19 KiB
API Reference
The {fmt} library API consists of the following components:
fmt/base.h
: the base API providing main formatting functions forchar
/UTF-8 with C++20 compile-time checks and minimal dependenciesfmt/format.h
: the full format API providing additional formatting functions and locale supportfmt/ranges.h
: formatting of ranges and tuplesfmt/chrono.h
: date and time formattingfmt/std.h
: formatters for standard library typesfmt/compile.h
: format string compilationfmt/color.h
: terminal color and text stylefmt/os.h
: system APIsfmt/ostream.h
:std::ostream
supportfmt/args.h
: dynamic argument listsfmt/printf.h
:printf
formattingfmt/xchar.h
: optionalwchar_t
support
All functions and types provided by the library reside in namespace fmt
and macros have prefix FMT_
.
Base API
fmt/base.h
defines the base API which provides main formatting functions
for char
/UTF-8 with C++20 compile-time checks. It has minimal include
dependencies for better compile times. This header is only beneficial when
using {fmt} as a library (the default) and not in the header-only mode.
It also provides formatter
specializations for the following types:
int
,unsigned
,long long
,unsigned long long
float
,double
,long double
bool
char
const char*
,fmt::string_view
const void*
The following functions use format string syntax similar to that of str.format in Python. They take fmt and args as arguments.
fmt is a format string that contains literal text and replacement fields
surrounded by braces {}
. The fields are replaced with formatted arguments
in the resulting string. [~fmt::format_string]{.title-ref} is a format string
which can be implicitly constructed from a string literal or a constexpr
string and is checked at compile time in C++20. To pass a runtime format
string wrap it in [fmt::runtime]{.title-ref}.
args is an argument list representing objects to be formatted.
I/O errors are reported as std::system_error
exceptions unless
specified otherwise.
::: print(format_string<T...>, T&&...)
::: print(FILE*, format_string<T...>, T&&...)
::: println(format_string<T...>, T&&...)
::: println(FILE*, format_string<T...>, T&&...)
::: format_to(OutputIt&&, format_string<T...>, T&&...)
::: format_to_n(OutputIt, size_t, format_string<T...>, T&&...)
::: format_to_n_result
::: formatted_size(format_string<T...>, T&&...)
Formatting User-Defined Types
The {fmt} library provides formatters for many standard C++ types.
See fmt/ranges.h
for ranges and tuples including standard
containers such as std::vector
, fmt/chrono.h
for date and
time formatting and fmt/std.h
for other standard library types.
There are two ways to make a user-defined type formattable: providing a
format_as
function or specializing the formatter
struct template.
Use format_as
if you want to make your type formattable as some other
type with the same format specifiers. The format_as
function should
take an object of your type and return an object of a formattable type.
It should be defined in the same namespace as your type.
Example (run):
#include <fmt/format.h>
namespace kevin_namespacy {
enum class film {
house_of_cards, american_beauty, se7en = 7
};
auto format_as(film f) { return fmt::underlying(f); }
}
int main() {
fmt::print("{}\n", kevin_namespacy::film::se7en); // prints "7"
}
Using specialization is more complex but gives you full control over
parsing and formatting. To use this method specialize the formatter
struct template for your type and implement parse
and format
methods.
The recommended way of defining a formatter is by reusing an existing one via inheritance or composition. This way you can support standard format specifiers without implementing them yourself. For example:
// color.h:
#include <fmt/base.h>
enum class color {red, green, blue};
template <> struct fmt::formatter<color>: formatter<string_view> {
// parse is inherited from formatter<string_view>.
auto format(color c, format_context& ctx) const
-> format_context::iterator;
};
// color.cc:
#include "color.h"
#include <fmt/format.h>
auto fmt::formatter<color>::format(color c, format_context& ctx) const
-> format_context::iterator {
string_view name = "unknown";
switch (c) {
case color::red: name = "red"; break;
case color::green: name = "green"; break;
case color::blue: name = "blue"; break;
}
return formatter<string_view>::format(name, ctx);
}
Note that formatter<string_view>::format
is defined in fmt/format.h
so it has to be included in the source file. Since parse
is inherited
from formatter<string_view>
it will recognize all string format
specifications, for example
fmt::format("{:>10}", color::blue)
will return " blue"
.
The experimental nested_formatter
provides an easy way of applying a
formatter to one or more subobjects.
For example:
#include <fmt/format.h>
struct point {
double x, y;
};
template <>
struct fmt::formatter<point> : nested_formatter<double> {
auto format(point p, format_context& ctx) const {
return write_padded(ctx, [=](auto out) {
return format_to(out, "({}, {})", this->nested(p.x),
this->nested(p.y));
});
}
};
int main() {
fmt::print("[{:>20.2f}]", point{1, 2});
}
prints:
[ (1.00, 2.00)]
Notice that fill, align and width are applied to the whole object which is the recommended behavior while the remaining specifiers apply to elements.
In general the formatter has the following form:
template <> struct fmt::formatter<T> {
// Parses format specifiers and stores them in the formatter.
//
// [ctx.begin(), ctx.end()) is a, possibly empty, character range that
// contains a part of the format string starting from the format
// specifications to be parsed, e.g. in
//
// fmt::format("{:f} continued", ...);
//
// the range will contain "f} continued". The formatter should parse
// specifiers until '}' or the end of the range. In this example the
// formatter should parse the 'f' specifier and return an iterator
// pointing to '}'.
constexpr auto parse(format_parse_context& ctx)
-> format_parse_context::iterator;
// Formats value using the parsed format specification stored in this
// formatter and writes the output to ctx.out().
auto format(const T& value, format_context& ctx) const
-> format_context::iterator;
};
It is recommended to at least support fill, align and width that apply to the whole object and have the same semantics as in standard formatters.
You can also write a formatter for a hierarchy of classes:
// demo.h:
#include <type_traits>
#include <fmt/core.h>
struct A {
virtual ~A() {}
virtual std::string name() const { return "A"; }
};
struct B : A {
virtual std::string name() const { return "B"; }
};
template <typename T>
struct fmt::formatter<T, std::enable_if_t<std::is_base_of<A, T>::value, char>> :
fmt::formatter<std::string> {
auto format(const A& a, format_context& ctx) const {
return fmt::formatter<std::string>::format(a.name(), ctx);
}
};
// demo.cc:
#include "demo.h"
#include <fmt/format.h>
int main() {
B b;
A& a = b;
fmt::print("{}", a); // prints "B"
}
Providing both a formatter
specialization and a format_as
overload
is disallowed.
Compile-Time Format String Checks
Compile-time format string checks are enabled by default on compilers
that support C++20 consteval
. On older compilers you can use the
FMT_STRING macro defined in fmt/format.h
instead.
Unused arguments are allowed as in Python's str.format
and ordinary functions.
::: basic_format_string
::: format_string
::: runtime(string_view)
Named Arguments
::: arg(const Char*, const T&)
Named arguments are not supported in compile-time checks at the moment.
Argument Lists
You can create your own formatting function with compile-time checks and small binary footprint, for example (run):
#include <fmt/format.h>
void vlog(const char* file, int line,
fmt::string_view fmt, fmt::format_args args) {
fmt::print("{}: {}: {}", file, line, fmt::vformat(fmt, args));
}
template <typename... T>
void log(const char* file, int line,
fmt::format_string<T...> fmt, T&&... args) {
vlog(file, line, fmt, fmt::make_format_args(args...));
}
#define MY_LOG(fmt, ...) log(__FILE__, __LINE__, fmt, __VA_ARGS__)
MY_LOG("invalid squishiness: {}", 42);
Note that vlog
is not parameterized on argument types which improves
compile times and reduces binary code size compared to a fully
parameterized version.
::: make_format_args(T&...)
::: basic_format_args
::: format_args
::: basic_format_arg
::: basic_format_parse_context
::: context
::: format_context
Compatibility
::: basic_string_view
::: string_view
Format API
fmt/format.h
defines the full format API providing additional
formatting functions and locale support.
::: format(format_string<T...>, T&&...)
::: vformat(string_view, format_args)
Utilities
::: ptr(T)
::: underlying(Enum)
::: to_string(const T&)
::: group_digits(T)
::: detail::buffer
::: basic_memory_buffer
System Errors
{fmt} does not use errno
to communicate errors to the user, but it may
call system functions which set errno
. Users should not make any
assumptions about the value of errno
being preserved by library
functions.
::: system_error
::: format_system_error
Literal-Based API
The following user-defined literals are defined in fmt/format.h
.
::: operator""_a()
Custom Allocators
The {fmt} library supports custom dynamic memory allocators. A custom
allocator class can be specified as a template argument to
fmt::basic_memory_buffer
{.interpreted-text role="class"}:
using custom_memory_buffer =
fmt::basic_memory_buffer<char, fmt::inline_buffer_size, custom_allocator>;
It is also possible to write a formatting function that uses a custom allocator:
using custom_string =
std::basic_string<char, std::char_traits<char>, custom_allocator>;
custom_string vformat(custom_allocator alloc, fmt::string_view format_str,
fmt::format_args args) {
auto buf = custom_memory_buffer(alloc);
fmt::vformat_to(std::back_inserter(buf), format_str, args);
return custom_string(buf.data(), buf.size(), alloc);
}
template <typename ...Args>
inline custom_string format(custom_allocator alloc,
fmt::string_view format_str,
const Args& ... args) {
return vformat(alloc, format_str, fmt::make_format_args(args...));
}
The allocator will be used for the output container only. Formatting
functions normally don't do any allocations for built-in and string
types except for non-default floating-point formatting that occasionally
falls back on sprintf
.
Locale
All formatting is locale-independent by default. Use the 'L'
format
specifier to insert the appropriate number separator characters from the
locale:
#include <fmt/core.h>
#include <locale>
std::locale::global(std::locale("en_US.UTF-8"));
auto s = fmt::format("{:L}", 1000000); // s == "1,000,000"
fmt/format.h
provides the following overloads of formatting functions
that take std::locale
as a parameter. The locale type is a template
parameter to avoid the expensive <locale>
include.
::: format(const Locale&, format_string<T...>, T&&...)
::: format_to(OutputIt, const Locale&, format_string<T...>, T&&...)
::: formatted_size(const Locale&, format_string<T...>, T&&...)
Legacy Compile-Time Format String Checks
FMT_STRING
enables compile-time checks on older compilers. It requires
C++14 or later and is a no-op in C++11.
:: {.doxygendefine} FMT_STRING ::
To force the use of legacy compile-time checks, define the preprocessor
variable FMT_ENFORCE_COMPILE_STRING
. When set, functions accepting
FMT_STRING
will fail to compile with regular strings.
Range and Tuple Formatting
The library also supports convenient formatting of ranges and tuples:
#include <fmt/ranges.h>
std::tuple<char, int, float> t{'a', 1, 2.0f};
// Prints "('a', 1, 2.0)"
fmt::print("{}", t);
Using fmt::join
, you can separate tuple elements with a custom
separator:
#include <fmt/ranges.h>
std::tuple<int, char> t = {1, 'a'};
// Prints "1, a"
fmt::print("{}", fmt::join(t, ", "));
::: join(Range&&, string_view)
::: join(It, Sentinel, string_view)
Date and Time Formatting
fmt/chrono.h
provides formatters for
The format syntax is described in [Chrono Format Specifications](syntax.md# chrono-format-specifications).
Example:
#include <fmt/chrono.h>
int main() {
std::time_t t = std::time(nullptr);
// Prints "The date is 2020-11-07." (with the current date):
fmt::print("The date is {:%Y-%m-%d}.", fmt::localtime(t));
using namespace std::literals::chrono_literals;
// Prints "Default format: 42s 100ms":
fmt::print("Default format: {} {}\n", 42s, 100ms);
// Prints "strftime-like format: 03:15:30":
fmt::print("strftime-like format: {:%H:%M:%S}\n", 3h + 15min + 30s);
}
::: localtime(std::time_t)
::: gmtime(std::time_t)
Standard Library Types Formatting
fmt/std.h
provides formatters for:
std::atomic
std::atomic_flag
std::bitset
std::error_code
std::filesystem::path
std::monostate
std::optional
std::source_location
std::thread::id
std::variant
::: ptr(const std::unique_ptr<T, Deleter>&)
::: ptr(const std::shared_ptr&)
Formatting Variants
A std::variant
is only formattable if every variant alternative is
formattable, and requires the __cpp_lib_variant
library
feature.
Example:
#include <fmt/std.h>
fmt::print("{}", std::variant<char, float>('x'));
// Output: variant('x')
fmt::print("{}", std::variant<std::monostate, char>());
// Output: variant(monostate)
Format String Compilation
fmt/compile.h
provides format string compilation enabled via the
FMT_COMPILE
macro or the _cf
user-defined literal. Format strings
marked with FMT_COMPILE
or _cf
are parsed, checked and converted
into efficient formatting code at compile-time. This supports arguments
of built-in and string types as well as user-defined types with format
functions taking the format context type as a template parameter in
their formatter
specializations. For example:
template <> struct fmt::formatter<point> {
constexpr auto parse(format_parse_context& ctx);
template <typename FormatContext>
auto format(const point& p, FormatContext& ctx) const;
};
Format string compilation can generate more binary code compared to the default API and is only recommended in places where formatting is a performance bottleneck.
:: {.doxygendefine} FMT_COMPILE ::
::: operator""_cf
Terminal Color and Text Style
fmt/color.h
provides support for terminal color and text style output.
::: print(const text_style&, format_string<T...>, T&&...)
::: fg(detail::color_type)
::: bg(detail::color_type)
::: styled(const T&, text_style)
System APIs
::: ostream
::: windows_error
std::ostream
Support
fmt/ostream.h
provides std::ostream
support including formatting of
user-defined types that have an overloaded insertion operator
(operator<<
). In order to make a type formattable via std::ostream
you should provide a formatter
specialization inherited from
ostream_formatter
:
#include <fmt/ostream.h>
struct date {
int year, month, day;
friend std::ostream& operator<<(std::ostream& os, const date& d) {
return os << d.year << '-' << d.month << '-' << d.day;
}
};
template <> struct fmt::formatter<date> : ostream_formatter {};
std::string s = fmt::format("The date is {}", date{2012, 12, 9});
// s == "The date is 2012-12-9"
::: streamed(const T&)
::: print(std::ostream&, format_string<T...>, T&&...)
Dynamic Argument Lists
The header fmt/args.h
provides dynamic_format_arg_store
, a builder-like API
that can be used to construct format argument lists dynamically.
::: dynamic_format_arg_store
printf
Formatting
The header fmt/printf.h
provides printf
-like formatting
functionality. The following functions use printf format string
syntax
with the POSIX extension for positional arguments. Unlike their standard
counterparts, the fmt
functions are type-safe and throw an exception
if an argument type doesn't match its format specification.
::: printf(string_view, const T&...)
::: fprintf(std::FILE*, const S&, const T&...)
::: sprintf(const S&, const T&...)
Wide Strings
The optional header fmt/xchar.h
provides support for wchar_t
and
exotic character types.
::: is_char
::: wstring_view
::: wformat_context
::: to_wstring(const T&)
Compatibility with C++20 std::format
{fmt} implements nearly all of the C++20 formatting library with the following differences:
- Names are defined in the
fmt
namespace instead ofstd
to avoid collisions with standard library implementations. - Width calculation doesn't use grapheme clusterization. The latter has been implemented in a separate branch but hasn't been integrated yet.