); }
|
|
bool IsZero() const { return ( x==0.0 && y==0.0 ); }
|
|
bool NearZero(double tolerance) const { return( MaxAbs()<=tolerance );}
|
|
// tolerance should be non-negative
|
|
|
|
VectorR2& Rotate( double theta ); // rotate through angle theta
|
|
VectorR2& Rotate( double costheta, double sintheta );
|
|
|
|
};
|
|
|
|
inline VectorR2 operator+( const VectorR2& u, const VectorR2& v );
|
|
inline VectorR2 operator-( const VectorR2& u, const VectorR2& v );
|
|
inline VectorR2 operator*( const VectorR2& u, double m);
|
|
inline VectorR2 operator*( double m, const VectorR2& u);
|
|
inline VectorR2 operator/( const VectorR2& u, double m);
|
|
inline int operator==( const VectorR2& u, const VectorR2& v );
|
|
|
|
inline double operator^ (const VectorR2& u, const VectorR2& v ); // Dot Product
|
|
inline VectorR2 ArrayProd ( const VectorR2& u, const VectorR2& v );
|
|
|
|
inline double Mag(const VectorR2& u) { return u.Norm(); }
|
|
inline double Dist(const VectorR2& u, const VectorR2& v) { return u.Dist(v); }
|
|
inline double DistSq(const VectorR2& u, const VectorR2& v) { return u.DistSq(v); }
|
|
inline double NormalizeError (const VectorR2&);
|
|
|
|
// ****************************************
|
|
// VectorHgR2 class *
|
|
// * * * * * * * * * * * * * * * * * * * **
|
|
|
|
class VectorHgR2 {
|
|
|
|
public:
|
|
double x, y, w; // The x & y & w coordinates.
|
|
|
|
public:
|
|
VectorHgR2( ) : x(0.0), y(0.0), w(1.0) {}
|
|
VectorHgR2( double xVal, double yVal )
|
|
: x(xVal), y(yVal), w(1.0) {}
|
|
VectorHgR2( double xVal, double yVal, double wVal )
|
|
: x(xVal), y(yVal), w(wVal) {}
|
|
VectorHgR2 ( const VectorR2& u ) : x(u.x), y(u.y), w(1.0) {}
|
|
};
|
|
|
|
// ********************************************************************
|
|
// Matrix2x2 - base class for 2x2 matrices *
|
|
// * * * * * * * * * * * * * * * * * * * * * **************************
|
|
|
|
class Matrix2x2 {
|
|
|
|
public:
|
|
double m11, m12, m21, m22;
|
|
|
|
// Implements a 2x2 matrix: m_i_j - row-i and column-j entry
|
|
|
|
static const Matrix2x2 Identity;
|
|
|
|
public:
|
|
|
|
inline Matrix2x2();
|
|
inline Matrix2x2( const VectorR2&, const VectorR2& ); // Sets by columns!
|
|
inline Matrix2x2( double, double, double, double ); // Sets by columns
|
|
|
|
inline void SetIdentity (); // Set to the identity map
|
|
inline void SetZero (); // Set to the zero map
|
|
inline void Set( const VectorR2&, const VectorR2& );
|
|
inline void Set( double, double, double, double );
|
|
inline void SetByRows( const VectorR2&, const VectorR2& );
|
|
inline void SetByRows( double, double, double, double );
|
|
inline void SetColumn1 ( double, double );
|
|
inline void SetColumn2 ( double, double );
|
|
inline void SetColumn1 ( const VectorR2& );
|
|
inline void SetColumn2 ( const VectorR2& );
|
|
inline VectorR2 Column1() const;
|
|
inline VectorR2 Column2() const;
|
|
|
|
inline void SetRow1 ( double, double );
|
|
inline void SetRow2 ( double, double );
|
|
inline void SetRow1 ( const VectorR2& );
|
|
inline void SetRow2 ( const VectorR2& );
|
|
inline VectorR2 Row1() const;
|
|
inline VectorR2 Row2() const;
|
|
|
|
inline void SetDiagonal( double, double );
|
|
inline void SetDiagonal( const VectorR2& );
|
|
inline double Diagonal( int );
|
|
|
|
inline void MakeTranspose(); // Transposes it.
|
|
inline void operator*= (const Matrix2x2& B); // Matrix product
|
|
inline Matrix2x2& ReNormalize();
|
|
|
|
inline void Transform( VectorR2* ) const;
|
|
inline void Transform( const VectorR2& src, VectorR2* dest) const;
|
|
|
|
};
|
|
|
|
inline double NormalizeError( const Matrix2x2& );
|
|
inline VectorR2 operator* ( const Matrix2x2&, const VectorR2& );
|
|
|
|
ostream& operator<< ( ostream& os, const Matrix2x2& A );
|
|
|
|
|
|
// *****************************************
|
|
// LinearMapR2 class *
|
|
// * * * * * * * * * * * * * * * * * * * * *
|
|
|
|
class LinearMapR2 : public Matrix2x2 {
|
|
|
|
public:
|
|
|
|
LinearMapR2();
|
|
LinearMapR2( const VectorR2&, const VectorR2& ); // Sets by columns!
|
|
LinearMapR2( double, double, double, double ); // Sets by columns
|
|
LinearMapR2 ( const Matrix2x2& );
|
|
|
|
inline void Negate();
|
|
inline LinearMapR2& operator+= (const Matrix2x2& );
|
|
inline LinearMapR2& operator-= (const Matrix2x2& );
|
|
inline LinearMapR2& operator*= (double);
|
|
inline LinearMapR2& operator/= (double);
|
|
inline LinearMapR2& operator*= (const Matrix2x2& ); // Matrix product
|
|
|
|
inline LinearMapR2 Transpose() const;
|
|
inline double Determinant () const; // Returns the determinant
|
|
LinearMapR2 Inverse() const; // Returns inverse
|
|
LinearMapR2& Invert(); // Converts into inverse.
|
|
VectorR2 Solve(const VectorR2&) const; // Returns solution
|
|
LinearMapR2 PseudoInverse() const; // Returns pseudo-inverse TO DO
|
|
VectorR2 PseudoSolve(const VectorR2&); // Finds least squares solution TO DO
|
|
};
|
|
|
|
inline LinearMapR2 operator+ ( const LinearMapR2&, const LinearMapR2&);
|
|
inline LinearMapR2 operator- ( const Matrix2x2& );
|
|
inline LinearMapR2 operator- ( const LinearMapR2&, const LinearMapR2&);
|
|
inline LinearMapR2 operator* ( const LinearMapR2&, double);
|
|
inline LinearMapR2 operator* ( double, const LinearMapR2& );
|
|
inline LinearMapR2 operator/ ( const LinearMapR2&, double );
|
|
inline LinearMapR2 operator* ( const Matrix2x2&, const LinearMapR2& );
|
|
inline LinearMapR2 operator* ( const LinearMapR2&, const Matrix2x2& );
|
|
inline LinearMapR2 operator* ( const LinearMapR2&, const LinearMapR2& );
|
|
// Matrix product (composition)
|
|
|
|
|
|
// *******************************************
|
|
// RotationMapR2class *
|
|
// * * * * * * * * * * * * * * * * * * * * * *
|
|
|
|
class RotationMapR2 : public Matrix2x2 {
|
|
|
|
public:
|
|
|
|
RotationMapR2();
|
|
RotationMapR2( const VectorR2&, const VectorR2& ); // Sets by columns!
|
|
RotationMapR2( double, double, double, double ); // Sets by columns!
|
|
|
|
RotationMapR2& SetZero(); // IT IS AN ERROR TO USE THIS FUNCTION!
|
|
|
|
inline RotationMapR2& operator*= (const RotationMapR2& ); // Matrix product
|
|
|
|
inline RotationMapR2 Transpose() const;
|
|
inline RotationMapR2 Inverse() const { return Transpose(); }; // Returns the transpose
|
|
inline RotationMapR2& Invert() { MakeTranspose(); return *this; }; // Transposes it.
|
|
inline VectorR2 Invert(const VectorR2&) const; // Returns solution
|
|
};
|
|
|
|
inline RotationMapR2 operator* ( const RotationMapR2&, const RotationMapR2& );
|
|
// Matrix product (composition)
|
|
|
|
|
|
|
|
// ***************************************************************
|
|
// * 2-space vector and matrix utilities (prototypes) *
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
|
|
|
// Returns the angle between vectors u and v.
|
|
// Use AngleUnit if both vectors are unit vectors
|
|
inline double Angle( const VectorR2& u, const VectorR2& v);
|
|
inline double AngleUnit( const VectorR2& u, const VectorR2& v );
|
|
|
|
// Returns a righthanded orthonormal basis to complement vector u
|
|
// The vector u must be unit.
|
|
inline VectorR2 GetOrtho( const VectorR2& u );
|
|
|
|
// Projections
|
|
|
|
inline VectorR2 ProjectToUnit ( const VectorR2& u, const VectorR2& v);
|
|
// Project u onto v
|
|
inline VectorR2 ProjectPerpUnit ( const VectorR2& u, const VectorR2 & v);
|
|
// Project perp to v
|
|
// v must be a unit vector.
|
|
|
|
// Projection maps (LinearMapR2's)
|
|
|
|
inline LinearMapR2 VectorProjectMap( const VectorR2& u );
|
|
|
|
inline LinearMapR2 PerpProjectMap ( const VectorR2& u );
|
|
// u - must be unit vector.
|
|
|
|
// Rotation Maps
|
|
|
|
inline RotationMapR2 RotateToMap( const VectorR2& fromVec, const VectorR2& toVec);
|
|
// fromVec and toVec should be unit vectors
|
|
|
|
|
|
|
|
// ***************************************************************
|
|
// * Stream Output Routines (Prototypes) *
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
|
|
|
ostream& operator<< ( ostream& os, const VectorR2& u );
|
|
|
|
|
|
// *****************************************************
|
|
// * VectorR2 class - inlined functions *
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
|
|
|
inline VectorR2& VectorR2::Load( const double* v )
|
|
{
|
|
x = *v;
|
|
y = *(v+1);
|
|
return *this;
|
|
}
|
|
|
|
inline VectorR2& VectorR2::Load( const float* v )
|
|
{
|
|
x = *v;
|
|
y = *(v+1);
|
|
return *this;
|
|
}
|
|
|
|
inline void VectorR2::Dump( double* v ) const
|
|
{
|
|
*v = x;
|
|
*(v+1) = y;
|
|
}
|
|
|
|
inline void VectorR2::Dump( float* v ) const
|
|
{
|
|
*v = (float)x;
|
|
*(v+1) = (float)y;
|
|
}
|
|
|
|
inline VectorR2& VectorR2::ArrayProd (const VectorR2& v) // Component-wise Product
|
|
{
|
|
x *= v.x;
|
|
y *= v.y;
|
|
return ( *this );
|
|
}
|
|
|
|
inline VectorR2& VectorR2::MakeUnit () // Convert to unit vector (or leave zero).
|
|
{
|
|
double nSq = NormSq();
|
|
if (nSq != 0.0) {
|
|
*this /= sqrt(nSq);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
inline VectorR2& VectorR2::ReNormalize() // Convert near unit back to unit
|
|
{
|
|
double nSq = NormSq();
|
|
register double mFact = 1.0-0.5*(nSq-1.0); // Multiplicative factor
|
|
*this *= mFact;
|
|
return *this;
|
|
}
|
|
|
|
// Rotate through angle theta
|
|
inline VectorR2& VectorR2::Rotate( double theta )
|
|
{
|
|
double costheta = cos(theta);
|
|
double sintheta = sin(theta);
|
|
double tempx = x*costheta - y*sintheta;
|
|
y = y*costheta + x*sintheta;
|
|
x = tempx;
|
|
return *this;
|
|
}
|
|
|
|
inline VectorR2& VectorR2::Rotate( double costheta, double sintheta )
|
|
{
|
|
double tempx = x*costheta + y*sintheta;
|
|
y = y*costheta - x*sintheta;
|
|
x = tempx;
|
|
return *this;
|
|
}
|
|
|
|
inline double VectorR2::MaxAbs() const
|
|
{
|
|
register double m;
|
|
m = (x>=0.0) ? x : -x;
|
|
if ( y>m ) m=y;
|
|
else if ( -y >m ) m = -y;
|
|
return m;
|
|
}
|
|
|
|
inline VectorR2 operator+( const VectorR2& u, const VectorR2& v )
|
|
{
|
|
return VectorR2(u.x+v.x, u.y+v.y );
|
|
}
|
|
inline VectorR2 operator-( const VectorR2& u, const VectorR2& v )
|
|
{
|
|
return VectorR2(u.x-v.x, u.y-v.y );
|
|
}
|
|
inline VectorR2 operator*( const VectorR2& u, register double m)
|
|
{
|
|
return VectorR2( u.x*m, u.y*m );
|
|
}
|
|
inline VectorR2 operator*( register double m, const VectorR2& u)
|
|
{
|
|
return VectorR2( u.x*m, u.y*m );
|
|
}
|
|
inline VectorR2 operator/( const VectorR2& u, double m)
|
|
{
|
|
register double mInv = 1.0/m;
|
|
return VectorR2( u.x*mInv, u.y*mInv );
|
|
}
|
|
|
|
inline int operator==( const VectorR2& u, const VectorR2& v )
|
|
{
|
|
return ( u.x==v.x && u.y==v.y );
|
|
}
|
|
|
|
inline double operator^ ( const VectorR2& u, const VectorR2& v ) // Dot Product
|
|
{
|
|
return ( u.x*v.x + u.y*v.y );
|
|
}
|
|
|
|
inline VectorR2 ArrayProd ( const VectorR2& u, const VectorR2& v )
|
|
{
|
|
return ( VectorR2( u.x*v.x, u.y*v.y ) );
|
|
}
|
|
|
|
inline VectorR2& VectorR2::AddScaled( const VectorR2& u, double s )
|
|
{
|
|
x += s*u.x;
|
|
y += s*u.y;
|
|
return(*this);
|
|
}
|
|
|
|
inline VectorR2::VectorR2( const VectorHgR2& uH )
|
|
: x(uH.x), y(uH.y)
|
|
{
|
|
*this /= uH.w;
|
|
}
|
|
|
|
inline double NormalizeError (const VectorR2& u)
|
|
{
|
|
register double discrepancy;
|
|
discrepancy = u.x*u.x + u.y*u.y - 1.0;
|
|
if ( discrepancy < 0.0 ) {
|
|
discrepancy = -discrepancy;
|
|
}
|
|
return discrepancy;
|
|
}
|
|
|
|
inline double VectorR2::Dist( const VectorR2& u ) const // Distance from u
|
|
{
|
|
return sqrt( DistSq(u) );
|
|
}
|
|
|
|
inline double VectorR2::DistSq( const VectorR2& u ) const // Distance from u
|
|
{
|
|
return ( (x-u.x)*(x-u.x) + (y-u.y)*(y-u.y) );
|
|
}
|
|
|
|
|
|
// *********************************************************
|
|
// * Matrix2x2 class - inlined functions *
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * *****
|
|
|
|
inline Matrix2x2::Matrix2x2() {}
|
|
|
|
inline Matrix2x2::Matrix2x2( const VectorR2& u, const VectorR2& v )
|
|
{
|
|
m11 = u.x; // Column 1
|
|
m21 = u.y;
|
|
m12 = v.x; // Column 2
|
|
m22 = v.y;
|
|
}
|
|
|
|
inline Matrix2x2::Matrix2x2( double a11, double a21, double a12, double a22 )
|
|
// Values specified in column order!!!
|
|
{
|
|
m11 = a11; // Row 1
|
|
m12 = a12;
|
|
m21 = a21; // Row 2
|
|
m22 = a22;
|
|
}
|
|
|
|
inline void Matrix2x2::SetIdentity ( )
|
|
{
|
|
m11 = m22 = 1.0;
|
|
m12 = m21 = 0.0;
|
|
}
|
|
|
|
inline void Matrix2x2::Set( const VectorR2& u, const VectorR2& v )
|
|
{
|
|
m11 = u.x; // Column 1
|
|
m21 = u.y;
|
|
m12 = v.x; // Column 2
|
|
m22 = v.y;
|
|
}
|
|
|
|
inline void Matrix2x2::Set( double a11, double a21, double a12, double a22 )
|
|
// Values specified in column order!!!
|
|
{
|
|
m11 = a11; // Row 1
|
|
m12 = a12;
|
|
m21 = a21; // Row 2
|
|
m22 = a22;
|
|
}
|
|
|
|
inline void Matrix2x2::SetZero( )
|
|
{
|
|
m11 = m12 = m21 = m22 = 0.0;
|
|
}
|
|
|
|
inline void Matrix2x2::SetByRows( const VectorR2& u, const VectorR2& v )
|
|
{
|
|
m11 = u.x; // Row 1
|
|
m12 = u.y;
|
|
m21 = v.x; // Row 2
|
|
m22 = v.y;
|
|
}
|
|
|
|
inline void Matrix2x2::SetByRows( double a11, double a12, double a21, double a22 )
|
|
// Values specified in row order!!!
|
|
{
|
|
m11 = a11; // Row 1
|
|
m12 = a12;
|
|
m21 = a21; // Row 2
|
|
m22 = a22;
|
|
}
|
|
|
|
inline void Matrix2x2::SetColumn1 ( double x, double y )
|
|
{
|
|
m11 = x; m21 = y;
|
|
}
|
|
|
|
inline void Matrix2x2::SetColumn2 ( double x, double y )
|
|
{
|
|
m12 = x; m22 = y;
|
|
}
|
|
|
|
inline void Matrix2x2::SetColumn1 ( const VectorR2& u )
|
|
{
|
|
m11 = u.x; m21 = u.y;
|
|
}
|
|
|
|
inline void Matrix2x2::SetColumn2 ( const VectorR2& u )
|
|
{
|
|
m12 = u.x; m22 = u.y;
|
|
}
|
|
|
|
VectorR2 Matrix2x2::Column1() const
|
|
{
|
|
return ( VectorR2(m11, m21) );
|
|
}
|
|
|
|
VectorR2 Matrix2x2::Column2() const
|
|
{
|
|
return ( VectorR2(m12, m22) );
|
|
}
|
|
|
|
inline void Matrix2x2::SetRow1 ( double x, double y )
|
|
{
|
|
m11 = x; m12 = y;
|
|
}
|
|
|
|
inline void Matrix2x2::SetRow2 ( double x, double y )
|
|
{
|
|
m21 = x; m22 = y;
|
|
}
|
|
|
|
inline void Matrix2x2::SetRow1 ( const VectorR2& u )
|
|
{
|
|
m11 = u.x; m12 = u.y;
|
|
}
|
|
|
|
inline void Matrix2x2::SetRow2 ( const VectorR2& u )
|
|
{
|
|
m21 = u.x; m22 = u.y;
|
|
}
|
|
|
|
VectorR2 Matrix2x2::Row1() const
|
|
{
|
|
return ( VectorR2(m11, m12) );
|
|
}
|
|
|
|
VectorR2 Matrix2x2::Row2() const
|
|
{
|
|
return ( VectorR2(m21, m22) );
|
|
}
|
|
|
|
inline void Matrix2x2::SetDiagonal( double x, double y )
|
|
{
|
|
m11 = x;
|
|
m22 = y;
|
|
}
|
|
|
|
inline void Matrix2x2::SetDiagonal( const VectorR2& u )
|
|
{
|
|
SetDiagonal ( u.x, u.y );
|
|
}
|
|
|
|
inline double Matrix2x2::Diagonal( int i )
|
|
{
|
|
switch (i) {
|
|
case 0:
|
|
return m11;
|
|
case 1:
|
|
return m22;
|
|
default:
|
|
assert(0);
|
|
return 0.0;
|
|
}
|
|
}
|
|
inline void Matrix2x2::MakeTranspose() // Transposes it.
|
|
{
|
|
register double temp;
|
|
temp = m12;
|
|
m12 = m21;
|
|
m21=temp;
|
|
}
|
|
|
|
inline void Matrix2x2::operator*= (const Matrix2x2& B) // Matrix product
|
|
{
|
|
double t1; // temporary value
|
|
|
|
t1 = m11*B.m11 + m12*B.m21;
|
|
m12 = m11*B.m12 + m12*B.m22;
|
|
m11 = t1;
|
|
|
|
t1 = m21*B.m11 + m22*B.m21;
|
|
m22 = m21*B.m12 + m22*B.m22;
|
|
m21 = t1;
|
|
}
|
|
|
|
inline Matrix2x2& Matrix2x2::ReNormalize() // Re-normalizes nearly orthonormal matrix
|
|
{
|
|
register double alpha = m11*m11+m21*m21; // First column's norm squared
|
|
register double beta = m12*m12+m22*m22; // Second column's norm squared
|
|
alpha = 1.0 - 0.5*(alpha-1.0); // Get mult. factor
|
|
beta = 1.0 - 0.5*(beta-1.0);
|
|
m11 *= alpha; // Renormalize first column
|
|
m21 *= alpha;
|
|
m12 *= beta; // Renormalize second column
|
|
m22 *= beta;
|
|
alpha = m11*m12+m21*m22; // Columns' inner product
|
|
alpha *= 0.5; // times 1/2
|
|
register double temp;
|
|
temp = m11-alpha*m12; // Subtract alpha times other column
|
|
m12 -= alpha*m11;
|
|
m11 = temp;
|
|
temp = m21-alpha*m22;
|
|
m22 -= alpha*m21;
|
|
m11 = temp;
|
|
return *this;
|
|
}
|
|
|
|
// Gives a measure of how far the matrix is from being normalized.
|
|
// Mostly intended for diagnostic purposes.
|
|
inline double NormalizeError( const Matrix2x2& A)
|
|
{
|
|
register double discrepancy;
|
|
register double newdisc;
|
|
discrepancy = A.m11*A.m11 + A.m21*A.m21 -1.0; // First column - inner product - 1
|
|
if (discrepancy<0.0) {
|
|
discrepancy = -discrepancy;
|
|
}
|
|
newdisc = A.m12*A.m12 + A.m22*A.m22 - 1.0; // Second column inner product - 1
|
|
if ( newdisc<0.0 ) {
|
|
newdisc = -newdisc;
|
|
}
|
|
if ( newdisc>discrepancy ) {
|
|
discrepancy = newdisc;
|
|
}
|
|
newdisc = A.m11*A.m12 + A.m21*A.m22; // Inner product of two columns
|
|
if ( newdisc<0.0 ) {
|
|
newdisc = -newdisc;
|
|
}
|
|
if ( newdisc>discrepancy ) {
|
|
discrepancy = newdisc;
|
|
}
|
|
return discrepancy;
|
|
}
|
|
|
|
inline VectorR2 operator* ( const Matrix2x2& A, const VectorR2& u)
|
|
{
|
|
return(VectorR2 ( A.m11*u.x + A.m12*u.y,
|
|
A.m21*u.x + A.m22*u.y ) );
|
|
}
|
|
|
|
inline void Matrix2x2::Transform( VectorR2* u ) const {
|
|
double newX;
|
|
newX = m11*u->x + m12*u->y;
|
|
u->y = m21*u->x + m22*u->y;
|
|
u->x = newX;
|
|
}
|
|
|
|
inline void Matrix2x2::Transform( const VectorR2& src, VectorR2* dest ) const {
|
|
dest->x = m11*src.x + m12*src.y;
|
|
dest->y = m21*src.x + m22*src.y;
|
|
}
|
|
|
|
|
|
|
|
// ******************************************************
|
|
// * LinearMapR2 class - inlined functions *
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * **
|
|
|
|
inline LinearMapR2::LinearMapR2()
|
|
{
|
|
SetZero();
|
|
return;
|
|
}
|
|
|
|
inline LinearMapR2::LinearMapR2( const VectorR2& u, const VectorR2& v )
|
|
:Matrix2x2 ( u, v )
|
|
{ }
|
|
|
|
inline LinearMapR2::LinearMapR2(double a11, double a21, double a12, double a22)
|
|
// Values specified in column order!!!
|
|
:Matrix2x2 ( a11, a21, a12, a22 )
|
|
{ }
|
|
|
|
inline LinearMapR2::LinearMapR2 ( const Matrix2x2& A )
|
|
: Matrix2x2 (A)
|
|
{}
|
|
|
|
inline void LinearMapR2::Negate ()
|
|
{
|
|
m11 = -m11;
|
|
m12 = -m12;
|
|
m21 = -m21;
|
|
m22 = -m22;
|
|
}
|
|
|
|
inline LinearMapR2& LinearMapR2::operator+= (const Matrix2x2& B)
|
|
{
|
|
m11 += B.m11;
|
|
m12 += B.m12;
|
|
m21 += B.m21;
|
|
m22 += B.m22;
|
|
return ( *this );
|
|
}
|
|
|
|
inline LinearMapR2& LinearMapR2::operator-= (const Matrix2x2& B)
|
|
{
|
|
m11 -= B.m11;
|
|
m12 -= B.m12;
|
|
m21 -= B.m21;
|
|
m22 -= B.m22;
|
|
return( *this );
|
|
}
|
|
|
|
inline LinearMapR2 operator+ (const LinearMapR2& A, const LinearMapR2& B)
|
|
{
|
|
return( LinearMapR2( A.m11+B.m11, A.m21+B.m21,
|
|
A.m12+B.m12, A.m22+B.m22 ) );
|
|
}
|
|
|
|
inline LinearMapR2 operator- (const Matrix2x2& A)
|
|
{
|
|
return( LinearMapR2( -A.m11, -A.m21, -A.m12, -A.m22 ) );
|
|
}
|
|
|
|
inline LinearMapR2 operator- (const LinearMapR2& A, const LinearMapR2& B)
|
|
{
|
|
return( LinearMapR2( A.m11-B.m11, A.m21-B.m21,
|
|
A.m12-B.m12, A.m22-B.m22 ) );
|
|
}
|
|
|
|
inline LinearMapR2& LinearMapR2::operator*= (register double b)
|
|
{
|
|
m11 *= b;
|
|
m12 *= b;
|
|
m21 *= b;
|
|
m22 *= b;
|
|
return ( *this);
|
|
}
|
|
|
|
inline LinearMapR2 operator* ( const LinearMapR2& A, register double b)
|
|
{
|
|
return( LinearMapR2( A.m11*b, A.m21*b,
|
|
A.m12*b, A.m22*b ) );
|
|
}
|
|
|
|
inline LinearMapR2 operator* ( register double b, const LinearMapR2& A)
|
|
{
|
|
return( LinearMapR2( A.m11*b, A.m21*b,
|
|
A.m12*b, A.m22*b ) );
|
|
}
|
|
|
|
inline LinearMapR2 operator/ ( const LinearMapR2& A, double b)
|
|
{
|
|
register double bInv = 1.0/b;
|
|
return ( A*bInv );
|
|
}
|
|
|
|
inline LinearMapR2& LinearMapR2::operator/= (register double b)
|
|
{
|
|
register double bInv = 1.0/b;
|
|
return ( *this *= bInv );
|
|
}
|
|
|
|
inline LinearMapR2 LinearMapR2::Transpose() const // Returns the transpose
|
|
{
|
|
return (LinearMapR2( m11, m12, m21, m22 ) );
|
|
}
|
|
|
|
inline LinearMapR2& LinearMapR2::operator*= (const Matrix2x2& B) // Matrix product
|
|
{
|
|
(*this).Matrix2x2::operator*=(B);
|
|
|
|
return( *this );
|
|
}
|
|
|
|
inline LinearMapR2 operator* ( const LinearMapR2& A, const Matrix2x2& B)
|
|
{
|
|
LinearMapR2 AA(A);
|
|
AA.Matrix2x2::operator*=(B);
|
|
return AA;
|
|
}
|
|
|
|
inline LinearMapR2 operator* ( const Matrix2x2& A, const LinearMapR2& B)
|
|
{
|
|
LinearMapR2 AA(A);
|
|
AA.Matrix2x2::operator*=(B);
|
|
return AA;
|
|
}
|
|
|
|
inline LinearMapR2 operator* ( const LinearMapR2& A, const LinearMapR2& B)
|
|
{
|
|
LinearMapR2 AA(A);
|
|
AA.Matrix2x2::operator*=(B);
|
|
return AA;
|
|
}
|
|
|
|
inline double LinearMapR2::Determinant () const // Returns the determinant
|
|
{
|
|
return ( m11*m22 - m12*m21 );
|
|
}
|
|
|
|
// ******************************************************
|
|
// * RotationMapR2 class - inlined functions *
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * **
|
|
|
|
inline RotationMapR2::RotationMapR2()
|
|
{
|
|
SetIdentity();
|
|
return;
|
|
}
|
|
|
|
inline RotationMapR2::RotationMapR2( const VectorR2& u, const VectorR2& v )
|
|
:Matrix2x2 ( u, v )
|
|
{ }
|
|
|
|
inline RotationMapR2::RotationMapR2(
|
|
double a11, double a21, double a12, double a22 )
|
|
// Values specified in column order!!!
|
|
:Matrix2x2 ( a11, a21, a12, a22 )
|
|
{ }
|
|
|
|
inline RotationMapR2 RotationMapR2::Transpose() const // Returns the transpose
|
|
{
|
|
return ( RotationMapR2( m11, m12,
|
|
m21, m22 ) );
|
|
}
|
|
|
|
inline VectorR2 RotationMapR2::Invert(const VectorR2& u) const // Returns solution
|
|
{
|
|
return (VectorR2( m11*u.x + m21*u.y, // Multiply with Transpose
|
|
m12*u.x + m22*u.y ) );
|
|
}
|
|
|
|
inline RotationMapR2& RotationMapR2::operator*= (const RotationMapR2& B) // Matrix product
|
|
{
|
|
(*this).Matrix2x2::operator*=(B);
|
|
|
|
return( *this );
|
|
}
|
|
|
|
inline RotationMapR2 operator* ( const RotationMapR2& A, const RotationMapR2& B)
|
|
{
|
|
RotationMapR2 AA(A);
|
|
AA.Matrix2x2::operator*=(B);
|
|
return AA;
|
|
}
|
|
|
|
|
|
// ***************************************************************
|
|
// * 2-space vector and matrix utilities (inlined functions) *
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
|
|
|
// Returns a righthanded orthonormal basis to complement vector u
|
|
// The vector u must be unit.
|
|
inline VectorR2 GetOrtho( const VectorR2& u )
|
|
{
|
|
return VectorR2 ( -u.y, u.x );
|
|
}
|
|
|
|
// Returns the projection of u onto unit v
|
|
inline VectorR2 ProjectToUnit ( const VectorR2& u, const VectorR2& v)
|
|
{
|
|
return (u^v)*v;
|
|
}
|
|
|
|
// Returns the projection of u onto the plane perpindicular to the unit vector v
|
|
inline VectorR2 ProjectPerpUnit ( const VectorR2& u, const VectorR2& v)
|
|
{
|
|
return ( u - ((u^v)*v) );
|
|
}
|
|
|
|
// Returns the projection of u onto the plane perpindicular to the unit vector v
|
|
// This one is more stable when u and v are nearly equal.
|
|
inline VectorR2 ProjectPerpUnitDiff ( const VectorR2& u, const VectorR2& v)
|
|
{
|
|
VectorR2 ans = u;
|
|
ans -= v;
|
|
ans -= ((ans^v)*v);
|
|
return ans; // ans = (u-v) - ((u-v)^v)*v
|
|
}
|
|
|
|
// Returns the solid angle between vectors u and v.
|
|
inline double Angle( const VectorR2& u, const VectorR2& v)
|
|
{
|
|
double nSqU = u.NormSq();
|
|
double nSqV = v.NormSq();
|
|
if ( nSqU==0.0 && nSqV==0.0 ) {
|
|
return (0.0);
|
|
}
|
|
else {
|
|
return ( AngleUnit( u/sqrt(nSqU), v/sqrt(nSqV) ) );
|
|
}
|
|
}
|
|
|
|
inline double AngleUnit( const VectorR2& u, const VectorR2& v )
|
|
{
|
|
return ( atan2 ( (ProjectPerpUnit(v,u)).Norm(), u^v ) );
|
|
}
|
|
|
|
// Projection maps (LinearMapR2's)
|
|
|
|
// VectorProjectMap returns map projecting onto a given vector u.
|
|
// u should be a unit vector (otherwise the returned map is
|
|
// scaled according to the magnitude of u.
|
|
inline LinearMapR2 VectorProjectMap( const VectorR2& u )
|
|
{
|
|
double xy = u.x*u.y;
|
|
return( LinearMapR2( u.x*u.x, xy, xy, u.y*u.y ) ) ;
|
|
}
|
|
|
|
// PlaneProjectMap returns map projecting onto a given plane.
|
|
// The plane is the plane orthognal to u.
|
|
// u must be a unit vector (otherwise the returned map is
|
|
// garbage).
|
|
inline LinearMapR2 PerpProjectMap ( const VectorR2& u )
|
|
{
|
|
double nxy = -u.x*u.y;
|
|
return ( LinearMapR2 ( 1.0-u.x*u.x, nxy, nxy, 1.0-u.y*u.y ) );
|
|
}
|
|
|
|
// fromVec and toVec should be unit vectors
|
|
inline RotationMapR2 RotateToMap( const VectorR2& fromVec, const VectorR2& toVec)
|
|
{
|
|
double costheta = fromVec.x*toVec.x + fromVec.y*toVec.y;
|
|
double sintheta = fromVec.x*toVec.y - fromVec.y*toVec.x;
|
|
return( RotationMapR2( costheta, sintheta, -sintheta, costheta ) );
|
|
}
|
|
|
|
#endif // LINEAR_R2_H
|