bullet3/examples/pybullet/gym/pybullet_envs/bullet/kukaGymEnv.py
Shubham Tulsiani 5fdd7ed3b4
minor bugfix in image reshaping in kukaGymEnv
Reshaped image array should be of size (RENDER_HEIGHT, RENDER_WIDTH, 4) instead of (RENDER_WIDTH, RENDER_HEIGHT, 4).
2018-02-11 21:47:57 -08:00

291 lines
9.5 KiB
Python

import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
print ("current_dir=" + currentdir)
os.sys.path.insert(0,currentdir)
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import kuka
import random
import pybullet_data
from pkg_resources import parse_version
largeValObservation = 100
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class KukaGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot=pybullet_data.getDataPath(),
actionRepeat=1,
isEnableSelfCollision=True,
renders=False,
isDiscrete=False,
maxSteps = 1000):
#print("KukaGymEnv __init__")
self._isDiscrete = isDiscrete
self._timeStep = 1./240.
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._envStepCounter = 0
self._renders = renders
self._maxSteps = maxSteps
self.terminated = 0
self._cam_dist = 1.3
self._cam_yaw = 180
self._cam_pitch = -40
self._p = p
if self._renders:
cid = p.connect(p.SHARED_MEMORY)
if (cid<0):
cid = p.connect(p.GUI)
p.resetDebugVisualizerCamera(1.3,180,-41,[0.52,-0.2,-0.33])
else:
p.connect(p.DIRECT)
#timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json")
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([largeValObservation] * observationDim)
if (self._isDiscrete):
self.action_space = spaces.Discrete(7)
else:
action_dim = 3
self._action_bound = 1
action_high = np.array([self._action_bound] * action_dim)
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def _reset(self):
#print("KukaGymEnv _reset")
self.terminated = 0
p.resetSimulation()
p.setPhysicsEngineParameter(numSolverIterations=150)
p.setTimeStep(self._timeStep)
p.loadURDF(os.path.join(self._urdfRoot,"plane.urdf"),[0,0,-1])
p.loadURDF(os.path.join(self._urdfRoot,"table/table.urdf"), 0.5000000,0.00000,-.820000,0.000000,0.000000,0.0,1.0)
xpos = 0.55 +0.12*random.random()
ypos = 0 +0.2*random.random()
ang = 3.14*0.5+3.1415925438*random.random()
orn = p.getQuaternionFromEuler([0,0,ang])
self.blockUid =p.loadURDF(os.path.join(self._urdfRoot,"block.urdf"), xpos,ypos,-0.15,orn[0],orn[1],orn[2],orn[3])
p.setGravity(0,0,-10)
self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
self._observation = self._kuka.getObservation()
gripperState = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaGripperIndex)
gripperPos = gripperState[0]
gripperOrn = gripperState[1]
blockPos,blockOrn = p.getBasePositionAndOrientation(self.blockUid)
invGripperPos,invGripperOrn = p.invertTransform(gripperPos,gripperOrn)
gripperMat = p.getMatrixFromQuaternion(gripperOrn)
dir0 = [gripperMat[0],gripperMat[3],gripperMat[6]]
dir1 = [gripperMat[1],gripperMat[4],gripperMat[7]]
dir2 = [gripperMat[2],gripperMat[5],gripperMat[8]]
gripperEul = p.getEulerFromQuaternion(gripperOrn)
#print("gripperEul")
#print(gripperEul)
blockPosInGripper,blockOrnInGripper = p.multiplyTransforms(invGripperPos,invGripperOrn,blockPos,blockOrn)
projectedBlockPos2D =[blockPosInGripper[0],blockPosInGripper[1]]
blockEulerInGripper = p.getEulerFromQuaternion(blockOrnInGripper)
#print("projectedBlockPos2D")
#print(projectedBlockPos2D)
#print("blockEulerInGripper")
#print(blockEulerInGripper)
#we return the relative x,y position and euler angle of block in gripper space
blockInGripperPosXYEulZ =[blockPosInGripper[0],blockPosInGripper[1],blockEulerInGripper[2]]
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir0[0],gripperPos[1]+dir0[1],gripperPos[2]+dir0[2]],[1,0,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir1[0],gripperPos[1]+dir1[1],gripperPos[2]+dir1[2]],[0,1,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir2[0],gripperPos[1]+dir2[1],gripperPos[2]+dir2[2]],[0,0,1],lifeTime=1)
self._observation.extend(list(blockInGripperPosXYEulZ))
return self._observation
def _step(self, action):
if (self._isDiscrete):
dv = 0.005
dx = [0,-dv,dv,0,0,0,0][action]
dy = [0,0,0,-dv,dv,0,0][action]
da = [0,0,0,0,0,-0.05,0.05][action]
f = 0.3
realAction = [dx,dy,-0.002,da,f]
else:
#print("action[0]=", str(action[0]))
dv = 0.005
dx = action[0] * dv
dy = action[1] * dv
da = action[2] * 0.05
f = 0.3
realAction = [dx,dy,-0.002,da,f]
return self.step2( realAction)
def step2(self, action):
for i in range(self._actionRepeat):
self._kuka.applyAction(action)
p.stepSimulation()
if self._termination():
break
self._envStepCounter += 1
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
#print("self._envStepCounter")
#print(self._envStepCounter)
done = self._termination()
npaction = np.array([action[3]]) #only penalize rotation until learning works well [action[0],action[1],action[3]])
actionCost = np.linalg.norm(npaction)*10.
#print("actionCost")
#print(actionCost)
reward = self._reward()-actionCost
#print("reward")
#print(reward)
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode="rgb_array", close=False):
if mode != "rgb_array":
return np.array([])
base_pos,orn = self._p.getBasePositionAndOrientation(self._kuka.kukaUid)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(
fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT,
nearVal=0.1, farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(
width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix,
projectionMatrix=proj_matrix, renderer=self._p.ER_BULLET_HARDWARE_OPENGL)
#renderer=self._p.ER_TINY_RENDERER)
rgb_array = np.array(px, dtype=np.uint8)
rgb_array = np.reshape(rgb_array, (RENDER_HEIGHT, RENDER_WIDTH, 4))
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self):
#print (self._kuka.endEffectorPos[2])
state = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex)
actualEndEffectorPos = state[0]
#print("self._envStepCounter")
#print(self._envStepCounter)
if (self.terminated or self._envStepCounter>self._maxSteps):
self._observation = self.getExtendedObservation()
return True
maxDist = 0.005
closestPoints = p.getClosestPoints(self._kuka.trayUid, self._kuka.kukaUid,maxDist)
if (len(closestPoints)):#(actualEndEffectorPos[2] <= -0.43):
self.terminated = 1
#print("terminating, closing gripper, attempting grasp")
#start grasp and terminate
fingerAngle = 0.3
for i in range (100):
graspAction = [0,0,0.0001,0,fingerAngle]
self._kuka.applyAction(graspAction)
p.stepSimulation()
fingerAngle = fingerAngle-(0.3/100.)
if (fingerAngle<0):
fingerAngle=0
for i in range (1000):
graspAction = [0,0,0.001,0,fingerAngle]
self._kuka.applyAction(graspAction)
p.stepSimulation()
blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid)
if (blockPos[2] > 0.23):
#print("BLOCKPOS!")
#print(blockPos[2])
break
state = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex)
actualEndEffectorPos = state[0]
if (actualEndEffectorPos[2]>0.5):
break
self._observation = self.getExtendedObservation()
return True
return False
def _reward(self):
#rewards is height of target object
blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid)
closestPoints = p.getClosestPoints(self.blockUid,self._kuka.kukaUid,1000, -1, self._kuka.kukaEndEffectorIndex)
reward = -1000
numPt = len(closestPoints)
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]*10
if (blockPos[2] >0.2):
reward = reward+10000
print("successfully grasped a block!!!")
#print("self._envStepCounter")
#print(self._envStepCounter)
#print("self._envStepCounter")
#print(self._envStepCounter)
#print("reward")
#print(reward)
#print("reward")
#print(reward)
return reward
if parse_version(gym.__version__)>=parse_version('0.9.6'):
render = _render
reset = _reset
seed = _seed
step = _step