manual: Complete @standards in arith.texi.

* manual/arith.texi (FP_NAN): Add or complete header and
	standard annotations.
	(FP_INFINITE): Likewise.
	(FP_ZERO): Likewise.
	(FP_SUBNORMAL): Likewise.
	(FP_NORMAL): Likewise.
	(SNAN): Likewise.
	(SNANL): Likewise.
	(totalorderf): Likewise.
	(totalorderl): Likewise.
	(totalordermagf): Likewise.
	(totalordermagl): Likewise.
	(_Complex_I): Likewise.
	(I): Likewise.
This commit is contained in:
Rical Jasan 2017-06-16 00:27:09 -07:00
parent 76b9ffef87
commit 1b009d5ac3
2 changed files with 27 additions and 7 deletions

View File

@ -1,3 +1,20 @@
2017-06-16 Rical Jasan <ricaljasan@pacific.net>
* manual/arith.texi (FP_NAN): Add or complete header and standard
annotations.
(FP_INFINITE): Likewise.
(FP_ZERO): Likewise.
(FP_SUBNORMAL): Likewise.
(FP_NORMAL): Likewise.
(SNAN): Likewise.
(SNANL): Likewise.
(totalorderf): Likewise.
(totalorderl): Likewise.
(totalordermagf): Likewise.
(totalordermagl): Likewise.
(_Complex_I): Likewise.
(I): Likewise.
2017-06-16 Rical Jasan <ricaljasan@pacific.net> 2017-06-16 Rical Jasan <ricaljasan@pacific.net>
* manual/argp.texi (ARGP_HELP_USAGE): Add missing header and * manual/argp.texi (ARGP_HELP_USAGE): Add missing header and

View File

@ -323,22 +323,27 @@ which returns a value of type @code{int}. The possible values are:
@vtable @code @vtable @code
@item FP_NAN @item FP_NAN
@standards{C99, math.h}
The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity The floating-point number @var{x} is ``Not a Number'' (@pxref{Infinity
and NaN}) and NaN})
@item FP_INFINITE @item FP_INFINITE
@standards{C99, math.h}
The value of @var{x} is either plus or minus infinity (@pxref{Infinity The value of @var{x} is either plus or minus infinity (@pxref{Infinity
and NaN}) and NaN})
@item FP_ZERO @item FP_ZERO
@standards{C99, math.h}
The value of @var{x} is zero. In floating-point formats like @w{IEEE The value of @var{x} is zero. In floating-point formats like @w{IEEE
754}, where zero can be signed, this value is also returned if 754}, where zero can be signed, this value is also returned if
@var{x} is negative zero. @var{x} is negative zero.
@item FP_SUBNORMAL @item FP_SUBNORMAL
@standards{C99, math.h}
Numbers whose absolute value is too small to be represented in the Numbers whose absolute value is too small to be represented in the
normal format are represented in an alternate, @dfn{denormalized} format normal format are represented in an alternate, @dfn{denormalized} format
(@pxref{Floating Point Concepts}). This format is less precise but can (@pxref{Floating Point Concepts}). This format is less precise but can
represent values closer to zero. @code{fpclassify} returns this value represent values closer to zero. @code{fpclassify} returns this value
for values of @var{x} in this alternate format. for values of @var{x} in this alternate format.
@item FP_NORMAL @item FP_NORMAL
@standards{C99, math.h}
This value is returned for all other values of @var{x}. It indicates This value is returned for all other values of @var{x}. It indicates
that there is nothing special about the number. that there is nothing special about the number.
@end vtable @end vtable
@ -681,7 +686,7 @@ such as by defining @code{_GNU_SOURCE}, and then you must include
@deftypevr Macro float SNANF @deftypevr Macro float SNANF
@deftypevrx Macro double SNAN @deftypevrx Macro double SNAN
@deftypevrx Macro {long double} SNANL @deftypevrx Macro {long double} SNANL
@standardsx{SNANF, ISO, math.h} @standards{TS 18661-1:2014, math.h}
These macros, defined by TS 18661-1:2014, are constant expressions for These macros, defined by TS 18661-1:2014, are constant expressions for
signaling NaNs. signaling NaNs.
@end deftypevr @end deftypevr
@ -1881,9 +1886,7 @@ NaN.
@deftypefun int totalorder (double @var{x}, double @var{y}) @deftypefun int totalorder (double @var{x}, double @var{y})
@deftypefunx int totalorderf (float @var{x}, float @var{y}) @deftypefunx int totalorderf (float @var{x}, float @var{y})
@deftypefunx int totalorderl (long double @var{x}, long double @var{y}) @deftypefunx int totalorderl (long double @var{x}, long double @var{y})
@standards{ISO, math.h} @standards{TS 18661-1:2014, math.h}
@standardsx{totalorderf, ISO, ???}
@standardsx{totalorderl, ISO, ???}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions determine whether the total order relationship, These functions determine whether the total order relationship,
defined in IEEE 754-2008, is true for @var{x} and @var{y}, returning defined in IEEE 754-2008, is true for @var{x} and @var{y}, returning
@ -1902,9 +1905,7 @@ payload.
@deftypefun int totalordermag (double @var{x}, double @var{y}) @deftypefun int totalordermag (double @var{x}, double @var{y})
@deftypefunx int totalordermagf (float @var{x}, float @var{y}) @deftypefunx int totalordermagf (float @var{x}, float @var{y})
@deftypefunx int totalordermagl (long double @var{x}, long double @var{y}) @deftypefunx int totalordermagl (long double @var{x}, long double @var{y})
@standards{ISO, math.h} @standards{TS 18661-1:2014, math.h}
@standardsx{totalordermagf, ISO, ???}
@standardsx{totalordermagl, ISO, ???}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions determine whether the total order relationship, These functions determine whether the total order relationship,
defined in IEEE 754-2008, is true for the absolute values of @var{x} defined in IEEE 754-2008, is true for the absolute values of @var{x}
@ -2038,6 +2039,7 @@ floating point constant. Instead, @file{complex.h} defines two macros
that can be used to create complex numbers. that can be used to create complex numbers.
@deftypevr Macro {const float complex} _Complex_I @deftypevr Macro {const float complex} _Complex_I
@standards{C99, complex.h}
This macro is a representation of the complex number ``@math{0+1i}''. This macro is a representation of the complex number ``@math{0+1i}''.
Multiplying a real floating-point value by @code{_Complex_I} gives a Multiplying a real floating-point value by @code{_Complex_I} gives a
complex number whose value is purely imaginary. You can use this to complex number whose value is purely imaginary. You can use this to
@ -2086,6 +2088,7 @@ imaginary part -4.0.
a shorter name for the same constant. a shorter name for the same constant.
@deftypevr Macro {const float complex} I @deftypevr Macro {const float complex} I
@standards{C99, complex.h}
This macro has exactly the same value as @code{_Complex_I}. Most of the This macro has exactly the same value as @code{_Complex_I}. Most of the
time it is preferable. However, it causes problems if you want to use time it is preferable. However, it causes problems if you want to use
the identifier @code{I} for something else. You can safely write the identifier @code{I} for something else. You can safely write