bullet3/Demos/Benchmarks/BenchmarkDemo.cpp
Erwin Coumans dc491936a2 rename ObsoleteDemos back to Demos
fix some relative path issues for loading assets
2014-05-12 16:12:01 -07:00

1330 lines
39 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
// Collision Radius
#define COLLISION_RADIUS 0.0f
#include "BenchmarkDemo.h"
#ifdef USE_GRAPHICAL_BENCHMARK
#include "GlutStuff.h"
#endif //USE_GRAPHICAL_BENCHMARK
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
#include "btBulletDynamicsCommon.h"
#include <stdio.h> //printf debugging
#include "Taru.mdl"
#include "landscape.mdl"
#include "BulletCollision/BroadphaseCollision/btDbvtBroadphase.h"
#ifdef USE_PARALLEL_DISPATCHER_BENCHMARK
#include "BulletMultiThreaded/SpuGatheringCollisionDispatcher.h"
#include "BulletMultiThreaded/SequentialThreadSupport.h"
#include "BulletMultiThreaded/SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h"
#endif
#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
#ifdef USE_PARALLEL_DISPATCHER_BENCHMARK
#ifdef _WIN32
#include "BulletMultiThreaded/Win32ThreadSupport.h"
#elif defined (USE_PTHREADS)
#include "BulletMultiThreaded/PosixThreadSupport.h"
#endif
#include "BulletMultiThreaded/SpuGatheringCollisionDispatcher.h"
#include "BulletMultiThreaded/btParallelConstraintSolver.h"
btThreadSupportInterface* createSolverThreadSupport(int maxNumThreads)
{
//#define SEQUENTIAL
#ifdef SEQUENTIAL
SequentialThreadSupport::SequentialThreadConstructionInfo tci("solverThreads",SolverThreadFunc,SolverlsMemoryFunc);
SequentialThreadSupport* threadSupport = new SequentialThreadSupport(tci);
threadSupport->startSPU();
#else
#ifdef _WIN32
Win32ThreadSupport::Win32ThreadConstructionInfo threadConstructionInfo("solverThreads",SolverThreadFunc,SolverlsMemoryFunc,maxNumThreads);
Win32ThreadSupport* threadSupport = new Win32ThreadSupport(threadConstructionInfo);
threadSupport->startSPU();
#elif defined (USE_PTHREADS)
PosixThreadSupport::ThreadConstructionInfo solverConstructionInfo("solver", SolverThreadFunc,
SolverlsMemoryFunc, maxNumThreads);
PosixThreadSupport* threadSupport = new PosixThreadSupport(solverConstructionInfo);
#else
SequentialThreadSupport::SequentialThreadConstructionInfo tci("solverThreads",SolverThreadFunc,SolverlsMemoryFunc);
SequentialThreadSupport* threadSupport = new SequentialThreadSupport(tci);
threadSupport->startSPU();
#endif
#endif
return threadSupport;
}
#endif
class btRaycastBar2
{
public:
btVector3 source[NUMRAYS];
btVector3 dest[NUMRAYS];
btVector3 direction[NUMRAYS];
btVector3 hit[NUMRAYS];
btVector3 normal[NUMRAYS];
int frame_counter;
int ms;
int sum_ms;
int sum_ms_samples;
int min_ms;
int max_ms;
#ifdef USE_BT_CLOCK
btClock frame_timer;
#endif //USE_BT_CLOCK
btScalar dx;
btScalar min_x;
btScalar max_x;
btScalar max_y;
btScalar sign;
btRaycastBar2 ()
{
ms = 0;
max_ms = 0;
min_ms = 9999;
sum_ms_samples = 0;
sum_ms = 0;
}
btRaycastBar2 (btScalar ray_length, btScalar z,btScalar max_y)
{
frame_counter = 0;
ms = 0;
max_ms = 0;
min_ms = 9999;
sum_ms_samples = 0;
sum_ms = 0;
dx = 10.0;
min_x = 0;
max_x = 0;
this->max_y = max_y;
sign = 1.0;
btScalar dalpha = 2*SIMD_2_PI/NUMRAYS;
for (int i = 0; i < NUMRAYS; i++)
{
btScalar alpha = dalpha * i;
// rotate around by alpha degrees y
btQuaternion q(btVector3(0.0, 1.0, 0.0), alpha);
direction[i] = btVector3(1.0, 0.0, 0.0);
direction[i] = quatRotate(q , direction[i]);
direction[i] = direction[i] * ray_length;
source[i] = btVector3(min_x, max_y, z);
dest[i] = source[i] + direction[i];
dest[i][1]=-1000;
normal[i] = btVector3(1.0, 0.0, 0.0);
}
}
void move (btScalar dt)
{
if (dt > btScalar(1.0/60.0))
dt = btScalar(1.0/60.0);
for (int i = 0; i < NUMRAYS; i++)
{
source[i][0] += dx * dt * sign;
dest[i][0] += dx * dt * sign;
}
if (source[0][0] < min_x)
sign = 1.0;
else if (source[0][0] > max_x)
sign = -1.0;
}
void cast (btCollisionWorld* cw)
{
#ifdef USE_BT_CLOCK
frame_timer.reset ();
#endif //USE_BT_CLOCK
#ifdef BATCH_RAYCASTER
if (!gBatchRaycaster)
return;
gBatchRaycaster->clearRays ();
for (int i = 0; i < NUMRAYS; i++)
{
gBatchRaycaster->addRay (source[i], dest[i]);
}
gBatchRaycaster->performBatchRaycast ();
for (int i = 0; i < gBatchRaycaster->getNumRays (); i++)
{
const SpuRaycastTaskWorkUnitOut& out = (*gBatchRaycaster)[i];
hit[i].setInterpolate3(source[i],dest[i],out.hitFraction);
normal[i] = out.hitNormal;
normal[i].normalize ();
}
#else
for (int i = 0; i < NUMRAYS; i++)
{
btCollisionWorld::ClosestRayResultCallback cb(source[i], dest[i]);
cw->rayTest (source[i], dest[i], cb);
if (cb.hasHit ())
{
hit[i] = cb.m_hitPointWorld;
normal[i] = cb.m_hitNormalWorld;
normal[i].normalize ();
} else {
hit[i] = dest[i];
normal[i] = btVector3(1.0, 0.0, 0.0);
}
}
#ifdef USE_BT_CLOCK
ms += frame_timer.getTimeMilliseconds ();
#endif //USE_BT_CLOCK
frame_counter++;
if (frame_counter > 50)
{
min_ms = ms < min_ms ? ms : min_ms;
max_ms = ms > max_ms ? ms : max_ms;
sum_ms += ms;
sum_ms_samples++;
btScalar mean_ms = (btScalar)sum_ms/(btScalar)sum_ms_samples;
printf("%d rays in %d ms %d %d %f\n", NUMRAYS * frame_counter, ms, min_ms, max_ms, mean_ms);
ms = 0;
frame_counter = 0;
}
#endif
}
void draw ()
{
#ifdef USE_GRAPHICAL_BENCHMARK
glDisable (GL_LIGHTING);
glColor3f (0.0, 1.0, 0.0);
glBegin (GL_LINES);
int i;
for (i = 0; i < NUMRAYS; i++)
{
glVertex3f (source[i][0], source[i][1], source[i][2]);
glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
}
glEnd ();
glColor3f (1.0, 1.0, 1.0);
glBegin (GL_LINES);
for (i = 0; i < NUMRAYS; i++)
{
glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
glVertex3f (hit[i][0] + normal[i][0], hit[i][1] + normal[i][1], hit[i][2] + normal[i][2]);
}
glEnd ();
glColor3f (0.0, 1.0, 1.0);
glBegin (GL_POINTS);
for ( i = 0; i < NUMRAYS; i++)
{
glVertex3f (hit[i][0], hit[i][1], hit[i][2]);
}
glEnd ();
glEnable (GL_LIGHTING);
#endif //USE_GRAPHICAL_BENCHMARK
}
};
static btRaycastBar2 raycastBar;
void BenchmarkDemo::clientMoveAndDisplay()
{
#ifdef USE_GRAPHICAL_BENCHMARK
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
#endif //USE_GRAPHICAL_BENCHMARK
//simple dynamics world doesn't handle fixed-time-stepping
//float ms = getDeltaTimeMicroseconds();
///step the simulation
if (m_dynamicsWorld)
{
m_dynamicsWorld->stepSimulation(btScalar(1./60.));
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
}
if (m_benchmark==7)
{
castRays();
raycastBar.draw();
}
renderme();
#ifdef USE_GRAPHICAL_BENCHMARK
glFlush();
swapBuffers();
#endif //USE_GRAPHICAL_BENCHMARK
}
void BenchmarkDemo::displayCallback(void)
{
#ifdef USE_GRAPHICAL_BENCHMARK
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderme();
//optional but useful: debug drawing to detect problems
if (m_dynamicsWorld)
m_dynamicsWorld->debugDrawWorld();
glFlush();
swapBuffers();
#endif //USE_GRAPHICAL_BENCHMARK
}
void BenchmarkDemo::initPhysics()
{
setCameraDistance(btScalar(100.));
///collision configuration contains default setup for memory, collision setup
btDefaultCollisionConstructionInfo cci;
cci.m_defaultMaxPersistentManifoldPoolSize = 32768;
m_collisionConfiguration = new btDefaultCollisionConfiguration(cci);
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_dispatcher->setDispatcherFlags(btCollisionDispatcher::CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION);
#if USE_PARALLEL_DISPATCHER_BENCHMARK
int maxNumOutstandingTasks = 4;
#ifdef _WIN32
Win32ThreadSupport* threadSupportCollision = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo( "collision",processCollisionTask, createCollisionLocalStoreMemory,maxNumOutstandingTasks));
#elif defined (USE_PTHREADS)
PosixThreadSupport::ThreadConstructionInfo collisionConstructionInfo( "collision",processCollisionTask, createCollisionLocalStoreMemory,maxNumOutstandingTasks);
PosixThreadSupport* threadSupportCollision = new PosixThreadSupport(collisionConstructionInfo);
#endif
//SequentialThreadSupport::SequentialThreadConstructionInfo sci("spuCD", processCollisionTask, createCollisionLocalStoreMemory);
//SequentialThreadSupport* seq = new SequentialThreadSupport(sci);
m_dispatcher = new SpuGatheringCollisionDispatcher(threadSupportCollision,1,m_collisionConfiguration);
#endif
///the maximum size of the collision world. Make sure objects stay within these boundaries
///Don't make the world AABB size too large, it will harm simulation quality and performance
btVector3 worldAabbMin(-1000,-1000,-1000);
btVector3 worldAabbMax(1000,1000,1000);
btHashedOverlappingPairCache* pairCache = new btHashedOverlappingPairCache();
m_overlappingPairCache = new btAxisSweep3(worldAabbMin,worldAabbMax,3500,pairCache);
// m_overlappingPairCache = new btSimpleBroadphase();
// m_overlappingPairCache = new btDbvtBroadphase();
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
#ifdef USE_PARALLEL_DISPATCHER_BENCHMARK
btThreadSupportInterface* thread = createSolverThreadSupport(4);
btConstraintSolver* sol = new btParallelConstraintSolver(thread);
#else
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
#endif //USE_PARALLEL_DISPATCHER_BENCHMARK
m_solver = sol;
btDiscreteDynamicsWorld* dynamicsWorld;
m_dynamicsWorld = dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_solver,m_collisionConfiguration);
#ifdef USE_PARALLEL_DISPATCHER_BENCHMARK
dynamicsWorld->getSimulationIslandManager()->setSplitIslands(false);
#endif //USE_PARALLEL_DISPATCHER_BENCHMARK
///the following 3 lines increase the performance dramatically, with a little bit of loss of quality
m_dynamicsWorld->getSolverInfo().m_solverMode |=SOLVER_ENABLE_FRICTION_DIRECTION_CACHING; //don't recalculate friction values each frame
dynamicsWorld->getSolverInfo().m_numIterations = 5; //few solver iterations
//m_defaultContactProcessingThreshold = 0.f;//used when creating bodies: body->setContactProcessingThreshold(...);
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
if (m_benchmark<5)
{
///create a few basic rigid bodies
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(250.),btScalar(50.),btScalar(250.)));
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),0);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-50,0));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
}
}
switch (m_benchmark)
{
case 1:
{
createTest1();
break;
}
case 2:
{
createTest2();
break;
}
case 3:
{
createTest3();
break;
}
case 4:
{
createTest4();
break;
}
case 5:
{
createTest5();
break;
}
case 6:
{
createTest6();
break;
}
case 7:
{
createTest7();
break;
}
default:
{
}
}
clientResetScene();
}
void BenchmarkDemo::createTest1()
{
// 3000
int size = 8;
const float cubeSize = 1.0f;
float spacing = cubeSize;
btVector3 pos(0.0f, cubeSize * 2,0.f);
float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
btBoxShape* blockShape = new btBoxShape(btVector3(cubeSize-COLLISION_RADIUS,cubeSize-COLLISION_RADIUS,cubeSize-COLLISION_RADIUS));
btVector3 localInertia(0,0,0);
float mass = 2.f;
blockShape->calculateLocalInertia(mass,localInertia);
btTransform trans;
trans.setIdentity();
for(int k=0;k<47;k++) {
for(int j=0;j<size;j++) {
pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
for(int i=0;i<size;i++) {
pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
trans.setOrigin(pos);
btRigidBody* cmbody;
cmbody= localCreateRigidBody(mass,trans,blockShape);
}
}
offset -= 0.05f * spacing * (size-1);
// spacing *= 1.01f;
pos[1] += (cubeSize * 2.0f + spacing);
}
}
///////////////////////////////////////////////////////////////////////////////
// Pyramid 3
void BenchmarkDemo::createWall(const btVector3& offsetPosition,int stackSize,const btVector3& boxSize)
{
btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
float mass = 1.f;
btVector3 localInertia(0,0,0);
blockShape->calculateLocalInertia(mass,localInertia);
// btScalar diffX = boxSize[0] * 1.0f;
btScalar diffY = boxSize[1] * 1.0f;
btScalar diffZ = boxSize[2] * 1.0f;
btScalar offset = -stackSize * (diffZ * 2.0f) * 0.5f;
btVector3 pos(0.0f, diffY, 0.0f);
btTransform trans;
trans.setIdentity();
while(stackSize) {
for(int i=0;i<stackSize;i++) {
pos[2] = offset + (float)i * (diffZ * 2.0f);
trans.setOrigin(offsetPosition + pos);
localCreateRigidBody(mass,trans,blockShape);
}
offset += diffZ;
pos[1] += (diffY * 2.0f);
stackSize--;
}
}
void BenchmarkDemo::createPyramid(const btVector3& offsetPosition,int stackSize,const btVector3& boxSize)
{
btScalar space = 0.0001f;
btVector3 pos(0.0f, boxSize[1], 0.0f);
btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
btTransform trans;
trans.setIdentity();
btScalar mass = 1.f;
btVector3 localInertia(0,0,0);
blockShape->calculateLocalInertia(mass,localInertia);
btScalar diffX = boxSize[0]*1.02f;
btScalar diffY = boxSize[1]*1.02f;
btScalar diffZ = boxSize[2]*1.02f;
btScalar offsetX = -stackSize * (diffX * 2.0f + space) * 0.5f;
btScalar offsetZ = -stackSize * (diffZ * 2.0f + space) * 0.5f;
while(stackSize) {
for(int j=0;j<stackSize;j++) {
pos[2] = offsetZ + (float)j * (diffZ * 2.0f + space);
for(int i=0;i<stackSize;i++) {
pos[0] = offsetX + (float)i * (diffX * 2.0f + space);
trans.setOrigin(offsetPosition + pos);
this->localCreateRigidBody(mass,trans,blockShape);
}
}
offsetX += diffX;
offsetZ += diffZ;
pos[1] += (diffY * 2.0f + space);
stackSize--;
}
}
const btVector3 rotate( const btQuaternion& quat, const btVector3 & vec )
{
float tmpX, tmpY, tmpZ, tmpW;
tmpX = ( ( ( quat.getW() * vec.getX() ) + ( quat.getY() * vec.getZ() ) ) - ( quat.getZ() * vec.getY() ) );
tmpY = ( ( ( quat.getW() * vec.getY() ) + ( quat.getZ() * vec.getX() ) ) - ( quat.getX() * vec.getZ() ) );
tmpZ = ( ( ( quat.getW() * vec.getZ() ) + ( quat.getX() * vec.getY() ) ) - ( quat.getY() * vec.getX() ) );
tmpW = ( ( ( quat.getX() * vec.getX() ) + ( quat.getY() * vec.getY() ) ) + ( quat.getZ() * vec.getZ() ) );
return btVector3(
( ( ( ( tmpW * quat.getX() ) + ( tmpX * quat.getW() ) ) - ( tmpY * quat.getZ() ) ) + ( tmpZ * quat.getY() ) ),
( ( ( ( tmpW * quat.getY() ) + ( tmpY * quat.getW() ) ) - ( tmpZ * quat.getX() ) ) + ( tmpX * quat.getZ() ) ),
( ( ( ( tmpW * quat.getZ() ) + ( tmpZ * quat.getW() ) ) - ( tmpX * quat.getY() ) ) + ( tmpY * quat.getX() ) )
);
}
void BenchmarkDemo::createTowerCircle(const btVector3& offsetPosition,int stackSize,int rotSize,const btVector3& boxSize)
{
btBoxShape* blockShape = new btBoxShape(btVector3(boxSize[0]-COLLISION_RADIUS,boxSize[1]-COLLISION_RADIUS,boxSize[2]-COLLISION_RADIUS));
btTransform trans;
trans.setIdentity();
float mass = 1.f;
btVector3 localInertia(0,0,0);
blockShape->calculateLocalInertia(mass,localInertia);
float radius = 1.3f * rotSize * boxSize[0] / SIMD_PI;
// create active boxes
btQuaternion rotY(0,1,0,0);
float posY = boxSize[1];
for(int i=0;i<stackSize;i++) {
for(int j=0;j<rotSize;j++) {
trans.setOrigin(offsetPosition+ rotate(rotY,btVector3(0.0f , posY, radius)));
trans.setRotation(rotY);
localCreateRigidBody(mass,trans,blockShape);
rotY *= btQuaternion(btVector3(0,1,0),SIMD_PI/(rotSize*btScalar(0.5)));
}
posY += boxSize[1] * 2.0f;
rotY *= btQuaternion(btVector3(0,1,0),SIMD_PI/(float)rotSize);
}
}
void BenchmarkDemo::createTest2()
{
setCameraDistance(btScalar(50.));
const float cubeSize = 1.0f;
createPyramid(btVector3(-20.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
createWall(btVector3(-2.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
createWall(btVector3(4.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
createWall(btVector3(10.0f,0.0f,0.0f),12,btVector3(cubeSize,cubeSize,cubeSize));
createTowerCircle(btVector3(25.0f,0.0f,0.0f),8,24,btVector3(cubeSize,cubeSize,cubeSize));
}
// Enrico: Shouldn't these three variables be real constants and not defines?
#ifndef M_PI
#define M_PI btScalar(3.14159265358979323846)
#endif
#ifndef M_PI_2
#define M_PI_2 btScalar(1.57079632679489661923)
#endif
#ifndef M_PI_4
#define M_PI_4 btScalar(0.785398163397448309616)
#endif
class RagDoll
{
enum
{
BODYPART_PELVIS = 0,
BODYPART_SPINE,
BODYPART_HEAD,
BODYPART_LEFT_UPPER_LEG,
BODYPART_LEFT_LOWER_LEG,
BODYPART_RIGHT_UPPER_LEG,
BODYPART_RIGHT_LOWER_LEG,
BODYPART_LEFT_UPPER_ARM,
BODYPART_LEFT_LOWER_ARM,
BODYPART_RIGHT_UPPER_ARM,
BODYPART_RIGHT_LOWER_ARM,
BODYPART_COUNT
};
enum
{
JOINT_PELVIS_SPINE = 0,
JOINT_SPINE_HEAD,
JOINT_LEFT_HIP,
JOINT_LEFT_KNEE,
JOINT_RIGHT_HIP,
JOINT_RIGHT_KNEE,
JOINT_LEFT_SHOULDER,
JOINT_LEFT_ELBOW,
JOINT_RIGHT_SHOULDER,
JOINT_RIGHT_ELBOW,
JOINT_COUNT
};
btDynamicsWorld* m_ownerWorld;
btCollisionShape* m_shapes[BODYPART_COUNT];
btRigidBody* m_bodies[BODYPART_COUNT];
btTypedConstraint* m_joints[JOINT_COUNT];
btRigidBody* localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
{
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
shape->calculateLocalInertia(mass,localInertia);
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,shape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_ownerWorld->addRigidBody(body);
return body;
}
public:
RagDoll (btDynamicsWorld* ownerWorld, const btVector3& positionOffset,btScalar scale)
: m_ownerWorld (ownerWorld)
{
// Setup the geometry
m_shapes[BODYPART_PELVIS] = new btCapsuleShape(btScalar(0.15)*scale, btScalar(0.20)*scale);
m_shapes[BODYPART_SPINE] = new btCapsuleShape(btScalar(0.15)*scale, btScalar(0.28)*scale);
m_shapes[BODYPART_HEAD] = new btCapsuleShape(btScalar(0.10)*scale, btScalar(0.05)*scale);
m_shapes[BODYPART_LEFT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07)*scale, btScalar(0.45)*scale);
m_shapes[BODYPART_LEFT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.37)*scale);
m_shapes[BODYPART_RIGHT_UPPER_LEG] = new btCapsuleShape(btScalar(0.07)*scale, btScalar(0.45)*scale);
m_shapes[BODYPART_RIGHT_LOWER_LEG] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.37)*scale);
m_shapes[BODYPART_LEFT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.33)*scale);
m_shapes[BODYPART_LEFT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04)*scale, btScalar(0.25)*scale);
m_shapes[BODYPART_RIGHT_UPPER_ARM] = new btCapsuleShape(btScalar(0.05)*scale, btScalar(0.33)*scale);
m_shapes[BODYPART_RIGHT_LOWER_ARM] = new btCapsuleShape(btScalar(0.04)*scale, btScalar(0.25)*scale);
// Setup all the rigid bodies
btTransform offset; offset.setIdentity();
offset.setOrigin(positionOffset);
btTransform transform;
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.), btScalar(0.)));
m_bodies[BODYPART_PELVIS] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_PELVIS]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.2), btScalar(0.)));
m_bodies[BODYPART_SPINE] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_SPINE]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(0.), btScalar(1.6), btScalar(0.)));
m_bodies[BODYPART_HEAD] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_HEAD]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(0.65), btScalar(0.)));
m_bodies[BODYPART_LEFT_UPPER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_UPPER_LEG]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(0.2), btScalar(0.)));
m_bodies[BODYPART_LEFT_LOWER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_LOWER_LEG]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(0.18), btScalar(0.65), btScalar(0.)));
m_bodies[BODYPART_RIGHT_UPPER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_UPPER_LEG]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(0.18), btScalar(0.2), btScalar(0.)));
m_bodies[BODYPART_RIGHT_LOWER_LEG] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_LOWER_LEG]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(-0.35), btScalar(1.45), btScalar(0.)));
transform.getBasis().setEulerZYX(0,0,M_PI_2);
m_bodies[BODYPART_LEFT_UPPER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_UPPER_ARM]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(-0.7), btScalar(1.45), btScalar(0.)));
transform.getBasis().setEulerZYX(0,0,M_PI_2);
m_bodies[BODYPART_LEFT_LOWER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_LEFT_LOWER_ARM]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(0.35), btScalar(1.45), btScalar(0.)));
transform.getBasis().setEulerZYX(0,0,-M_PI_2);
m_bodies[BODYPART_RIGHT_UPPER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_UPPER_ARM]);
transform.setIdentity();
transform.setOrigin(scale*btVector3(btScalar(0.7), btScalar(1.45), btScalar(0.)));
transform.getBasis().setEulerZYX(0,0,-M_PI_2);
m_bodies[BODYPART_RIGHT_LOWER_ARM] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[BODYPART_RIGHT_LOWER_ARM]);
// Setup some damping on the m_bodies
for (int i = 0; i < BODYPART_COUNT; ++i)
{
m_bodies[i]->setDamping(btScalar(0.05), btScalar(0.85));
m_bodies[i]->setDeactivationTime(btScalar(0.8));
m_bodies[i]->setSleepingThresholds(btScalar(1.6), btScalar(2.5));
}
// Now setup the constraints
btHingeConstraint* hingeC;
btConeTwistConstraint* coneC;
btTransform localA, localB;
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.15), btScalar(0.)));
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.15), btScalar(0.)));
hingeC = new btHingeConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_SPINE], localA, localB);
hingeC->setLimit(btScalar(-M_PI_4), btScalar(M_PI_2));
m_joints[JOINT_PELVIS_SPINE] = hingeC;
m_ownerWorld->addConstraint(m_joints[JOINT_PELVIS_SPINE], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,0,M_PI_2); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.30), btScalar(0.)));
localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_HEAD], localA, localB);
coneC->setLimit(M_PI_4, M_PI_4, M_PI_2);
m_joints[JOINT_SPINE_HEAD] = coneC;
m_ownerWorld->addConstraint(m_joints[JOINT_SPINE_HEAD], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,0,-M_PI_4*5); localA.setOrigin(scale*btVector3(btScalar(-0.18), btScalar(-0.10), btScalar(0.)));
localB.getBasis().setEulerZYX(0,0,-M_PI_4*5); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.225), btScalar(0.)));
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_LEFT_UPPER_LEG], localA, localB);
coneC->setLimit(M_PI_4, M_PI_4, 0);
m_joints[JOINT_LEFT_HIP] = coneC;
m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_HIP], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.)));
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.185), btScalar(0.)));
hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_LEG], *m_bodies[BODYPART_LEFT_LOWER_LEG], localA, localB);
hingeC->setLimit(btScalar(0), btScalar(M_PI_2));
m_joints[JOINT_LEFT_KNEE] = hingeC;
m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_KNEE], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,0,M_PI_4); localA.setOrigin(scale*btVector3(btScalar(0.18), btScalar(-0.10), btScalar(0.)));
localB.getBasis().setEulerZYX(0,0,M_PI_4); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.225), btScalar(0.)));
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_RIGHT_UPPER_LEG], localA, localB);
coneC->setLimit(M_PI_4, M_PI_4, 0);
m_joints[JOINT_RIGHT_HIP] = coneC;
m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_HIP], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.225), btScalar(0.)));
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.185), btScalar(0.)));
hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_LEG], *m_bodies[BODYPART_RIGHT_LOWER_LEG], localA, localB);
hingeC->setLimit(btScalar(0), btScalar(M_PI_2));
m_joints[JOINT_RIGHT_KNEE] = hingeC;
m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_KNEE], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,0,M_PI); localA.setOrigin(scale*btVector3(btScalar(-0.2), btScalar(0.15), btScalar(0.)));
localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.)));
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_LEFT_UPPER_ARM], localA, localB);
coneC->setLimit(M_PI_2, M_PI_2, 0);
m_joints[JOINT_LEFT_SHOULDER] = coneC;
m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_SHOULDER], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.18), btScalar(0.)));
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
hingeC = new btHingeConstraint(*m_bodies[BODYPART_LEFT_UPPER_ARM], *m_bodies[BODYPART_LEFT_LOWER_ARM], localA, localB);
hingeC->setLimit(btScalar(-M_PI_2), btScalar(0));
m_joints[JOINT_LEFT_ELBOW] = hingeC;
m_ownerWorld->addConstraint(m_joints[JOINT_LEFT_ELBOW], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,0,0); localA.setOrigin(scale*btVector3(btScalar(0.2), btScalar(0.15), btScalar(0.)));
localB.getBasis().setEulerZYX(0,0,M_PI_2); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.18), btScalar(0.)));
coneC = new btConeTwistConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_RIGHT_UPPER_ARM], localA, localB);
coneC->setLimit(M_PI_2, M_PI_2, 0);
m_joints[JOINT_RIGHT_SHOULDER] = coneC;
m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_SHOULDER], true);
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,M_PI_2,0); localA.setOrigin(scale*btVector3(btScalar(0.), btScalar(0.18), btScalar(0.)));
localB.getBasis().setEulerZYX(0,M_PI_2,0); localB.setOrigin(scale*btVector3(btScalar(0.), btScalar(-0.14), btScalar(0.)));
hingeC = new btHingeConstraint(*m_bodies[BODYPART_RIGHT_UPPER_ARM], *m_bodies[BODYPART_RIGHT_LOWER_ARM], localA, localB);
hingeC->setLimit(btScalar(-M_PI_2), btScalar(0));
m_joints[JOINT_RIGHT_ELBOW] = hingeC;
m_ownerWorld->addConstraint(m_joints[JOINT_RIGHT_ELBOW], true);
}
virtual ~RagDoll ()
{
int i;
// Remove all constraints
for ( i = 0; i < JOINT_COUNT; ++i)
{
m_ownerWorld->removeConstraint(m_joints[i]);
delete m_joints[i]; m_joints[i] = 0;
}
// Remove all bodies and shapes
for ( i = 0; i < BODYPART_COUNT; ++i)
{
m_ownerWorld->removeRigidBody(m_bodies[i]);
delete m_bodies[i]->getMotionState();
delete m_bodies[i]; m_bodies[i] = 0;
delete m_shapes[i]; m_shapes[i] = 0;
}
}
};
void BenchmarkDemo::createTest3()
{
setCameraDistance(btScalar(50.));
int size = 16;
float sizeX = 1.f;
float sizeY = 1.f;
//int rc=0;
btScalar scale(3.5);
btVector3 pos(0.0f, sizeY, 0.0f);
while(size) {
float offset = -size * (sizeX * 6.0f) * 0.5f;
for(int i=0;i<size;i++) {
pos[0] = offset + (float)i * (sizeX * 6.0f);
RagDoll* ragDoll = new RagDoll (m_dynamicsWorld,pos,scale);
m_ragdolls.push_back(ragDoll);
}
offset += sizeX;
pos[1] += (sizeY * 7.0f);
pos[2] -= sizeX * 2.0f;
size--;
}
}
void BenchmarkDemo::createTest4()
{
setCameraDistance(btScalar(50.));
int size = 8;
const float cubeSize = 1.5f;
float spacing = cubeSize;
btVector3 pos(0.0f, cubeSize * 2, 0.0f);
float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
btConvexHullShape* convexHullShape = new btConvexHullShape();
btScalar scaling(1);
convexHullShape->setLocalScaling(btVector3(scaling,scaling,scaling));
for (int i=0;i<TaruVtxCount;i++)
{
btVector3 vtx(TaruVtx[i*3],TaruVtx[i*3+1],TaruVtx[i*3+2]);
convexHullShape->addPoint(vtx*btScalar(1./scaling));
}
//this will enable polyhedral contact clipping, better quality, slightly slower
//convexHullShape->initializePolyhedralFeatures();
btTransform trans;
trans.setIdentity();
float mass = 1.f;
btVector3 localInertia(0,0,0);
convexHullShape->calculateLocalInertia(mass,localInertia);
for(int k=0;k<15;k++) {
for(int j=0;j<size;j++) {
pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
for(int i=0;i<size;i++) {
pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
trans.setOrigin(pos);
localCreateRigidBody(mass,trans,convexHullShape);
}
}
offset -= 0.05f * spacing * (size-1);
spacing *= 1.01f;
pos[1] += (cubeSize * 2.0f + spacing);
}
}
///////////////////////////////////////////////////////////////////////////////
// LargeMesh
int LandscapeVtxCount[] = {
Landscape01VtxCount,
Landscape02VtxCount,
Landscape03VtxCount,
Landscape04VtxCount,
Landscape05VtxCount,
Landscape06VtxCount,
Landscape07VtxCount,
Landscape08VtxCount,
};
int LandscapeIdxCount[] = {
Landscape01IdxCount,
Landscape02IdxCount,
Landscape03IdxCount,
Landscape04IdxCount,
Landscape05IdxCount,
Landscape06IdxCount,
Landscape07IdxCount,
Landscape08IdxCount,
};
btScalar *LandscapeVtx[] = {
Landscape01Vtx,
Landscape02Vtx,
Landscape03Vtx,
Landscape04Vtx,
Landscape05Vtx,
Landscape06Vtx,
Landscape07Vtx,
Landscape08Vtx,
};
btScalar *LandscapeNml[] = {
Landscape01Nml,
Landscape02Nml,
Landscape03Nml,
Landscape04Nml,
Landscape05Nml,
Landscape06Nml,
Landscape07Nml,
Landscape08Nml,
};
btScalar* LandscapeTex[] = {
Landscape01Tex,
Landscape02Tex,
Landscape03Tex,
Landscape04Tex,
Landscape05Tex,
Landscape06Tex,
Landscape07Tex,
Landscape08Tex,
};
unsigned short *LandscapeIdx[] = {
Landscape01Idx,
Landscape02Idx,
Landscape03Idx,
Landscape04Idx,
Landscape05Idx,
Landscape06Idx,
Landscape07Idx,
Landscape08Idx,
};
void BenchmarkDemo::createLargeMeshBody()
{
btTransform trans;
trans.setIdentity();
for(int i=0;i<8;i++) {
btTriangleIndexVertexArray* meshInterface = new btTriangleIndexVertexArray();
btIndexedMesh part;
part.m_vertexBase = (const unsigned char*)LandscapeVtx[i];
part.m_vertexStride = sizeof(btScalar) * 3;
part.m_numVertices = LandscapeVtxCount[i];
part.m_triangleIndexBase = (const unsigned char*)LandscapeIdx[i];
part.m_triangleIndexStride = sizeof( short) * 3;
part.m_numTriangles = LandscapeIdxCount[i]/3;
part.m_indexType = PHY_SHORT;
meshInterface->addIndexedMesh(part,PHY_SHORT);
bool useQuantizedAabbCompression = true;
btBvhTriangleMeshShape* trimeshShape = new btBvhTriangleMeshShape(meshInterface,useQuantizedAabbCompression);
btVector3 localInertia(0,0,0);
trans.setOrigin(btVector3(0,-25,0));
btRigidBody* body = localCreateRigidBody(0,trans,trimeshShape);
body->setFriction (btScalar(0.9));
}
}
void BenchmarkDemo::createTest5()
{
setCameraDistance(btScalar(250.));
btVector3 boxSize(1.5f,1.5f,1.5f);
float boxMass = 1.0f;
float sphereRadius = 1.5f;
float sphereMass = 1.0f;
float capsuleHalf = 2.0f;
float capsuleRadius = 1.0f;
float capsuleMass = 1.0f;
{
int size = 10;
int height = 10;
const float cubeSize = boxSize[0];
float spacing = 2.0f;
btVector3 pos(0.0f, 20.0f, 0.0f);
float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
int numBodies = 0;
for(int k=0;k<height;k++) {
for(int j=0;j<size;j++) {
pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
for(int i=0;i<size;i++) {
pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
btVector3 bpos = btVector3(0,25,0) + btVector3(5.0f,1.0f,5.0f)*pos;
int idx = rand() % 9;
btTransform trans;
trans.setIdentity();
trans.setOrigin(bpos);
switch(idx) {
case 0:case 1:case 2:
{
float r = 0.5f * (idx+1);
btBoxShape* boxShape = new btBoxShape(boxSize*r);
localCreateRigidBody(boxMass*r,trans,boxShape);
}
break;
case 3:case 4:case 5:
{
float r = 0.5f * (idx-3+1);
btSphereShape* sphereShape = new btSphereShape(sphereRadius*r);
localCreateRigidBody(sphereMass*r,trans,sphereShape);
}
break;
case 6:case 7:case 8:
{
float r = 0.5f * (idx-6+1);
btCapsuleShape* capsuleShape = new btCapsuleShape(capsuleRadius*r,capsuleHalf*r);
localCreateRigidBody(capsuleMass*r,trans,capsuleShape);
}
break;
}
numBodies++;
}
}
offset -= 0.05f * spacing * (size-1);
spacing *= 1.1f;
pos[1] += (cubeSize * 2.0f + spacing);
}
}
createLargeMeshBody();
}
void BenchmarkDemo::createTest6()
{
setCameraDistance(btScalar(250.));
btVector3 boxSize(1.5f,1.5f,1.5f);
btConvexHullShape* convexHullShape = new btConvexHullShape();
for (int i=0;i<TaruVtxCount;i++)
{
btVector3 vtx(TaruVtx[i*3],TaruVtx[i*3+1],TaruVtx[i*3+2]);
convexHullShape->addPoint(vtx);
}
btTransform trans;
trans.setIdentity();
float mass = 1.f;
btVector3 localInertia(0,0,0);
convexHullShape->calculateLocalInertia(mass,localInertia);
{
int size = 10;
int height = 10;
const float cubeSize = boxSize[0];
float spacing = 2.0f;
btVector3 pos(0.0f, 20.0f, 0.0f);
float offset = -size * (cubeSize * 2.0f + spacing) * 0.5f;
for(int k=0;k<height;k++) {
for(int j=0;j<size;j++) {
pos[2] = offset + (float)j * (cubeSize * 2.0f + spacing);
for(int i=0;i<size;i++) {
pos[0] = offset + (float)i * (cubeSize * 2.0f + spacing);
btVector3 bpos = btVector3(0,25,0) + btVector3(5.0f,1.0f,5.0f)*pos;
trans.setOrigin(bpos);
localCreateRigidBody(mass,trans,convexHullShape);
}
}
offset -= 0.05f * spacing * (size-1);
spacing *= 1.1f;
pos[1] += (cubeSize * 2.0f + spacing);
}
}
createLargeMeshBody();
}
void BenchmarkDemo::initRays()
{
raycastBar = btRaycastBar2 (2500.0, 0,50.0);
}
void BenchmarkDemo::castRays()
{
raycastBar.cast (m_dynamicsWorld);
}
void BenchmarkDemo::createTest7()
{
createTest6();
setCameraDistance(btScalar(150.));
initRays();
}
void BenchmarkDemo::exitPhysics()
{
int i;
for (i=0;i<m_ragdolls.size();i++)
{
RagDoll* doll = m_ragdolls[i];
delete doll;
}
m_ragdolls.clear();
//cleanup in the reverse order of creation/initialization
if (m_dynamicsWorld)
{
//remove the rigidbodies from the dynamics world and delete them
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject( obj );
delete obj;
}
}
//delete collision shapes
for (int j=0;j<m_collisionShapes.size();j++)
{
btCollisionShape* shape = m_collisionShapes[j];
delete shape;
}
m_collisionShapes.clear();
//delete dynamics world
delete m_dynamicsWorld;
m_dynamicsWorld=0;
//delete solver
delete m_solver;
m_solver=0;
//delete broadphase
delete m_overlappingPairCache;
m_overlappingPairCache=0;
//delete dispatcher
delete m_dispatcher;
m_dispatcher=0;
delete m_collisionConfiguration;
m_collisionConfiguration=0;
}
#ifndef USE_GRAPHICAL_BENCHMARK
btRigidBody* DemoApplication::localCreateRigidBody(float mass, const btTransform& startTransform,btCollisionShape* shape)
{
btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE));
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
shape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btRigidBody* body = new btRigidBody(mass,0,shape,localInertia);
body->setWorldTransform(startTransform);
body->setContactProcessingThreshold(m_defaultContactProcessingThreshold);
m_dynamicsWorld->addRigidBody(body);
return body;
}
#endif //USE_GRAPHICAL_BENCHMARK