bullet3/examples/Importers/ImportMJCFDemo/BulletMJCFImporter.cpp
Erwin Coumans 8f380b3fd2 use white as default undefined color instead of the googley colors.
use loadURDF(..., flags = pybullet.URDF_GOOGLEY_UNDEFINED_COLORS) to get Googley colors when colors are undefined.
2020-05-08 10:44:39 -07:00

2582 lines
74 KiB
C++

#include "BulletMJCFImporter.h"
#include "../../ThirdPartyLibs/tinyxml2/tinyxml2.h"
#include "Bullet3Common/b3FileUtils.h"
#include "Bullet3Common/b3HashMap.h"
#include "LinearMath/btQuickprof.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"
#include "../../CommonInterfaces/CommonRenderInterface.h"
#include "../../CommonInterfaces/CommonGUIHelperInterface.h"
#include "../../CommonInterfaces/CommonFileIOInterface.h"
#include "../ImportURDFDemo/UrdfFindMeshFile.h"
#include <string>
#include <iostream>
#include <fstream>
#include "../../Utils/b3ResourcePath.h"
#include "../ImportURDFDemo/URDF2Bullet.h"
#include "../ImportURDFDemo/UrdfParser.h"
#include "../ImportURDFDemo/urdfStringSplit.h"
#include "../ImportURDFDemo/urdfLexicalCast.h"
#include "../ImportObjDemo/LoadMeshFromObj.h"
#include "../ImportSTLDemo/LoadMeshFromSTL.h"
#include "../ImportColladaDemo/LoadMeshFromCollada.h"
#include "../OpenGLWindow/ShapeData.h"
#include "../../ThirdPartyLibs/Wavefront/tiny_obj_loader.h"
#include "../ImportMeshUtility/b3ImportMeshUtility.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
#include "BulletCollision/CollisionShapes/btConvexHullShape.h"
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btTriangleMesh.h"
using namespace tinyxml2;
#define mjcf_sphere_indiced textured_detailed_sphere_indices
#define mjcf_sphere_vertices textured_detailed_sphere_vertices
static btVector4 sGoogleColors[4] =
{
btVector4(60. / 256., 186. / 256., 84. / 256., 1),
btVector4(244. / 256., 194. / 256., 13. / 256., 1),
btVector4(219. / 256., 50. / 256., 54. / 256., 1),
btVector4(72. / 256., 133. / 256., 237. / 256., 1),
};
#include <vector>
enum ePARENT_LINK_ENUMS
{
BASE_LINK_INDEX = -1,
INVALID_LINK_INDEX = -2
};
static int gUid = 0;
static bool parseVector4(btVector4& vec4, const std::string& vector_str)
{
vec4.setZero();
btArray<std::string> pieces;
btArray<float> rgba;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, vector_str, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
rgba.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (rgba.size() != 4)
{
return false;
}
vec4.setValue(rgba[0], rgba[1], rgba[2], rgba[3]);
return true;
}
static bool parseVector3(btVector3& vec3, const std::string& vector_str, MJCFErrorLogger* logger, bool lastThree = false)
{
vec3.setZero();
btArray<std::string> pieces;
btArray<float> rgba;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, vector_str, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
rgba.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (rgba.size() < 3)
{
logger->reportWarning(("Couldn't parse vector3 '" + vector_str + "'").c_str());
return false;
}
if (lastThree)
{
vec3.setValue(rgba[rgba.size() - 3], rgba[rgba.size() - 2], rgba[rgba.size() - 1]);
}
else
{
vec3.setValue(rgba[0], rgba[1], rgba[2]);
}
return true;
}
static bool parseVector6(btVector3& v0, btVector3& v1, const std::string& vector_str, MJCFErrorLogger* logger)
{
v0.setZero();
v1.setZero();
btArray<std::string> pieces;
btArray<float> values;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, vector_str, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
values.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (values.size() < 6)
{
logger->reportWarning(("Couldn't parse 6 floats '" + vector_str + "'").c_str());
return false;
}
v0.setValue(values[0], values[1], values[2]);
v1.setValue(values[3], values[4], values[5]);
return true;
}
struct MyMJCFAsset
{
std::string m_fileName;
};
struct MyMJCFDefaults
{
int m_defaultCollisionGroup;
int m_defaultCollisionMask;
btScalar m_defaultCollisionMargin;
// joint defaults
std::string m_defaultJointLimited;
// geom defaults
std::string m_defaultGeomRgba;
int m_defaultConDim;
double m_defaultLateralFriction;
double m_defaultSpinningFriction;
double m_defaultRollingFriction;
MyMJCFDefaults()
: m_defaultCollisionGroup(1),
m_defaultCollisionMask(1),
m_defaultCollisionMargin(0.001), //assume unit meters, margin is 1mm
m_defaultConDim(3),
m_defaultLateralFriction(0.5),
m_defaultSpinningFriction(0),
m_defaultRollingFriction(0)
{
}
};
struct BulletMJCFImporterInternalData
{
GUIHelperInterface* m_guiHelper;
struct UrdfRenderingInterface* m_customVisualShapesConverter;
char m_pathPrefix[1024];
std::string m_sourceFileName; // with path
std::string m_fileModelName; // without path
btHashMap<btHashString, MyMJCFAsset> m_assets;
btAlignedObjectArray<UrdfModel*> m_models;
//<compiler angle="radian" meshdir="mesh/" texturedir="texture/" inertiafromgeom="true"/>
std::string m_meshDir;
std::string m_textureDir;
std::string m_angleUnits;
bool m_inertiaFromGeom;
int m_activeModel;
int m_activeBodyUniqueId;
//todo: for better MJCF compatibility, we would need a stack of default values
MyMJCFDefaults m_globalDefaults;
b3HashMap<b3HashString, MyMJCFDefaults> m_classDefaults;
//those collision shapes are deleted by caller (todo: make sure this happens!)
btAlignedObjectArray<btCollisionShape*> m_allocatedCollisionShapes;
mutable btAlignedObjectArray<btTriangleMesh*> m_allocatedMeshInterfaces;
int m_flags;
int m_textureId;
CommonFileIOInterface* m_fileIO;
BulletMJCFImporterInternalData()
: m_inertiaFromGeom(true),
m_activeModel(-1),
m_activeBodyUniqueId(-1),
m_flags(0),
m_textureId(-1),
m_fileIO(0)
{
m_pathPrefix[0] = 0;
}
~BulletMJCFImporterInternalData()
{
for (int i = 0; i < m_models.size(); i++)
{
delete m_models[i];
}
}
std::string sourceFileLocation(XMLElement* e)
{
#if 0
//no C++11 snprintf etc
char buf[1024];
snprintf(buf, sizeof(buf), "%s:%i", m_sourceFileName.c_str(), e->Row());
return buf;
#else
char row[1024];
#ifdef G3_TINYXML2
sprintf(row, "unknown line, upgrade tinyxml2 version!");
#else
sprintf(row, "%d", e->GetLineNum());
#endif
std::string str = m_sourceFileName.c_str() + std::string(":") + std::string(row);
return str;
#endif
}
const UrdfLink* getLink(int modelIndex, int linkIndex) const
{
if (modelIndex >= 0 && modelIndex < m_models.size())
{
UrdfLink** linkPtrPtr = m_models[modelIndex]->m_links.getAtIndex(linkIndex);
if (linkPtrPtr && *linkPtrPtr)
{
UrdfLink* linkPtr = *linkPtrPtr;
return linkPtr;
}
}
return 0;
}
void parseCompiler(XMLElement* root_xml, MJCFErrorLogger* logger)
{
const char* meshDirStr = root_xml->Attribute("meshdir");
if (meshDirStr)
{
m_meshDir = meshDirStr;
}
const char* textureDirStr = root_xml->Attribute("texturedir");
if (textureDirStr)
{
m_textureDir = textureDirStr;
}
const char* angle = root_xml->Attribute("angle");
m_angleUnits = angle ? angle : "degree"; // degrees by default, http://www.mujoco.org/book/modeling.html#compiler
const char* inertiaFromGeom = root_xml->Attribute("inertiafromgeom");
if (inertiaFromGeom && inertiaFromGeom[0] == 'f') // false, other values assumed `true`.
{
m_inertiaFromGeom = false;
}
}
void parseAssets(XMLElement* root_xml, MJCFErrorLogger* logger)
{
// <mesh name="index0" file="index0.stl"/>
for (XMLElement* child_xml = root_xml->FirstChildElement(); child_xml; child_xml = child_xml->NextSiblingElement())
{
std::string n = child_xml->Value();
if (n == "mesh")
{
const char* assetNameStr = child_xml->Attribute("name");
const char* fileNameStr = child_xml->Attribute("file");
if (assetNameStr && fileNameStr)
{
btHashString assetName = assetNameStr;
MyMJCFAsset asset;
asset.m_fileName = m_meshDir + fileNameStr;
m_assets.insert(assetName, asset);
}
}
}
}
bool parseDefaults(MyMJCFDefaults& defaults, XMLElement* root_xml, MJCFErrorLogger* logger)
{
bool handled = false;
//rudimentary 'default' support, would need more work for better feature coverage
for (XMLElement* child_xml = root_xml->FirstChildElement(); child_xml; child_xml = child_xml->NextSiblingElement())
{
std::string n = child_xml->Value();
if (n.find("default") != std::string::npos)
{
const char* className = child_xml->Attribute("class");
if (className)
{
MyMJCFDefaults* curDefaultsPtr = m_classDefaults[className];
if (!curDefaultsPtr)
{
MyMJCFDefaults def;
m_classDefaults.insert(className, def);
curDefaultsPtr = m_classDefaults[className];
}
if (curDefaultsPtr)
{
MyMJCFDefaults& curDefaults = *curDefaultsPtr;
parseDefaults(curDefaults, child_xml, logger);
}
}
}
if (n == "inertial")
{
}
if (n == "asset")
{
parseAssets(child_xml, logger);
}
if (n == "joint")
{
// Other attributes here:
// armature="1"
// damping="1"
// limited="true"
if (const char* conTypeStr = child_xml->Attribute("limited"))
{
defaults.m_defaultJointLimited = child_xml->Attribute("limited");
}
}
if (n == "geom")
{
//contype, conaffinity
const char* conTypeStr = child_xml->Attribute("contype");
if (conTypeStr)
{
defaults.m_defaultCollisionGroup = urdfLexicalCast<int>(conTypeStr);
}
const char* conAffinityStr = child_xml->Attribute("conaffinity");
if (conAffinityStr)
{
defaults.m_defaultCollisionMask = urdfLexicalCast<int>(conAffinityStr);
}
const char* rgba = child_xml->Attribute("rgba");
if (rgba)
{
defaults.m_defaultGeomRgba = rgba;
}
const char* conDimS = child_xml->Attribute("condim");
if (conDimS)
{
defaults.m_defaultConDim = urdfLexicalCast<int>(conDimS);
}
int conDim = defaults.m_defaultConDim;
const char* frictionS = child_xml->Attribute("friction");
if (frictionS)
{
btArray<std::string> pieces;
btArray<float> frictions;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, frictionS, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
frictions.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (frictions.size() > 0)
{
defaults.m_defaultLateralFriction = frictions[0];
}
if (frictions.size() > 1)
{
defaults.m_defaultSpinningFriction = frictions[1];
}
if (frictions.size() > 2)
{
defaults.m_defaultRollingFriction = frictions[2];
}
}
}
}
handled = true;
return handled;
}
bool parseRootLevel(MyMJCFDefaults& defaults, XMLElement* root_xml, MJCFErrorLogger* logger)
{
for (XMLElement* rootxml = root_xml->FirstChildElement(); rootxml; rootxml = rootxml->NextSiblingElement())
{
bool handled = false;
std::string n = rootxml->Value();
if (n == "body")
{
int modelIndex = m_models.size();
UrdfModel* model = new UrdfModel();
m_models.push_back(model);
parseBody(defaults, rootxml, modelIndex, INVALID_LINK_INDEX, logger);
initTreeAndRoot(*model, logger);
handled = true;
}
if (n == "geom")
{
int modelIndex = m_models.size();
UrdfModel* modelPtr = new UrdfModel();
m_models.push_back(modelPtr);
UrdfLink* linkPtr = new UrdfLink();
linkPtr->m_name = "anonymous";
const char* namePtr = rootxml->Attribute("name");
if (namePtr)
{
linkPtr->m_name = namePtr;
}
int linkIndex = modelPtr->m_links.size();
linkPtr->m_linkIndex = linkIndex;
modelPtr->m_links.insert(linkPtr->m_name.c_str(), linkPtr);
//don't parse geom transform here, it will be inside 'parseGeom'
linkPtr->m_linkTransformInWorld.setIdentity();
// modelPtr->m_rootLinks.push_back(linkPtr);
btVector3 inertialShift(0, 0, 0);
parseGeom(defaults, rootxml, modelIndex, linkIndex, logger, inertialShift);
initTreeAndRoot(*modelPtr, logger);
handled = true;
}
if (n == "site")
{
handled = true;
}
if (!handled)
{
logger->reportWarning((sourceFileLocation(rootxml) + ": unhandled root element '" + n + "'").c_str());
}
}
return true;
}
bool parseJoint(MyMJCFDefaults& defaults, XMLElement* link_xml, int modelIndex, int parentLinkIndex, int linkIndex, MJCFErrorLogger* logger, const btTransform& parentToLinkTrans, btTransform& jointTransOut)
{
bool jointHandled = false;
const char* jType = link_xml->Attribute("type");
const char* limitedStr = link_xml->Attribute("limited");
const char* axisStr = link_xml->Attribute("axis");
const char* posStr = link_xml->Attribute("pos");
const char* ornStr = link_xml->Attribute("quat");
const char* nameStr = link_xml->Attribute("name");
const char* rangeStr = link_xml->Attribute("range");
btTransform jointTrans;
jointTrans.setIdentity();
if (posStr)
{
btVector3 pos;
std::string p = posStr;
if (parseVector3(pos, p, logger))
{
jointTrans.setOrigin(pos);
}
}
if (ornStr)
{
std::string o = ornStr;
btVector4 o4;
if (parseVector4(o4, o))
{
btQuaternion orn(o4[3], o4[0], o4[1], o4[2]);
jointTrans.setRotation(orn);
}
}
btVector3 jointAxis(1, 0, 0);
if (axisStr)
{
std::string ax = axisStr;
parseVector3(jointAxis, ax, logger);
}
else
{
logger->reportWarning((sourceFileLocation(link_xml) + ": joint without axis attribute").c_str());
}
double range[2] = {1, 0};
std::string lim = m_globalDefaults.m_defaultJointLimited;
if (limitedStr)
{
lim = limitedStr;
}
bool isLimited = lim == "true";
UrdfJointTypes ejtype;
if (jType)
{
std::string jointType = jType;
if (jointType == "fixed")
{
ejtype = URDFFixedJoint;
jointHandled = true;
}
if (jointType == "slide")
{
ejtype = URDFPrismaticJoint;
jointHandled = true;
}
if (jointType == "hinge")
{
if (isLimited)
{
ejtype = URDFRevoluteJoint;
}
else
{
ejtype = URDFContinuousJoint;
}
jointHandled = true;
}
}
else
{
logger->reportWarning((sourceFileLocation(link_xml) + ": expected 'type' attribute for joint").c_str());
}
if (isLimited)
{
//parse the 'range' field
btArray<std::string> pieces;
btArray<float> limits;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, rangeStr, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
limits.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (limits.size() == 2)
{
range[0] = limits[0];
range[1] = limits[1];
if (m_angleUnits == "degree" && ejtype == URDFRevoluteJoint)
{
range[0] = limits[0] * B3_PI / 180;
range[1] = limits[1] * B3_PI / 180;
}
}
else
{
logger->reportWarning((sourceFileLocation(link_xml) + ": cannot parse 'range' attribute (units='" + m_angleUnits + "'')").c_str());
}
}
// TODO armature : real, "0" Armature inertia (or rotor inertia) of all
// degrees of freedom created by this joint. These are constants added to the
// diagonal of the inertia matrix in generalized coordinates. They make the
// simulation more stable, and often increase physical realism. This is because
// when a motor is attached to the system with a transmission that amplifies
// the motor force by c, the inertia of the rotor (i.e. the moving part of the
// motor) is amplified by c*c. The same holds for gears in the early stages of
// planetary gear boxes. These extra inertias often dominate the inertias of
// the robot parts that are represented explicitly in the model, and the
// armature attribute is the way to model them.
// TODO damping : real, "0" Damping applied to all degrees of
// freedom created by this joint. Unlike friction loss
// which is computed by the constraint solver, damping is
// simply a force linear in velocity. It is included in
// the passive forces. Despite this simplicity, larger
// damping values can make numerical integrators unstable,
// which is why our Euler integrator handles damping
// implicitly. See Integration in the Computation chapter.
const UrdfLink* linkPtr = getLink(modelIndex, linkIndex);
btTransform parentLinkToJointTransform;
parentLinkToJointTransform.setIdentity();
parentLinkToJointTransform = parentToLinkTrans * jointTrans;
jointTransOut = jointTrans;
if (jointHandled)
{
UrdfJoint* jointPtr = new UrdfJoint();
jointPtr->m_childLinkName = linkPtr->m_name;
const UrdfLink* parentLink = getLink(modelIndex, parentLinkIndex);
jointPtr->m_parentLinkName = parentLink->m_name;
jointPtr->m_localJointAxis = jointAxis;
jointPtr->m_parentLinkToJointTransform = parentLinkToJointTransform;
jointPtr->m_type = ejtype;
int numJoints = m_models[modelIndex]->m_joints.size();
//range
jointPtr->m_lowerLimit = range[0];
jointPtr->m_upperLimit = range[1];
if (nameStr)
{
jointPtr->m_name = nameStr;
}
else
{
char jointName[1024];
sprintf(jointName, "joint%d_%d_%d", gUid++, linkIndex, numJoints);
jointPtr->m_name = jointName;
}
m_models[modelIndex]->m_joints.insert(jointPtr->m_name.c_str(), jointPtr);
return true;
}
/*
URDFRevoluteJoint=1,
URDFPrismaticJoint,
URDFContinuousJoint,
URDFFloatingJoint,
URDFPlanarJoint,
URDFFixedJoint,
*/
return false;
}
bool parseGeom(MyMJCFDefaults& defaults, XMLElement* link_xml, int modelIndex, int linkIndex, MJCFErrorLogger* logger, btVector3& inertialShift)
{
UrdfLink** linkPtrPtr = m_models[modelIndex]->m_links.getAtIndex(linkIndex);
if (linkPtrPtr == 0)
{
// XXX: should it be assert?
logger->reportWarning("Invalide linkindex");
return false;
}
UrdfLink* linkPtr = *linkPtrPtr;
btTransform linkLocalFrame;
linkLocalFrame.setIdentity();
bool handledGeomType = false;
UrdfGeometry geom;
const char* sz = link_xml->Attribute("size");
int conDim = defaults.m_defaultConDim;
const char* conDimS = link_xml->Attribute("condim");
{
if (conDimS)
{
conDim = urdfLexicalCast<int>(conDimS);
}
}
double lateralFriction = defaults.m_defaultLateralFriction;
double spinningFriction = defaults.m_defaultSpinningFriction;
double rollingFriction = defaults.m_defaultRollingFriction;
const char* frictionS = link_xml->Attribute("friction");
if (frictionS)
{
btArray<std::string> pieces;
btArray<float> frictions;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, frictionS, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
frictions.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (frictions.size() > 0)
{
lateralFriction = frictions[0];
}
if (frictions.size() > 1 && conDim > 3)
{
spinningFriction = frictions[1];
}
if (frictions.size() > 2 && conDim > 4)
{
rollingFriction = frictions[2];
}
}
linkPtr->m_contactInfo.m_lateralFriction = lateralFriction;
linkPtr->m_contactInfo.m_spinningFriction = spinningFriction;
linkPtr->m_contactInfo.m_rollingFriction = rollingFriction;
if (conDim > 3)
{
linkPtr->m_contactInfo.m_spinningFriction = defaults.m_defaultSpinningFriction;
linkPtr->m_contactInfo.m_flags |= URDF_CONTACT_HAS_SPINNING_FRICTION;
}
if (conDim > 4)
{
linkPtr->m_contactInfo.m_rollingFriction = defaults.m_defaultRollingFriction;
linkPtr->m_contactInfo.m_flags |= URDF_CONTACT_HAS_ROLLING_FRICTION;
}
{
if (m_flags & CUF_GOOGLEY_UNDEFINED_COLORS)
{
geom.m_localMaterial.m_matColor.m_rgbaColor = sGoogleColors[linkIndex & 3];
}
else
{
geom.m_localMaterial.m_matColor.m_rgbaColor.setValue(1, 1, 1, 1);
}
geom.m_localMaterial.m_matColor.m_specularColor.setValue(1, 1, 1);
geom.m_hasLocalMaterial = true;
}
std::string rgba = defaults.m_defaultGeomRgba;
if (const char* rgbattr = link_xml->Attribute("rgba"))
{
rgba = rgbattr;
}
if (!rgba.empty())
{
// "0 0.7 0.7 1"
if ((m_flags & CUF_MJCF_COLORS_FROM_FILE))
{
parseVector4(geom.m_localMaterial.m_matColor.m_rgbaColor, rgba);
geom.m_hasLocalMaterial = true;
geom.m_localMaterial.m_name = rgba;
}
}
const char* posS = link_xml->Attribute("pos");
if (posS)
{
btVector3 pos(0, 0, 0);
std::string p = posS;
if (parseVector3(pos, p, logger))
{
linkLocalFrame.setOrigin(pos);
}
}
const char* ornS = link_xml->Attribute("quat");
if (ornS)
{
btQuaternion orn(0, 0, 0, 1);
btVector4 o4;
if (parseVector4(o4, ornS))
{
orn.setValue(o4[1], o4[2], o4[3], o4[0]);
linkLocalFrame.setRotation(orn);
}
}
const char* axis_and_angle = link_xml->Attribute("axisangle");
if (axis_and_angle)
{
btQuaternion orn(0, 0, 0, 1);
btVector4 o4;
if (parseVector4(o4, axis_and_angle))
{
orn.setRotation(btVector3(o4[0], o4[1], o4[2]), o4[3]);
linkLocalFrame.setRotation(orn);
}
}
const char* gType = link_xml->Attribute("type");
if (gType)
{
std::string geomType = gType;
if (geomType == "plane")
{
geom.m_type = URDF_GEOM_PLANE;
geom.m_planeNormal.setValue(0, 0, 1);
btVector3 size(1, 1, 1);
if (sz)
{
std::string sizeStr = sz;
bool lastThree = false;
parseVector3(size, sizeStr, logger, lastThree);
}
geom.m_boxSize = 2*size;
handledGeomType = true;
}
if (geomType == "box")
{
btVector3 size(1, 1, 1);
if (sz)
{
std::string sizeStr = sz;
bool lastThree = false;
parseVector3(size, sizeStr, logger, lastThree);
}
geom.m_type = URDF_GEOM_BOX;
geom.m_boxSize = 2*size;
handledGeomType = true;
}
if (geomType == "sphere")
{
geom.m_type = URDF_GEOM_SPHERE;
if (sz)
{
geom.m_sphereRadius = urdfLexicalCast<double>(sz);
}
else
{
logger->reportWarning((sourceFileLocation(link_xml) + ": no size field (scalar) in sphere geom").c_str());
}
handledGeomType = true;
}
if (geomType == "capsule" || geomType == "cylinder")
{
// <geom conaffinity="0" contype="0" fromto="0 0 0 0 0 0.02" name="root" rgba="0.9 0.4 0.6 1" size=".011" type="cylinder"/>
geom.m_type = geomType == "cylinder" ? URDF_GEOM_CYLINDER : URDF_GEOM_CAPSULE;
btArray<std::string> pieces;
btArray<float> sizes;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, sz, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
sizes.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
geom.m_capsuleRadius = 2.00f; // 2 to make it visible if something is wrong
geom.m_capsuleHeight = 2.00f;
if (sizes.size() > 0)
{
geom.m_capsuleRadius = sizes[0];
if (sizes.size() > 1)
{
geom.m_capsuleHeight = 2 * sizes[1];
}
}
else
{
logger->reportWarning((sourceFileLocation(link_xml) + ": couldn't convert 'size' attribute of capsule geom").c_str());
}
const char* fromtoStr = link_xml->Attribute("fromto");
geom.m_hasFromTo = false;
if (fromtoStr)
{
geom.m_hasFromTo = true;
std::string fromto = fromtoStr;
parseVector6(geom.m_capsuleFrom, geom.m_capsuleTo, fromto, logger);
inertialShift = 0.5 * (geom.m_capsuleFrom + geom.m_capsuleTo);
handledGeomType = true;
}
else
{
if (sizes.size() < 2)
{
logger->reportWarning((sourceFileLocation(link_xml) + ": capsule without fromto attribute requires 2 sizes (radius and halfheight)").c_str());
}
else
{
handledGeomType = true;
}
}
}
if (geomType == "mesh")
{
const char* meshStr = link_xml->Attribute("mesh");
if (meshStr)
{
MyMJCFAsset* assetPtr = m_assets[meshStr];
if (assetPtr)
{
geom.m_type = URDF_GEOM_MESH;
geom.m_meshFileName = assetPtr->m_fileName;
bool exists = UrdfFindMeshFile(m_fileIO,
m_sourceFileName, assetPtr->m_fileName, sourceFileLocation(link_xml),
&geom.m_meshFileName,
&geom.m_meshFileType);
handledGeomType = exists;
geom.m_meshScale.setValue(1, 1, 1);
//todo: parse mesh scale
if (sz)
{
}
}
}
}
if (handledGeomType)
{
{
UrdfCollision col;
col.m_flags |= URDF_HAS_COLLISION_GROUP;
col.m_collisionGroup = defaults.m_defaultCollisionGroup;
col.m_flags |= URDF_HAS_COLLISION_MASK;
col.m_collisionMask = defaults.m_defaultCollisionMask;
//contype, conaffinity
const char* conTypeStr = link_xml->Attribute("contype");
if (conTypeStr)
{
col.m_flags |= URDF_HAS_COLLISION_GROUP;
col.m_collisionGroup = urdfLexicalCast<int>(conTypeStr);
}
const char* conAffinityStr = link_xml->Attribute("conaffinity");
if (conAffinityStr)
{
col.m_flags |= URDF_HAS_COLLISION_MASK;
col.m_collisionMask = urdfLexicalCast<int>(conAffinityStr);
}
col.m_geometry = geom;
col.m_linkLocalFrame = linkLocalFrame;
col.m_sourceFileLocation = sourceFileLocation(link_xml);
linkPtr->m_collisionArray.push_back(col);
}
{
UrdfVisual vis;
vis.m_geometry = geom;
vis.m_linkLocalFrame = linkLocalFrame;
vis.m_sourceFileLocation = sourceFileLocation(link_xml);
linkPtr->m_visualArray.push_back(vis);
}
}
else
{
logger->reportWarning((sourceFileLocation(link_xml) + ": unhandled geom type '" + geomType + "'").c_str());
}
}
else
{
logger->reportWarning((sourceFileLocation(link_xml) + ": geom requires type").c_str());
}
return handledGeomType;
}
btTransform parseTransform(XMLElement* link_xml, MJCFErrorLogger* logger)
{
btTransform tr;
tr.setIdentity();
const char* p = link_xml->Attribute("pos");
if (p)
{
btVector3 pos(0, 0, 0);
std::string pstr = p;
if (parseVector3(pos, pstr, logger))
{
tr.setOrigin(pos);
}
}
else
{
// logger->reportWarning("body should have pos attribute");
}
const char* o = link_xml->Attribute("quat");
if (o)
{
std::string ornstr = o;
btVector4 o4;
btQuaternion orn(0, 0, 0, 1);
if (parseVector4(o4, ornstr))
{
orn.setValue(o4[1], o4[2], o4[3], o4[0]); //MuJoCo quats are [w,x,y,z], Bullet uses [x,y,z,w]
tr.setRotation(orn);
}
}
else
{
// logger->reportWarning("body doesn't have quat (orientation) attribute");
}
return tr;
}
double computeVolume(const UrdfLink* linkPtr, MJCFErrorLogger* logger) const
{
double totalVolume = 0;
for (int i = 0; i < linkPtr->m_collisionArray.size(); i++)
{
const UrdfCollision* col = &linkPtr->m_collisionArray[i];
switch (col->m_geometry.m_type)
{
case URDF_GEOM_SPHERE:
{
double r = col->m_geometry.m_sphereRadius;
totalVolume += 4. / 3. * SIMD_PI * r * r * r;
break;
}
case URDF_GEOM_BOX:
{
totalVolume += col->m_geometry.m_boxSize[0] *
col->m_geometry.m_boxSize[1] *
col->m_geometry.m_boxSize[2];
break;
}
case URDF_GEOM_MESH:
{
//todo (based on mesh bounding box?)
break;
}
case URDF_GEOM_PLANE:
{
//todo
break;
}
case URDF_GEOM_CDF:
{
//todo
break;
}
case URDF_GEOM_CYLINDER:
case URDF_GEOM_CAPSULE:
{
//one sphere
double r = col->m_geometry.m_capsuleRadius;
if (col->m_geometry.m_type == URDF_GEOM_CAPSULE)
{
totalVolume += 4. / 3. * SIMD_PI * r * r * r;
}
btScalar h(0);
if (col->m_geometry.m_hasFromTo)
{
//and one cylinder of 'height'
h = (col->m_geometry.m_capsuleFrom - col->m_geometry.m_capsuleTo).length();
}
else
{
h = col->m_geometry.m_capsuleHeight;
}
totalVolume += SIMD_PI * r * r * h;
break;
}
default:
{
}
}
}
return totalVolume;
}
UrdfLink* getLink(int modelIndex, int linkIndex)
{
UrdfLink** linkPtrPtr = m_models[modelIndex]->m_links.getAtIndex(linkIndex);
if (linkPtrPtr && *linkPtrPtr)
{
return *linkPtrPtr;
}
btAssert(0);
return 0;
}
int createBody(int modelIndex, const char* namePtr)
{
UrdfModel* modelPtr = m_models[modelIndex];
int orgChildLinkIndex = modelPtr->m_links.size();
UrdfLink* linkPtr = new UrdfLink();
char linkn[1024];
sprintf(linkn, "link%d_%d", modelIndex, orgChildLinkIndex);
linkPtr->m_name = linkn;
if (namePtr)
{
linkPtr->m_name = namePtr;
}
linkPtr->m_linkIndex = orgChildLinkIndex;
modelPtr->m_links.insert(linkPtr->m_name.c_str(), linkPtr);
return orgChildLinkIndex;
}
bool parseBody(MyMJCFDefaults& defaults, XMLElement* link_xml, int modelIndex, int orgParentLinkIndex, MJCFErrorLogger* logger)
{
MyMJCFDefaults curDefaults = defaults;
int newParentLinkIndex = orgParentLinkIndex;
const char* childClassName = link_xml->Attribute("childclass");
if (childClassName)
{
MyMJCFDefaults* classDefaults = m_classDefaults[childClassName];
if (classDefaults)
{
curDefaults = *classDefaults;
}
}
const char* bodyName = link_xml->Attribute("name");
int orgChildLinkIndex = createBody(modelIndex, bodyName);
btTransform localInertialFrame;
localInertialFrame.setIdentity();
// int curChildLinkIndex = orgChildLinkIndex;
std::string bodyN;
if (bodyName)
{
bodyN = bodyName;
}
else
{
char anon[1024];
sprintf(anon, "anon%d", gUid++);
bodyN = anon;
}
// btTransform orgLinkTransform = parseTransform(link_xml,logger);
btTransform linkTransform = parseTransform(link_xml, logger);
UrdfLink* linkPtr = getLink(modelIndex, orgChildLinkIndex);
bool massDefined = false;
btScalar mass = 0.f;
btVector3 localInertiaDiag(0, 0, 0);
// int thisLinkIndex = -2;
bool hasJoint = false;
btTransform jointTrans;
jointTrans.setIdentity();
bool skipFixedJoint = false;
for (XMLElement* xml = link_xml->FirstChildElement(); xml; xml = xml->NextSiblingElement())
{
bool handled = false;
std::string n = xml->Value();
if (n == "inertial")
{
// <inertial pos="0 0 0" quat="0.5 0.5 -0.5 0.5" mass="297.821" diaginertia="109.36 69.9714 69.9714" />
const char* p = xml->Attribute("pos");
if (p)
{
std::string posStr = p;
btVector3 inertialPos(0, 0, 0);
if (parseVector3(inertialPos, posStr, logger))
{
localInertialFrame.setOrigin(inertialPos);
}
}
const char* o = xml->Attribute("quat");
if (o)
{
std::string ornStr = o;
btQuaternion orn(0, 0, 0, 1);
btVector4 o4;
if (parseVector4(o4, ornStr))
{
orn.setValue(o4[1], o4[2], o4[3], o4[0]);
localInertialFrame.setRotation(orn);
}
}
const char* m = xml->Attribute("mass");
if (m)
{
mass = urdfLexicalCast<double>(m);
}
const char* i = xml->Attribute("diaginertia");
if (i)
{
std::string istr = i;
parseVector3(localInertiaDiag, istr, logger);
}
massDefined = true;
handled = true;
if (!m_inertiaFromGeom)
{
linkPtr->m_inertia.m_mass = mass;
linkPtr->m_inertia.m_linkLocalFrame = localInertialFrame;
linkPtr->m_inertia.m_ixx = localInertiaDiag[0];
linkPtr->m_inertia.m_iyy = localInertiaDiag[1];
linkPtr->m_inertia.m_izz = localInertiaDiag[2];
}
}
if (n == "joint")
{
if (!hasJoint)
{
const char* jType = xml->Attribute("type");
std::string jointType = jType ? jType : "";
if (newParentLinkIndex != INVALID_LINK_INDEX || jointType != "free")
{
if (newParentLinkIndex == INVALID_LINK_INDEX)
{
int newRootLinkIndex = createBody(modelIndex, 0);
UrdfLink* rootLink = getLink(modelIndex, newRootLinkIndex);
rootLink->m_inertia.m_mass = 0;
rootLink->m_linkTransformInWorld.setIdentity();
newParentLinkIndex = newRootLinkIndex;
}
int newLinkIndex = createBody(modelIndex, 0);
parseJoint(curDefaults, xml, modelIndex, newParentLinkIndex, newLinkIndex, logger, linkTransform, jointTrans);
//getLink(modelIndex,newLinkIndex)->m_linkTransformInWorld = jointTrans*linkTransform;
linkTransform = jointTrans.inverse();
newParentLinkIndex = newLinkIndex;
//newParentLinkIndex, curChildLinkIndex
hasJoint = true;
handled = true;
}
}
else
{
int newLinkIndex = createBody(modelIndex, 0);
btTransform joint2nextjoint = jointTrans.inverse();
btTransform unused;
parseJoint(curDefaults, xml, modelIndex, newParentLinkIndex, newLinkIndex, logger, joint2nextjoint, unused);
newParentLinkIndex = newLinkIndex;
//todo: compute relative joint transforms (if any) and append to linkTransform
hasJoint = true;
handled = true;
}
}
if (n == "geom")
{
btVector3 inertialShift(0, 0, 0);
parseGeom(curDefaults, xml, modelIndex, orgChildLinkIndex, logger, inertialShift);
if (!massDefined)
{
localInertialFrame.setOrigin(inertialShift);
}
handled = true;
}
//recursive
if (n == "body")
{
parseBody(curDefaults, xml, modelIndex, orgChildLinkIndex, logger);
handled = true;
}
if (n == "light")
{
handled = true;
}
if (n == "site")
{
handled = true;
}
if (!handled)
{
logger->reportWarning((sourceFileLocation(xml) + ": unknown field '" + n + "'").c_str());
}
}
linkPtr->m_linkTransformInWorld = linkTransform;
if ((newParentLinkIndex != INVALID_LINK_INDEX) && !skipFixedJoint)
{
//linkPtr->m_linkTransformInWorld.setIdentity();
//default to 'fixed' joint
UrdfJoint* jointPtr = new UrdfJoint();
jointPtr->m_childLinkName = linkPtr->m_name;
const UrdfLink* parentLink = getLink(modelIndex, newParentLinkIndex);
jointPtr->m_parentLinkName = parentLink->m_name;
jointPtr->m_localJointAxis.setValue(1, 0, 0);
jointPtr->m_parentLinkToJointTransform = linkTransform;
jointPtr->m_type = URDFFixedJoint;
char jointName[1024];
sprintf(jointName, "jointfix_%d_%d", gUid++, newParentLinkIndex);
jointPtr->m_name = jointName;
m_models[modelIndex]->m_joints.insert(jointPtr->m_name.c_str(), jointPtr);
}
//check mass/inertia
if (!massDefined)
{
double density = 1000;
double volume = computeVolume(linkPtr, logger);
mass = density * volume;
}
linkPtr->m_inertia.m_linkLocalFrame = localInertialFrame; // = jointTrans.inverse();
linkPtr->m_inertia.m_mass = mass;
return true;
}
void recurseAddChildLinks(UrdfModel* model, UrdfLink* link)
{
for (int i = 0; i < link->m_childLinks.size(); i++)
{
int linkIndex = model->m_links.size();
link->m_childLinks[i]->m_linkIndex = linkIndex;
const char* linkName = link->m_childLinks[i]->m_name.c_str();
model->m_links.insert(linkName, link->m_childLinks[i]);
}
for (int i = 0; i < link->m_childLinks.size(); i++)
{
recurseAddChildLinks(model, link->m_childLinks[i]);
}
}
bool initTreeAndRoot(UrdfModel& model, MJCFErrorLogger* logger)
{
// every link has children links and joints, but no parents, so we create a
// local convenience data structure for keeping child->parent relations
btHashMap<btHashString, btHashString> parentLinkTree;
// loop through all joints, for every link, assign children links and children joints
for (int i = 0; i < model.m_joints.size(); i++)
{
UrdfJoint** jointPtr = model.m_joints.getAtIndex(i);
if (jointPtr)
{
UrdfJoint* joint = *jointPtr;
std::string parent_link_name = joint->m_parentLinkName;
std::string child_link_name = joint->m_childLinkName;
if (parent_link_name.empty() || child_link_name.empty())
{
logger->reportError("parent link or child link is empty for joint");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink** childLinkPtr = model.m_links.find(joint->m_childLinkName.c_str());
if (!childLinkPtr)
{
logger->reportError("Cannot find child link for joint ");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink* childLink = *childLinkPtr;
UrdfLink** parentLinkPtr = model.m_links.find(joint->m_parentLinkName.c_str());
if (!parentLinkPtr)
{
logger->reportError("Cannot find parent link for a joint");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink* parentLink = *parentLinkPtr;
childLink->m_parentLink = parentLink;
childLink->m_parentJoint = joint;
parentLink->m_childJoints.push_back(joint);
parentLink->m_childLinks.push_back(childLink);
parentLinkTree.insert(childLink->m_name.c_str(), parentLink->m_name.c_str());
}
}
//search for children that have no parent, those are 'root'
for (int i = 0; i < model.m_links.size(); i++)
{
UrdfLink** linkPtr = model.m_links.getAtIndex(i);
btAssert(linkPtr);
if (linkPtr)
{
UrdfLink* link = *linkPtr;
link->m_linkIndex = i;
if (!link->m_parentLink)
{
model.m_rootLinks.push_back(link);
}
}
}
if (model.m_rootLinks.size() > 1)
{
logger->reportWarning("URDF file with multiple root links found");
}
if (model.m_rootLinks.size() == 0)
{
logger->reportError("URDF without root link found");
return false;
}
//re-index the link indices so parent indices are always smaller than child indices
btAlignedObjectArray<UrdfLink*> links;
links.resize(model.m_links.size());
for (int i = 0; i < model.m_links.size(); i++)
{
links[i] = *model.m_links.getAtIndex(i);
}
model.m_links.clear();
for (int i = 0; i < model.m_rootLinks.size(); i++)
{
UrdfLink* rootLink = model.m_rootLinks[i];
int linkIndex = model.m_links.size();
rootLink->m_linkIndex = linkIndex;
model.m_links.insert(rootLink->m_name.c_str(), rootLink);
recurseAddChildLinks(&model, rootLink);
}
return true;
}
};
BulletMJCFImporter::BulletMJCFImporter(struct GUIHelperInterface* helper, UrdfRenderingInterface* customConverter, CommonFileIOInterface* fileIO, int flags)
{
m_data = new BulletMJCFImporterInternalData();
m_data->m_guiHelper = helper;
m_data->m_customVisualShapesConverter = customConverter;
m_data->m_flags = flags;
m_data->m_textureId = -1;
m_data->m_fileIO = fileIO;
}
BulletMJCFImporter::~BulletMJCFImporter()
{
delete m_data;
}
bool BulletMJCFImporter::loadMJCF(const char* fileName, MJCFErrorLogger* logger, bool forceFixedBase)
{
if (strlen(fileName) == 0)
return false;
//int argc=0;
char relativeFileName[1024];
b3FileUtils fu;
//bool fileFound = fu.findFile(fileName, relativeFileName, 1024);
bool fileFound = (m_data->m_fileIO->findResourcePath(fileName, relativeFileName, 1024) > 0);
m_data->m_sourceFileName = relativeFileName;
std::string xml_string;
m_data->m_pathPrefix[0] = 0;
if (!fileFound)
{
std::cerr << "MJCF file not found" << std::endl;
return false;
}
else
{
//read file
int fileId = m_data->m_fileIO->fileOpen(relativeFileName,"r");
char destBuffer[8192];
while (m_data->m_fileIO->readLine(fileId, destBuffer, 8192))
{
xml_string += (std::string(destBuffer) + "\n");
}
m_data->m_fileIO->fileClose(fileId);
if (parseMJCFString(xml_string.c_str(), logger))
{
return true;
}
}
return false;
}
bool BulletMJCFImporter::parseMJCFString(const char* xmlText, MJCFErrorLogger* logger)
{
XMLDocument xml_doc;
xml_doc.Parse(xmlText);
if (xml_doc.Error())
{
#ifdef G3_TINYXML2
logger->reportError("xml reading error (upgrade tinyxml2 version!");
#else
logger->reportError(xml_doc.ErrorStr());
xml_doc.ClearError();
#endif
return false;
}
XMLElement* mujoco_xml = xml_doc.FirstChildElement("mujoco");
if (!mujoco_xml)
{
logger->reportWarning("Cannot find <mujoco> root element");
return false;
}
const char* modelName = mujoco_xml->Attribute("model");
if (modelName)
{
m_data->m_fileModelName = modelName;
}
//<compiler>,<option>,<size>,<default>,<body>,<keyframe>,<contactpair>,
//<light>, <camera>,<constraint>,<tendon>,<actuator>,<customfield>,<textfield>
for (XMLElement* link_xml = mujoco_xml->FirstChildElement("default"); link_xml; link_xml = link_xml->NextSiblingElement("default"))
{
m_data->parseDefaults(m_data->m_globalDefaults, link_xml, logger);
}
for (XMLElement* link_xml = mujoco_xml->FirstChildElement("compiler"); link_xml; link_xml = link_xml->NextSiblingElement("compiler"))
{
m_data->parseCompiler(link_xml, logger);
}
for (XMLElement* link_xml = mujoco_xml->FirstChildElement("asset"); link_xml; link_xml = link_xml->NextSiblingElement("asset"))
{
m_data->parseAssets(link_xml, logger);
}
for (XMLElement* link_xml = mujoco_xml->FirstChildElement("body"); link_xml; link_xml = link_xml->NextSiblingElement("body"))
{
m_data->parseRootLevel(m_data->m_globalDefaults, link_xml, logger);
}
for (XMLElement* link_xml = mujoco_xml->FirstChildElement("worldbody"); link_xml; link_xml = link_xml->NextSiblingElement("worldbody"))
{
m_data->parseRootLevel(m_data->m_globalDefaults, link_xml, logger);
}
return true;
}
const char* BulletMJCFImporter::getPathPrefix()
{
return m_data->m_pathPrefix;
}
int BulletMJCFImporter::getRootLinkIndex() const
{
if (m_data->m_activeModel >= 0 && m_data->m_activeModel < m_data->m_models.size())
{
if (m_data->m_models[m_data->m_activeModel]->m_rootLinks.size())
{
return 0;
}
}
return -1;
}
std::string BulletMJCFImporter::getLinkName(int linkIndex) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, linkIndex);
if (link)
{
return link->m_name;
}
return "";
}
std::string BulletMJCFImporter::getBodyName() const
{
return m_data->m_fileModelName;
}
bool BulletMJCFImporter::getLinkColor2(int linkIndex, struct UrdfMaterialColor& matCol) const
{
bool hasLinkColor = false;
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, linkIndex);
if (link)
{
for (int i = 0; i < link->m_visualArray.size(); i++)
{
if (link->m_visualArray[i].m_geometry.m_hasLocalMaterial)
{
matCol = link->m_visualArray[i].m_geometry.m_localMaterial.m_matColor;
hasLinkColor = true;
break;
}
}
if (!hasLinkColor)
{
for (int i = 0; i < link->m_collisionArray.size(); i++)
{
if (link->m_collisionArray[i].m_geometry.m_hasLocalMaterial)
{
matCol = link->m_collisionArray[0].m_geometry.m_localMaterial.m_matColor;
hasLinkColor = true;
}
break;
}
}
}
}
if (!hasLinkColor)
{
matCol.m_rgbaColor = (m_data->m_flags & CUF_GOOGLEY_UNDEFINED_COLORS) ? sGoogleColors[linkIndex & 3] : btVector4(1,1,1,1);
matCol.m_specularColor.setValue(1, 1, 1);
hasLinkColor = true;
}
return hasLinkColor;
}
bool BulletMJCFImporter::getLinkColor(int linkIndex, btVector4& colorRGBA) const
{
// UrdfLink* link = m_data->getLink(linkIndex);
return false;
}
//todo: placeholder implementation
//MuJoCo type/affinity is different from Bullet group/mask, so we should implement a custom collision filter instead
//(contype1 & conaffinity2) || (contype2 & conaffinity1)
int BulletMJCFImporter::getCollisionGroupAndMask(int linkIndex, int& colGroup, int& colMask) const
{
int flags = 0;
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, linkIndex);
if (link)
{
for (int i = 0; i < link->m_collisionArray.size(); i++)
{
const UrdfCollision& col = link->m_collisionArray[i];
colGroup = col.m_collisionGroup;
flags |= URDF_HAS_COLLISION_GROUP;
colMask = col.m_collisionMask;
flags |= URDF_HAS_COLLISION_MASK;
}
}
return flags;
}
std::string BulletMJCFImporter::getJointName(int linkIndex) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, linkIndex);
if (link)
{
if (link->m_parentJoint)
{
return link->m_parentJoint->m_name;
}
return link->m_name;
}
return "";
}
//fill mass and inertial data. If inertial data is missing, please initialize mass, inertia to sensitive values, and inertialFrame to identity.
void BulletMJCFImporter::getMassAndInertia(int urdfLinkIndex, btScalar& mass, btVector3& localInertiaDiagonal, btTransform& inertialFrame) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, urdfLinkIndex);
if (link)
{
mass = link->m_inertia.m_mass;
localInertiaDiagonal.setValue(link->m_inertia.m_ixx,
link->m_inertia.m_iyy,
link->m_inertia.m_izz);
inertialFrame.setIdentity();
inertialFrame = link->m_inertia.m_linkLocalFrame;
}
else
{
mass = 0;
localInertiaDiagonal.setZero();
inertialFrame.setIdentity();
}
}
///fill an array of child link indices for this link, btAlignedObjectArray behaves like a std::vector so just use push_back and resize(0) if needed
void BulletMJCFImporter::getLinkChildIndices(int urdfLinkIndex, btAlignedObjectArray<int>& childLinkIndices) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, urdfLinkIndex);
if (link)
{
for (int i = 0; i < link->m_childLinks.size(); i++)
{
int childIndex = link->m_childLinks[i]->m_linkIndex;
childLinkIndices.push_back(childIndex);
}
}
}
bool BulletMJCFImporter::getJointInfo2(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction, btScalar& jointMaxForce, btScalar& jointMaxVelocity) const
{
jointLowerLimit = 0.f;
jointUpperLimit = 0.f;
jointDamping = 0.f;
jointFriction = 0.f;
jointMaxForce = 0;
jointMaxVelocity = 0;
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, urdfLinkIndex);
if (link)
{
linkTransformInWorld = link->m_linkTransformInWorld;
if (link->m_parentJoint)
{
UrdfJoint* pj = link->m_parentJoint;
parent2joint = pj->m_parentLinkToJointTransform;
jointType = pj->m_type;
jointAxisInJointSpace = pj->m_localJointAxis;
jointLowerLimit = pj->m_lowerLimit;
jointUpperLimit = pj->m_upperLimit;
jointDamping = pj->m_jointDamping;
jointFriction = pj->m_jointFriction;
jointMaxForce = pj->m_effortLimit;
jointMaxVelocity = pj->m_velocityLimit;
return true;
}
else
{
parent2joint.setIdentity();
return false;
}
}
return false;
}
bool BulletMJCFImporter::getJointInfo(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction) const
{
//backwards compatibility for custom file importers
btScalar jointMaxForce = 0;
btScalar jointMaxVelocity = 0;
return getJointInfo2(urdfLinkIndex, parent2joint, linkTransformInWorld, jointAxisInJointSpace, jointType, jointLowerLimit, jointUpperLimit, jointDamping, jointFriction, jointMaxForce, jointMaxVelocity);
}
bool BulletMJCFImporter::getRootTransformInWorld(btTransform& rootTransformInWorld) const
{
rootTransformInWorld.setIdentity();
/*
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,0);
if (link)
{
rootTransformInWorld = link->m_linkTransformInWorld;
}
*/
return true;
}
void BulletMJCFImporter::convertURDFToVisualShapeInternal(const UrdfVisual* visual, const char* urdfPathPrefix, const btTransform& visualTransform, btAlignedObjectArray<GLInstanceVertex>& verticesOut, btAlignedObjectArray<int>& indicesOut, btAlignedObjectArray<MJCFURDFTexture>& texturesOut) const
{
GLInstanceGraphicsShape* glmesh = 0;
int strideInBytes = 9 * sizeof(float);
btConvexShape* convexColShape = 0;
switch (visual->m_geometry.m_type)
{
case URDF_GEOM_CAPSULE:
{
#if 1
btScalar height = visual->m_geometry.m_capsuleHeight;
btTransform capsuleTrans;
capsuleTrans.setIdentity();
if (visual->m_geometry.m_hasFromTo)
{
btVector3 f = visual->m_geometry.m_capsuleFrom;
btVector3 t = visual->m_geometry.m_capsuleTo;
//compute the local 'fromto' transform
btVector3 localPosition = btScalar(0.5) * (t + f);
btQuaternion localOrn;
localOrn = btQuaternion::getIdentity();
btVector3 diff = t - f;
btScalar lenSqr = diff.length2();
height = 0.f;
if (lenSqr > SIMD_EPSILON)
{
height = btSqrt(lenSqr);
btVector3 ax = diff / height;
btVector3 zAxis(0, 0, 1);
localOrn = shortestArcQuat(zAxis, ax);
}
capsuleTrans.setOrigin(localPosition);
capsuleTrans.setRotation(localOrn);
}
btScalar diam = 2. * visual->m_geometry.m_capsuleRadius;
b3AlignedObjectArray<GLInstanceVertex> transformedVertices;
int numVertices = sizeof(mjcf_sphere_vertices) / strideInBytes;
transformedVertices.resize(numVertices);
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(mjcf_sphere_vertices[i * 9 + 0],
mjcf_sphere_vertices[i * 9 + 1],
mjcf_sphere_vertices[i * 9 + 2]);
btScalar halfHeight = 0.5 * height;
btVector3 trVer = (diam * vert);
int up = 2; //default to z axis up for capsule
if (trVer[up] > 0)
trVer[up] += halfHeight;
else
trVer[up] -= halfHeight;
trVer = capsuleTrans * trVer;
transformedVertices[i].xyzw[0] = trVer[0];
transformedVertices[i].xyzw[1] = trVer[1];
transformedVertices[i].xyzw[2] = trVer[2];
transformedVertices[i].xyzw[3] = 0;
transformedVertices[i].normal[0] = mjcf_sphere_vertices[i * 9 + 4];
transformedVertices[i].normal[1] = mjcf_sphere_vertices[i * 9 + 5];
transformedVertices[i].normal[2] = mjcf_sphere_vertices[i * 9 + 6];
//transformedVertices[i].uv[0] = mjcf_sphere_vertices[i * 9 + 7];
//transformedVertices[i].uv[1] = mjcf_sphere_vertices[i * 9 + 8];
btScalar u = btAtan2(transformedVertices[i].normal[0], transformedVertices[i].normal[2]) / (2 * SIMD_PI) + 0.5;
btScalar v = transformedVertices[i].normal[1] * 0.5 + 0.5;
transformedVertices[i].uv[0] = u;
transformedVertices[i].uv[1] = v;
}
glmesh = new GLInstanceGraphicsShape;
// int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
int numIndices = sizeof(mjcf_sphere_indiced) / sizeof(int);
for (int i = 0; i < numIndices; i++)
{
glmesh->m_indices->push_back(mjcf_sphere_indiced[i]);
}
for (int i = 0; i < transformedVertices.size(); i++)
{
glmesh->m_vertices->push_back(transformedVertices[i]);
}
glmesh->m_numIndices = numIndices;
glmesh->m_numvertices = transformedVertices.size();
glmesh->m_scaling[0] = 1;
glmesh->m_scaling[1] = 1;
glmesh->m_scaling[2] = 1;
glmesh->m_scaling[3] = 1;
#else
if (visual->m_geometry.m_hasFromTo)
{
btVector3 f = visual->m_geometry.m_capsuleFrom;
btVector3 t = visual->m_geometry.m_capsuleTo;
btVector3 fromto[2] = {f, t};
btScalar radii[2] = {btScalar(visual->m_geometry.m_capsuleRadius), btScalar(visual->m_geometry.m_capsuleRadius)};
btMultiSphereShape* ms = new btMultiSphereShape(fromto, radii, 2);
convexColShape = ms;
}
else
{
btCapsuleShapeZ* cap = new btCapsuleShapeZ(visual->m_geometry.m_capsuleRadius,
visual->m_geometry.m_capsuleHeight);
convexColShape = cap;
}
#endif
break;
}
case URDF_GEOM_CYLINDER:
{
btAlignedObjectArray<btVector3> vertices;
//int numVerts = sizeof(barrel_vertices)/(9*sizeof(float));
int numSteps = 32;
for (int i = 0; i < numSteps; i++)
{
btScalar cylRadius = visual->m_geometry.m_capsuleRadius;
btScalar cylLength = visual->m_geometry.m_capsuleHeight;
btVector3 vert(cylRadius * btSin(SIMD_2_PI * (float(i) / numSteps)), cylRadius * btCos(SIMD_2_PI * (float(i) / numSteps)), cylLength / 2.);
vertices.push_back(vert);
vert[2] = -cylLength / 2.;
vertices.push_back(vert);
}
btConvexHullShape* cylZShape = new btConvexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
cylZShape->setMargin(m_data->m_globalDefaults.m_defaultCollisionMargin);
cylZShape->recalcLocalAabb();
convexColShape = cylZShape;
break;
}
case URDF_GEOM_BOX:
{
btVector3 extents = 0.5*visual->m_geometry.m_boxSize;
btBoxShape* boxShape = new btBoxShape(extents * 0.5f);
//btConvexShape* boxShape = new btConeShapeX(extents[2]*0.5,extents[0]*0.5);
convexColShape = boxShape;
convexColShape->setMargin(m_data->m_globalDefaults.m_defaultCollisionMargin);
break;
}
case URDF_GEOM_SPHERE:
{
#if 1
btScalar sphereSize = 2. * visual->m_geometry.m_sphereRadius;
b3AlignedObjectArray<GLInstanceVertex> transformedVertices;
int numVertices = sizeof(mjcf_sphere_vertices) / strideInBytes;
transformedVertices.resize(numVertices);
glmesh = new GLInstanceGraphicsShape;
// int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
printf("vertices:\n");
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(mjcf_sphere_vertices[i * 9 + 0],
mjcf_sphere_vertices[i * 9 + 1],
mjcf_sphere_vertices[i * 9 + 2]);
btVector3 trVer = sphereSize * vert;
transformedVertices[i].xyzw[0] = trVer[0];
transformedVertices[i].xyzw[1] = trVer[1];
transformedVertices[i].xyzw[2] = trVer[2];
transformedVertices[i].xyzw[3] = 0;
transformedVertices[i].normal[0] = mjcf_sphere_vertices[i * 9 + 4];
transformedVertices[i].normal[1] = mjcf_sphere_vertices[i * 9 + 5];
transformedVertices[i].normal[2] = mjcf_sphere_vertices[i * 9 + 6];
//transformedVertices[i].uv[0] = mjcf_sphere_vertices[i * 9 + 7];
//transformedVertices[i].uv[1] = mjcf_sphere_vertices[i * 9 + 8];
btScalar u = btAtan2(transformedVertices[i].normal[0], transformedVertices[i].normal[2]) / (2 * SIMD_PI) + 0.5;
btScalar v = transformedVertices[i].normal[1] * 0.5 + 0.5;
transformedVertices[i].uv[0] = u;
transformedVertices[i].uv[1] = v;
}
int numIndices = sizeof(mjcf_sphere_indiced) / sizeof(int);
for (int i = 0; i < numIndices; i++)
{
glmesh->m_indices->push_back(mjcf_sphere_indiced[i]);
}
for (int i = 0; i < transformedVertices.size(); i++)
{
glmesh->m_vertices->push_back(transformedVertices[i]);
}
glmesh->m_numIndices = numIndices;
glmesh->m_numvertices = transformedVertices.size();
glmesh->m_scaling[0] = 1;
glmesh->m_scaling[1] = 1;
glmesh->m_scaling[2] = 1;
glmesh->m_scaling[3] = 1;
#else
btScalar radius = visual->m_geometry.m_sphereRadius;
btSphereShape* sphereShape = new btSphereShape(radius);
convexColShape = sphereShape;
convexColShape->setMargin(m_data->m_globalDefaults.m_defaultCollisionMargin);
#endif
break;
}
case URDF_GEOM_MESH:
{
switch (visual->m_geometry.m_meshFileType)
{
case UrdfGeometry::FILE_OBJ:
{
b3ImportMeshData meshData;
if (b3ImportMeshUtility::loadAndRegisterMeshFromFileInternal(visual->m_geometry.m_meshFileName, meshData, m_data->m_fileIO))
{
if (meshData.m_textureImage1)
{
MJCFURDFTexture texData;
texData.m_width = meshData.m_textureWidth;
texData.m_height = meshData.m_textureHeight;
texData.textureData1 = meshData.m_textureImage1;
texData.m_isCached = meshData.m_isCached;
texturesOut.push_back(texData);
}
glmesh = meshData.m_gfxShape;
}
break;
}
case UrdfGeometry::FILE_STL:
{
glmesh = LoadMeshFromSTL(visual->m_geometry.m_meshFileName.c_str(), m_data->m_fileIO);
break;
}
case UrdfGeometry::FILE_COLLADA:
{
btAlignedObjectArray<GLInstanceGraphicsShape> visualShapes;
btAlignedObjectArray<ColladaGraphicsInstance> visualShapeInstances;
btTransform upAxisTrans;
upAxisTrans.setIdentity();
float unitMeterScaling = 1;
int upAxis = 2;
LoadMeshFromCollada(visual->m_geometry.m_meshFileName.c_str(),
visualShapes,
visualShapeInstances,
upAxisTrans,
unitMeterScaling,
upAxis,
m_data->m_fileIO);
glmesh = new GLInstanceGraphicsShape;
// int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
for (int i = 0; i < visualShapeInstances.size(); i++)
{
ColladaGraphicsInstance* instance = &visualShapeInstances[i];
GLInstanceGraphicsShape* gfxShape = &visualShapes[instance->m_shapeIndex];
b3AlignedObjectArray<GLInstanceVertex> verts;
verts.resize(gfxShape->m_vertices->size());
int baseIndex = glmesh->m_vertices->size();
for (int i = 0; i < gfxShape->m_vertices->size(); i++)
{
verts[i].normal[0] = gfxShape->m_vertices->at(i).normal[0];
verts[i].normal[1] = gfxShape->m_vertices->at(i).normal[1];
verts[i].normal[2] = gfxShape->m_vertices->at(i).normal[2];
verts[i].uv[0] = gfxShape->m_vertices->at(i).uv[0];
verts[i].uv[1] = gfxShape->m_vertices->at(i).uv[1];
verts[i].xyzw[0] = gfxShape->m_vertices->at(i).xyzw[0];
verts[i].xyzw[1] = gfxShape->m_vertices->at(i).xyzw[1];
verts[i].xyzw[2] = gfxShape->m_vertices->at(i).xyzw[2];
verts[i].xyzw[3] = gfxShape->m_vertices->at(i).xyzw[3];
}
int curNumIndices = glmesh->m_indices->size();
int additionalIndices = gfxShape->m_indices->size();
glmesh->m_indices->resize(curNumIndices + additionalIndices);
for (int k = 0; k < additionalIndices; k++)
{
glmesh->m_indices->at(curNumIndices + k) = gfxShape->m_indices->at(k) + baseIndex;
}
//compensate upAxisTrans and unitMeterScaling here
btMatrix4x4 upAxisMat;
upAxisMat.setIdentity();
// upAxisMat.setPureRotation(upAxisTrans.getRotation());
btMatrix4x4 unitMeterScalingMat;
unitMeterScalingMat.setPureScaling(btVector3(unitMeterScaling, unitMeterScaling, unitMeterScaling));
btMatrix4x4 worldMat = unitMeterScalingMat * upAxisMat * instance->m_worldTransform;
//btMatrix4x4 worldMat = instance->m_worldTransform;
int curNumVertices = glmesh->m_vertices->size();
int additionalVertices = verts.size();
glmesh->m_vertices->reserve(curNumVertices + additionalVertices);
for (int v = 0; v < verts.size(); v++)
{
btVector3 pos(verts[v].xyzw[0], verts[v].xyzw[1], verts[v].xyzw[2]);
pos = worldMat * pos;
verts[v].xyzw[0] = float(pos[0]);
verts[v].xyzw[1] = float(pos[1]);
verts[v].xyzw[2] = float(pos[2]);
glmesh->m_vertices->push_back(verts[v]);
}
}
glmesh->m_numIndices = glmesh->m_indices->size();
glmesh->m_numvertices = glmesh->m_vertices->size();
//glmesh = LoadMeshFromCollada(visual->m_geometry.m_meshFileName);
break;
}
} // switch file type
if (!glmesh || !glmesh->m_vertices || glmesh->m_numvertices <= 0)
{
b3Warning("%s: cannot extract anything useful from mesh '%s'\n", urdfPathPrefix, visual->m_geometry.m_meshFileName.c_str());
break;
}
//apply the geometry scaling
for (int i = 0; i < glmesh->m_vertices->size(); i++)
{
glmesh->m_vertices->at(i).xyzw[0] *= visual->m_geometry.m_meshScale[0];
glmesh->m_vertices->at(i).xyzw[1] *= visual->m_geometry.m_meshScale[1];
glmesh->m_vertices->at(i).xyzw[2] *= visual->m_geometry.m_meshScale[2];
}
break;
}
case URDF_GEOM_PLANE:
{
b3Warning("No default visual for URDF_GEOM_PLANE");
break;
}
default:
{
b3Warning("Error: unknown visual geometry type %i\n", visual->m_geometry.m_type);
}
}
//if we have a convex, tesselate into localVertices/localIndices
if ((glmesh == 0) && convexColShape)
{
BT_PROFILE("convexColShape");
btShapeHull* hull = new btShapeHull(convexColShape);
hull->buildHull(0.0);
{
// int strideInBytes = 9*sizeof(float);
int numVertices = hull->numVertices();
int numIndices = hull->numIndices();
glmesh = new GLInstanceGraphicsShape;
// int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
for (int i = 0; i < numVertices; i++)
{
GLInstanceVertex vtx;
btVector3 pos = hull->getVertexPointer()[i];
vtx.xyzw[0] = pos.x();
vtx.xyzw[1] = pos.y();
vtx.xyzw[2] = pos.z();
vtx.xyzw[3] = 1.f;
btVector3 normal = pos.normalized();
vtx.normal[0] = normal.x();
vtx.normal[1] = normal.y();
vtx.normal[2] = normal.z();
btScalar u = btAtan2(normal[0], normal[2]) / (2 * SIMD_PI) + 0.5;
btScalar v = normal[1] * 0.5 + 0.5;
vtx.uv[0] = u;
vtx.uv[1] = v;
glmesh->m_vertices->push_back(vtx);
}
btAlignedObjectArray<int> indices;
for (int i = 0; i < numIndices; i++)
{
glmesh->m_indices->push_back(hull->getIndexPointer()[i]);
}
glmesh->m_numvertices = glmesh->m_vertices->size();
glmesh->m_numIndices = glmesh->m_indices->size();
}
delete hull;
delete convexColShape;
convexColShape = 0;
}
if (glmesh && glmesh->m_numIndices > 0 && glmesh->m_numvertices > 0)
{
BT_PROFILE("glmesh");
int baseIndex = verticesOut.size();
for (int i = 0; i < glmesh->m_indices->size(); i++)
{
indicesOut.push_back(glmesh->m_indices->at(i) + baseIndex);
}
for (int i = 0; i < glmesh->m_vertices->size(); i++)
{
GLInstanceVertex& v = glmesh->m_vertices->at(i);
btVector3 vert(v.xyzw[0], v.xyzw[1], v.xyzw[2]);
btVector3 vt = visualTransform * vert;
v.xyzw[0] = vt[0];
v.xyzw[1] = vt[1];
v.xyzw[2] = vt[2];
btVector3 triNormal(v.normal[0], v.normal[1], v.normal[2]);
triNormal = visualTransform.getBasis() * triNormal;
v.normal[0] = triNormal[0];
v.normal[1] = triNormal[1];
v.normal[2] = triNormal[2];
verticesOut.push_back(v);
}
}
delete glmesh;
}
int BulletMJCFImporter::convertLinkVisualShapes(int linkIndex, const char* pathPrefix, const btTransform& inertialFrame) const
{
int graphicsIndex = -1;
if (m_data->m_flags & CUF_MJCF_COLORS_FROM_FILE)
{
btAlignedObjectArray<GLInstanceVertex> vertices;
btAlignedObjectArray<int> indices;
btTransform startTrans;
startTrans.setIdentity();
btAlignedObjectArray<MJCFURDFTexture> textures;
const UrdfModel& model = *m_data->m_models[m_data->m_activeModel];
UrdfLink* const* linkPtr = model.m_links.getAtIndex(linkIndex);
if (linkPtr)
{
const UrdfLink* link = *linkPtr;
for (int v = 0; v < link->m_visualArray.size(); v++)
{
const UrdfVisual& vis = link->m_visualArray[v];
btTransform childTrans = vis.m_linkLocalFrame;
btHashString matName(vis.m_materialName.c_str());
UrdfMaterial* const* matPtr = model.m_materials[matName];
convertURDFToVisualShapeInternal(&vis, pathPrefix, inertialFrame.inverse() * childTrans, vertices, indices, textures);
}
}
if (vertices.size() && indices.size())
{
if (1)
{
int textureIndex = -2;
if (textures.size())
{
textureIndex = m_data->m_guiHelper->registerTexture(textures[0].textureData1, textures[0].m_width, textures[0].m_height);
}
{
B3_PROFILE("registerGraphicsShape");
graphicsIndex = m_data->m_guiHelper->registerGraphicsShape(&vertices[0].xyzw[0], vertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES, textureIndex);
}
}
}
//delete textures
for (int i = 0; i < textures.size(); i++)
{
B3_PROFILE("free textureData");
if (!textures[i].m_isCached)
{
free(textures[i].textureData1);
}
}
}
return graphicsIndex;
}
bool BulletMJCFImporter::getLinkContactInfo(int linkIndex, URDFLinkContactInfo& contactInfo) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, linkIndex);
if (link)
{
contactInfo = link->m_contactInfo;
return true;
}
return false;
}
void BulletMJCFImporter::convertLinkVisualShapes2(int linkIndex, int urdfIndex, const char* pathPrefix, const btTransform& inertialFrame, class btCollisionObject* colObj, int objectIndex) const
{
if (m_data->m_customVisualShapesConverter)
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, urdfIndex);
int uid3 = m_data->m_customVisualShapesConverter->convertVisualShapes(linkIndex, pathPrefix, inertialFrame, link, 0, colObj->getBroadphaseHandle()->getUid(), objectIndex, m_data->m_fileIO);
colObj->setUserIndex3(uid3);
}
}
void BulletMJCFImporter::setBodyUniqueId(int bodyId)
{
m_data->m_activeBodyUniqueId = bodyId;
}
int BulletMJCFImporter::getBodyUniqueId() const
{
b3Assert(m_data->m_activeBodyUniqueId != -1);
return m_data->m_activeBodyUniqueId;
}
static btCollisionShape* MjcfCreateConvexHullFromShapes(const tinyobj::attrib_t& attribute, std::vector<tinyobj::shape_t>& shapes, const btVector3& geomScale, btScalar collisionMargin)
{
btCompoundShape* compound = new btCompoundShape();
compound->setMargin(collisionMargin);
btTransform identity;
identity.setIdentity();
for (int s = 0; s < (int)shapes.size(); s++)
{
btConvexHullShape* convexHull = new btConvexHullShape();
convexHull->setMargin(collisionMargin);
tinyobj::shape_t& shape = shapes[s];
int faceCount = shape.mesh.indices.size();
for (int f = 0; f < faceCount; f += 3)
{
btVector3 pt;
pt.setValue(attribute.vertices[3 * shape.mesh.indices[f].vertex_index + 0],
attribute.vertices[3 * shape.mesh.indices[f].vertex_index + 1],
attribute.vertices[3 * shape.mesh.indices[f].vertex_index + 2]);
convexHull->addPoint(pt * geomScale, false);
pt.setValue(attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 0],
attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 1],
attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 2]);
convexHull->addPoint(pt * geomScale, false);
pt.setValue(attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 0],
attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 1],
attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 2]);
convexHull->addPoint(pt * geomScale, false);
}
convexHull->recalcLocalAabb();
convexHull->optimizeConvexHull();
compound->addChildShape(identity, convexHull);
}
return compound;
}
class btCompoundShape* BulletMJCFImporter::convertLinkCollisionShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const
{
btCompoundShape* compound = new btCompoundShape();
m_data->m_allocatedCollisionShapes.push_back(compound);
const UrdfLink* link = m_data->getLink(m_data->m_activeModel, linkIndex);
if (link)
{
for (int i = 0; i < link->m_collisionArray.size(); i++)
{
const UrdfCollision* col = &link->m_collisionArray[i];
btCollisionShape* childShape = 0;
switch (col->m_geometry.m_type)
{
case URDF_GEOM_PLANE:
{
childShape = new btStaticPlaneShape(col->m_geometry.m_planeNormal, 0);
break;
}
case URDF_GEOM_SPHERE:
{
childShape = new btSphereShape(col->m_geometry.m_sphereRadius);
break;
}
case URDF_GEOM_BOX:
{
childShape = new btBoxShape(0.5*col->m_geometry.m_boxSize);
break;
}
case URDF_GEOM_CYLINDER:
{
if (col->m_geometry.m_hasFromTo)
{
btVector3 f = col->m_geometry.m_capsuleFrom;
btVector3 t = col->m_geometry.m_capsuleTo;
//compute the local 'fromto' transform
btVector3 localPosition = btScalar(0.5) * (t + f);
btQuaternion localOrn;
localOrn = btQuaternion::getIdentity();
btVector3 diff = t - f;
btScalar lenSqr = diff.length2();
btScalar height = 0.f;
if (lenSqr > SIMD_EPSILON)
{
height = btSqrt(lenSqr);
btVector3 ax = diff / height;
btVector3 zAxis(0, 0, 1);
localOrn = shortestArcQuat(zAxis, ax);
}
btCylinderShapeZ* cyl = new btCylinderShapeZ(btVector3(col->m_geometry.m_capsuleRadius, col->m_geometry.m_capsuleRadius, btScalar(0.5) * height));
btCompoundShape* compound = new btCompoundShape();
btTransform localTransform(localOrn, localPosition);
compound->addChildShape(localTransform, cyl);
childShape = compound;
}
else
{
btCylinderShapeZ* cap = new btCylinderShapeZ(btVector3(col->m_geometry.m_capsuleRadius,
col->m_geometry.m_capsuleRadius, btScalar(0.5) * col->m_geometry.m_capsuleHeight));
childShape = cap;
}
break;
}
case URDF_GEOM_MESH:
{
GLInstanceGraphicsShape* glmesh = 0;
switch (col->m_geometry.m_meshFileType)
{
case UrdfGeometry::FILE_OBJ:
{
if (col->m_flags & URDF_FORCE_CONCAVE_TRIMESH)
{
glmesh = LoadMeshFromObj(col->m_geometry.m_meshFileName.c_str(), 0,m_data->m_fileIO);
}
else
{
std::vector<tinyobj::shape_t> shapes;
tinyobj::attrib_t attribute;
std::string err = tinyobj::LoadObj(attribute, shapes, col->m_geometry.m_meshFileName.c_str(), "", m_data->m_fileIO);
//create a convex hull for each shape, and store it in a btCompoundShape
childShape = MjcfCreateConvexHullFromShapes(attribute, shapes, col->m_geometry.m_meshScale, m_data->m_globalDefaults.m_defaultCollisionMargin);
}
break;
}
case UrdfGeometry::FILE_STL:
{
glmesh = LoadMeshFromSTL(col->m_geometry.m_meshFileName.c_str(), m_data->m_fileIO);
break;
}
default:
b3Warning("%s: Unsupported file type in Collision: %s (maybe .dae?)\n", col->m_sourceFileLocation.c_str(), col->m_geometry.m_meshFileType);
}
if (childShape)
{
// okay!
}
else if (!glmesh || glmesh->m_numvertices <= 0)
{
b3Warning("%s: cannot extract anything useful from mesh '%s'\n", col->m_sourceFileLocation.c_str(), col->m_geometry.m_meshFileName.c_str());
}
else
{
//b3Printf("extracted %d verticed from STL file %s\n", glmesh->m_numvertices,fullPath);
//int shapeId = m_glApp->m_instancingRenderer->registerShape(&gvertices[0].pos[0],gvertices.size(),&indices[0],indices.size());
//convex->setUserIndex(shapeId);
btAlignedObjectArray<btVector3> convertedVerts;
convertedVerts.reserve(glmesh->m_numvertices);
for (int i = 0; i < glmesh->m_numvertices; i++)
{
convertedVerts.push_back(btVector3(
glmesh->m_vertices->at(i).xyzw[0] * col->m_geometry.m_meshScale[0],
glmesh->m_vertices->at(i).xyzw[1] * col->m_geometry.m_meshScale[1],
glmesh->m_vertices->at(i).xyzw[2] * col->m_geometry.m_meshScale[2]));
}
if (col->m_flags & URDF_FORCE_CONCAVE_TRIMESH)
{
btTriangleMesh* meshInterface = new btTriangleMesh();
m_data->m_allocatedMeshInterfaces.push_back(meshInterface);
for (int i = 0; i < glmesh->m_numIndices / 3; i++)
{
float* v0 = glmesh->m_vertices->at(glmesh->m_indices->at(i * 3)).xyzw;
float* v1 = glmesh->m_vertices->at(glmesh->m_indices->at(i * 3 + 1)).xyzw;
float* v2 = glmesh->m_vertices->at(glmesh->m_indices->at(i * 3 + 2)).xyzw;
meshInterface->addTriangle(btVector3(v0[0], v0[1], v0[2]),
btVector3(v1[0], v1[1], v1[2]),
btVector3(v2[0], v2[1], v2[2]));
}
btBvhTriangleMeshShape* trimesh = new btBvhTriangleMeshShape(meshInterface, true, true);
childShape = trimesh;
}
else
{
btConvexHullShape* convexHull = new btConvexHullShape(&convertedVerts[0].getX(), convertedVerts.size(), sizeof(btVector3));
convexHull->optimizeConvexHull();
//convexHull->initializePolyhedralFeatures();
convexHull->setMargin(m_data->m_globalDefaults.m_defaultCollisionMargin);
childShape = convexHull;
}
}
delete glmesh;
break;
}
case URDF_GEOM_CAPSULE:
{
if (col->m_geometry.m_hasFromTo)
{
if (m_data->m_flags & CUF_USE_IMPLICIT_CYLINDER)
{
btVector3 f = col->m_geometry.m_capsuleFrom;
btVector3 t = col->m_geometry.m_capsuleTo;
//compute the local 'fromto' transform
btVector3 localPosition = btScalar(0.5) * (t + f);
btQuaternion localOrn;
localOrn = btQuaternion::getIdentity();
btVector3 diff = t - f;
btScalar lenSqr = diff.length2();
btScalar height = 0.f;
if (lenSqr > SIMD_EPSILON)
{
height = btSqrt(lenSqr);
btVector3 ax = diff / height;
btVector3 zAxis(0, 0, 1);
localOrn = shortestArcQuat(zAxis, ax);
}
btCapsuleShapeZ* capsule = new btCapsuleShapeZ(col->m_geometry.m_capsuleRadius, height);
btCompoundShape* compound = new btCompoundShape();
btTransform localTransform(localOrn, localPosition);
compound->addChildShape(localTransform, capsule);
childShape = compound;
}
else
{
btVector3 f = col->m_geometry.m_capsuleFrom;
btVector3 t = col->m_geometry.m_capsuleTo;
btVector3 fromto[2] = {f, t};
btScalar radii[2] = {btScalar(col->m_geometry.m_capsuleRadius), btScalar(col->m_geometry.m_capsuleRadius)};
btMultiSphereShape* ms = new btMultiSphereShape(fromto, radii, 2);
childShape = ms;
}
}
else
{
btCapsuleShapeZ* cap = new btCapsuleShapeZ(col->m_geometry.m_capsuleRadius,
col->m_geometry.m_capsuleHeight);
childShape = cap;
}
break;
}
case URDF_GEOM_CDF:
{
//todo
break;
}
case URDF_GEOM_UNKNOWN:
{
break;
}
default:
{
}
} // switch geom
if (childShape)
{
m_data->m_allocatedCollisionShapes.push_back(childShape);
compound->addChildShape(localInertiaFrame.inverse() * col->m_linkLocalFrame, childShape);
}
}
}
return compound;
}
int BulletMJCFImporter::getNumAllocatedCollisionShapes() const
{
return m_data->m_allocatedCollisionShapes.size();
}
class btCollisionShape* BulletMJCFImporter::getAllocatedCollisionShape(int index)
{
return m_data->m_allocatedCollisionShapes[index];
}
int BulletMJCFImporter::getNumAllocatedMeshInterfaces() const
{
return m_data->m_allocatedMeshInterfaces.size();
}
btStridingMeshInterface* BulletMJCFImporter::getAllocatedMeshInterface(int index)
{
return m_data->m_allocatedMeshInterfaces[index];
}
int BulletMJCFImporter::getNumModels() const
{
return m_data->m_models.size();
}
void BulletMJCFImporter::activateModel(int modelIndex)
{
if ((modelIndex >= 0) && (modelIndex < m_data->m_models.size()))
{
m_data->m_activeModel = modelIndex;
}
}