Optimized generic expf and exp2f with wrappers

Based on new expf and exp2f code from
https://github.com/ARM-software/optimized-routines/

with wrapper on aarch64:
expf reciprocal-throughput: 2.3x faster
expf latency: 1.7x faster
without wrapper on aarch64:
expf reciprocal-throughput: 3.3x faster
expf latency: 1.7x faster
without wrapper on aarch64:
exp2f reciprocal-throughput: 2.8x faster
exp2f latency: 1.3x faster
libm.so size on aarch64:
.text size: -152 bytes
.rodata size: -1740 bytes
expf/exp2f worst case nearest rounding error: 0.502 ulp
worst case non-nearest rounding error: 1 ulp

Error checks are inline and errno setting is in separate tail called
functions, but the wrappers are kept in this patch to handle the
_LIB_VERSION==_SVID_ case.  (So e.g. errno is set twice for expf calls
and once for __expf_finite calls on targets where the new code is used.)

Double precision arithmetics is used which is expected to be faster on
most targets (including soft-float) than using single precision and it
is easier to get good precision result with it.

Const data is kept in a separate translation unit which complicates
maintenance a bit, but is expected to give good code for literal loads
on most targets and allows sharing data across expf, exp2f and powf.
(This data is disabled on i386, m68k and ia64 which have their own
expf, exp2f and powf code.)

Some details may need target specific tweaks:
- best convert and round to int operation in the arg reduction may be
different across targets.
- code was optimized on fma target, optimal polynomial eval may be
different without fma.
- gcc does not always generate good code for fp bit representation
access via unions or it may be inherently slow on some targets.

The libm-test-ulps will need adjustment because..
- The argument reduction ideally uses nearest rounded rint, but that is
not efficient on most targets, so the polynomial can get evaluated on a
wider interval in non-nearest rounding mode making 1 ulp errors common
in that case.
- The polynomial is evaluated such that it may have 1 ulp error on
negative tiny inputs with upward rounding.

	* math/Makefile (type-float-routines): Add math_errf and e_exp2f_data.
	* sysdeps/aarch64/fpu/math_private.h (TOINT_INTRINSICS): Define.
	(roundtoint, converttoint): Likewise.
	* sysdeps/ieee754/flt-32/e_expf.c: New implementation.
	* sysdeps/ieee754/flt-32/e_exp2f.c: New implementation.
	* sysdeps/ieee754/flt-32/e_exp2f_data.c: New file.
	* sysdeps/ieee754/flt-32/math_config.h: New file.
	* sysdeps/ieee754/flt-32/math_errf.c: New file.
	* sysdeps/ieee754/flt-32/t_exp2f.h: Remove.
	* sysdeps/i386/fpu/e_exp2f_data.c: New file.
	* sysdeps/i386/fpu/math_errf.c: New file.
	* sysdeps/ia64/fpu/e_exp2f_data.c: New file.
	* sysdeps/ia64/fpu/math_errf.c: New file.
	* sysdeps/m68k/m680x0/fpu/e_exp2f_data.c: New file.
	* sysdeps/m68k/m680x0/fpu/math_errf.c: New file.
This commit is contained in:
Szabolcs Nagy 2017-09-06 17:42:00 +01:00
parent fcafcd162c
commit 72aa623345
16 changed files with 416 additions and 562 deletions

View File

@ -1,3 +1,21 @@
2017-09-25 Szabolcs Nagy <szabolcs.nagy@arm.com>
* math/Makefile (type-float-routines): Add math_errf and e_exp2f_data.
* sysdeps/aarch64/fpu/math_private.h (TOINT_INTRINSICS): Define.
(roundtoint, converttoint): Likewise.
* sysdeps/ieee754/flt-32/e_expf.c: New implementation.
* sysdeps/ieee754/flt-32/e_exp2f.c: New implementation.
* sysdeps/ieee754/flt-32/e_exp2f_data.c: New file.
* sysdeps/ieee754/flt-32/math_config.h: New file.
* sysdeps/ieee754/flt-32/math_errf.c: New file.
* sysdeps/ieee754/flt-32/t_exp2f.h: Remove.
* sysdeps/i386/fpu/e_exp2f_data.c: New file.
* sysdeps/i386/fpu/math_errf.c: New file.
* sysdeps/ia64/fpu/e_exp2f_data.c: New file.
* sysdeps/ia64/fpu/math_errf.c: New file.
* sysdeps/m68k/m680x0/fpu/e_exp2f_data.c: New file.
* sysdeps/m68k/m680x0/fpu/math_errf.c: New file.
2017-09-24 Samuel Thibault <samuel.thibault@ens-lyon.org> 2017-09-24 Samuel Thibault <samuel.thibault@ens-lyon.org>
* sysdeps/mach/hurd/dl-sysdep.c (check_no_hidden): New macro. * sysdeps/mach/hurd/dl-sysdep.c (check_no_hidden): New macro.

2
NEWS
View File

@ -14,6 +14,8 @@ Major new features:
* Optimized x86-64 trunc and truncf for processors with SSE4.1. * Optimized x86-64 trunc and truncf for processors with SSE4.1.
* Optimized generic expf and exp2f.
* In order to support faster and safer process termination the malloc API * In order to support faster and safer process termination the malloc API
family of functions will no longer print a failure address and stack family of functions will no longer print a failure address and stack
backtrace after detecting heap corruption. The goal is to minimize the backtrace after detecting heap corruption. The goal is to minimize the

View File

@ -115,7 +115,7 @@ type-double-routines := branred doasin dosincos halfulp mpa mpatan2 \
# float support # float support
type-float-suffix := f type-float-suffix := f
type-float-routines := k_rem_pio2f type-float-routines := k_rem_pio2f math_errf e_exp2f_data
# _Float128 support # _Float128 support
type-float128-suffix := f128 type-float128-suffix := f128

View File

@ -319,6 +319,26 @@ libc_feresetround_noex_aarch64_ctx (struct rm_ctx *ctx)
#define libc_feresetround_noexf_ctx libc_feresetround_noex_aarch64_ctx #define libc_feresetround_noexf_ctx libc_feresetround_noex_aarch64_ctx
#define libc_feresetround_noexl_ctx libc_feresetround_noex_aarch64_ctx #define libc_feresetround_noexl_ctx libc_feresetround_noex_aarch64_ctx
/* Hack: only include the large arm_neon.h when needed. */
#ifdef _MATH_CONFIG_H
# include <arm_neon.h>
/* ACLE intrinsics for frintn and fcvtns instructions. */
# define TOINT_INTRINSICS 1
static inline double_t
roundtoint (double_t x)
{
return vget_lane_f64 (vrndn_f64 (vld1_f64 (&x)), 0);
}
static inline uint64_t
converttoint (double_t x)
{
return vcvtnd_s64_f64 (x);
}
#endif
#include_next <math_private.h> #include_next <math_private.h>
#endif #endif

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -1,7 +1,6 @@
/* Single-precision floating point 2^x. /* Single-precision 2^x function.
Copyright (C) 1997-2017 Free Software Foundation, Inc. Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library. This file is part of the GNU C Library.
Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
The GNU C Library is free software; you can redistribute it and/or The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public modify it under the terms of the GNU Lesser General Public
@ -17,116 +16,73 @@
License along with the GNU C Library; if not, see License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */ <http://www.gnu.org/licenses/>. */
/* The basic design here is from
Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
17 (1), March 1991, pp. 26-45.
It has been slightly modified to compute 2^x instead of e^x, and for
single-precision.
*/
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include <stdlib.h>
#include <float.h>
#include <ieee754.h>
#include <math.h> #include <math.h>
#include <fenv.h> #include <stdint.h>
#include <inttypes.h> #include "math_config.h"
#include <math_private.h>
#include "t_exp2f.h" /*
EXP2F_TABLE_BITS = 5
EXP2F_POLY_ORDER = 3
static const float TWOM100 = 7.88860905e-31; ULP error: 0.502 (nearest rounding.)
static const float TWO127 = 1.7014118346e+38; Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.)
Wrong count: 168353 (all nearest rounding wrong results with fma.)
Non-nearest ULP error: 1 (rounded ULP error)
*/
#define N (1 << EXP2F_TABLE_BITS)
#define T __exp2f_data.tab
#define C __exp2f_data.poly
#define SHIFT __exp2f_data.shift_scaled
static inline uint32_t
top12 (float x)
{
return asuint (x) >> 20;
}
float float
__ieee754_exp2f (float x) __ieee754_exp2f (float x)
{ {
static const float himark = (float) FLT_MAX_EXP; uint32_t abstop;
static const float lomark = (float) (FLT_MIN_EXP - FLT_MANT_DIG - 1); uint64_t ki, t;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, xd, z, r, r2, y, s;
/* Check for usual case. */ xd = (double_t) x;
if (isless (x, himark) && isgreaterequal (x, lomark)) abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop >= top12 (128.0f)))
{ {
static const float THREEp14 = 49152.0; /* |x| >= 128 or x is nan. */
int tval, unsafe; if (asuint (x) == asuint (-INFINITY))
float rx, x22, result; return 0.0f;
union ieee754_float ex2_u, scale_u; if (abstop >= top12 (INFINITY))
return x + x;
if (fabsf (x) < FLT_EPSILON / 4.0f) if (x > 0.0f)
return 1.0f + x; return __math_oflowf (0);
if (x <= -150.0f)
{ return __math_uflowf (0);
SET_RESTORE_ROUND_NOEXF (FE_TONEAREST); #if WANT_ERRNO_UFLOW
if (x < -149.0f)
/* 1. Argument reduction. return __math_may_uflowf (0);
Choose integers ex, -128 <= t < 128, and some real #endif
-1/512 <= x1 <= 1/512 so that
x = ex + t/512 + x1.
First, calculate rx = ex + t/256. */
rx = x + THREEp14;
rx -= THREEp14;
x -= rx; /* Compute x=x1. */
/* Compute tval = (ex*256 + t)+128.
Now, t = (tval mod 256)-128 and ex=tval/256 [that's mod, NOT %;
and /-round-to-nearest not the usual c integer /]. */
tval = (int) (rx * 256.0f + 128.0f);
/* 2. Adjust for accurate table entry.
Find e so that
x = ex + t/256 + e + x2
where -7e-4 < e < 7e-4, and
(float)(2^(t/256+e))
is accurate to one part in 2^-64. */
/* 'tval & 255' is the same as 'tval%256' except that it's always
positive.
Compute x = x2. */
x -= __exp2f_deltatable[tval & 255];
/* 3. Compute ex2 = 2^(t/255+e+ex). */
ex2_u.f = __exp2f_atable[tval & 255];
tval >>= 8;
/* x2 is an integer multiple of 2^-30; avoid intermediate
underflow from the calculation of x22 * x. */
unsafe = abs(tval) >= -FLT_MIN_EXP - 32;
ex2_u.ieee.exponent += tval >> unsafe;
scale_u.f = 1.0;
scale_u.ieee.exponent += tval - (tval >> unsafe);
/* 4. Approximate 2^x2 - 1, using a second-degree polynomial,
with maximum error in [-2^-9 - 2^-14, 2^-9 + 2^-14]
less than 1.3e-10. */
x22 = (.24022656679f * x + .69314736128f) * ex2_u.f;
}
/* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex). */
result = x22 * x + ex2_u.f;
if (!unsafe)
return result;
else
{
result *= scale_u.f;
math_check_force_underflow_nonneg (result);
return result;
}
} }
/* Exceptional cases: */
else if (isless (x, himark)) /* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */
{ kd = math_narrow_eval ((double) (xd + SHIFT)); /* Needs to be double. */
if (isinf (x)) ki = asuint64 (kd);
/* e^-inf == 0, with no error. */ kd -= SHIFT; /* k/N for int k. */
return 0; r = xd - kd;
else
/* Underflow */ /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
return TWOM100 * TWOM100; t = T[ki % N];
} t += ki << (52 - EXP2F_TABLE_BITS);
else s = asdouble (t);
/* Return x, if x is a NaN or Inf; or overflow, otherwise. */ z = C[0] * r + C[1];
return TWO127*x; r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return (float) y;
} }
strong_alias (__ieee754_exp2f, __exp2f_finite) strong_alias (__ieee754_exp2f, __exp2f_finite)

View File

@ -0,0 +1,44 @@
/* Shared data between expf, exp2f and powf.
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "math_config.h"
#define N (1 << EXP2F_TABLE_BITS)
const struct exp2f_data __exp2f_data = {
/* tab[i] = uint(2^(i/N)) - (i << 52-BITS)
used for computing 2^(k/N) for an int |k| < 150 N as
double(tab[k%N] + (k << 52-BITS)) */
.tab = {
0x3ff0000000000000, 0x3fefd9b0d3158574, 0x3fefb5586cf9890f, 0x3fef9301d0125b51,
0x3fef72b83c7d517b, 0x3fef54873168b9aa, 0x3fef387a6e756238, 0x3fef1e9df51fdee1,
0x3fef06fe0a31b715, 0x3feef1a7373aa9cb, 0x3feedea64c123422, 0x3feece086061892d,
0x3feebfdad5362a27, 0x3feeb42b569d4f82, 0x3feeab07dd485429, 0x3feea47eb03a5585,
0x3feea09e667f3bcd, 0x3fee9f75e8ec5f74, 0x3feea11473eb0187, 0x3feea589994cce13,
0x3feeace5422aa0db, 0x3feeb737b0cdc5e5, 0x3feec49182a3f090, 0x3feed503b23e255d,
0x3feee89f995ad3ad, 0x3feeff76f2fb5e47, 0x3fef199bdd85529c, 0x3fef3720dcef9069,
0x3fef5818dcfba487, 0x3fef7c97337b9b5f, 0x3fefa4afa2a490da, 0x3fefd0765b6e4540,
},
.shift_scaled = 0x1.8p+52 / N,
.poly = { 0x1.c6af84b912394p-5, 0x1.ebfce50fac4f3p-3, 0x1.62e42ff0c52d6p-1 },
.shift = 0x1.8p+52,
.invln2_scaled = 0x1.71547652b82fep+0 * N,
.poly_scaled = {
0x1.c6af84b912394p-5/N/N/N, 0x1.ebfce50fac4f3p-3/N/N, 0x1.62e42ff0c52d6p-1/N
},
};

View File

@ -1,7 +1,6 @@
/* Single-precision floating point e^x. /* Single-precision e^x function.
Copyright (C) 1997-2017 Free Software Foundation, Inc. Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library. This file is part of the GNU C Library.
Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
The GNU C Library is free software; you can redistribute it and/or The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public modify it under the terms of the GNU Lesser General Public
@ -17,117 +16,87 @@
License along with the GNU C Library; if not, see License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */ <http://www.gnu.org/licenses/>. */
/* How this works:
The input value, x, is written as
x = n * ln(2) + t/512 + delta[t] + x;
where:
- n is an integer, 127 >= n >= -150;
- t is an integer, 177 >= t >= -177
- delta is based on a table entry, delta[t] < 2^-28
- x is whatever is left, |x| < 2^-10
Then e^x is approximated as
e^x = 2^n ( e^(t/512 + delta[t])
+ ( e^(t/512 + delta[t])
* ( p(x + delta[t] + n * ln(2)) - delta ) ) )
where
- p(x) is a polynomial approximating e(x)-1;
- e^(t/512 + delta[t]) is obtained from a table.
The table used is the same one as for the double precision version;
since we have the table, we might as well use it.
It turns out to be faster to do calculations in double precision than
to perform an 'accurate table method' expf, because of the range reduction
overhead (compare exp2f).
*/
#include <float.h>
#include <ieee754.h>
#include <math.h> #include <math.h>
#include <fenv.h> #include <stdint.h>
#include <inttypes.h> #include "math_config.h"
#include <math_private.h>
extern const float __exp_deltatable[178]; /*
extern const double __exp_atable[355] /* __attribute__((mode(DF))) */; EXP2F_TABLE_BITS = 5
EXP2F_POLY_ORDER = 3
static const float TWOM100 = 7.88860905e-31; ULP error: 0.502 (nearest rounding.)
static const float TWO127 = 1.7014118346e+38; Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
Wrong count: 170635 (all nearest rounding wrong results with fma.)
Non-nearest ULP error: 1 (rounded ULP error)
*/
#define N (1 << EXP2F_TABLE_BITS)
#define InvLn2N __exp2f_data.invln2_scaled
#define T __exp2f_data.tab
#define C __exp2f_data.poly_scaled
static inline uint32_t
top12 (float x)
{
return asuint (x) >> 20;
}
float float
__ieee754_expf (float x) __ieee754_expf (float x)
{ {
static const float himark = 88.72283935546875; uint32_t abstop;
static const float lomark = -103.972084045410; uint64_t ki, t;
/* Check for usual case. */ /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
if (isless (x, himark) && isgreater (x, lomark)) double_t kd, xd, z, r, r2, y, s;
xd = (double_t) x;
abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop >= top12 (88.0f)))
{ {
static const float THREEp42 = 13194139533312.0; /* |x| >= 88 or x is nan. */
static const float THREEp22 = 12582912.0; if (asuint (x) == asuint (-INFINITY))
/* 1/ln(2). */ return 0.0f;
#undef M_1_LN2 if (abstop >= top12 (INFINITY))
static const float M_1_LN2 = 1.44269502163f; return x + x;
/* ln(2) */ if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
#undef M_LN2 return __math_oflowf (0);
static const double M_LN2 = .6931471805599452862; if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
return __math_uflowf (0);
int tval; #if WANT_ERRNO_UFLOW
double x22, t, result, dx; if (x < -0x1.9d1d9ep6f) /* x < log(0x1p-149) ~= -103.28 */
float n, delta; return __math_may_uflowf (0);
union ieee754_double ex2_u; #endif
{
SET_RESTORE_ROUND_NOEXF (FE_TONEAREST);
/* Calculate n. */
n = x * M_1_LN2 + THREEp22;
n -= THREEp22;
dx = x - n*M_LN2;
/* Calculate t/512. */
t = dx + THREEp42;
t -= THREEp42;
dx -= t;
/* Compute tval = t. */
tval = (int) (t * 512.0);
if (t >= 0)
delta = - __exp_deltatable[tval];
else
delta = __exp_deltatable[-tval];
/* Compute ex2 = 2^n e^(t/512+delta[t]). */
ex2_u.d = __exp_atable[tval+177];
ex2_u.ieee.exponent += (int) n;
/* Approximate e^(dx+delta) - 1, using a second-degree polynomial,
with maximum error in [-2^-10-2^-28,2^-10+2^-28]
less than 5e-11. */
x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta;
}
/* Return result. */
result = x22 * ex2_u.d + ex2_u.d;
return (float) result;
} }
/* Exceptional cases: */
else if (isless (x, himark)) /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
{ z = InvLn2N * xd;
if (isinf (x))
/* e^-inf == 0, with no error. */ /* Round and convert z to int, the result is in [-150*N, 128*N] and
return 0; ideally ties-to-even rule is used, otherwise the magnitude of r
else can be bigger which gives larger approximation error. */
/* Underflow */ #if TOINT_INTRINSICS
return TWOM100 * TWOM100; kd = roundtoint (z);
} ki = converttoint (z);
else #elif TOINT_RINT
/* Return x, if x is a NaN or Inf; or overflow, otherwise. */ kd = rint (z);
return TWO127*x; ki = (long) kd;
#elif TOINT_SHIFT
# define SHIFT __exp2f_data.shift
kd = math_narrow_eval ((double) (z + SHIFT)); /* Needs to be double. */
ki = asuint64 (kd);
kd -= SHIFT;
#endif
r = z - kd;
/* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
t = T[ki % N];
t += ki << (52 - EXP2F_TABLE_BITS);
s = asdouble (t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return (float) y;
} }
strong_alias (__ieee754_expf, __expf_finite) strong_alias (__ieee754_expf, __expf_finite)

View File

@ -0,0 +1,114 @@
/* Configuration for math routines.
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef _MATH_CONFIG_H
#define _MATH_CONFIG_H
#include <math.h>
#include <math_private.h>
#include <stdint.h>
#ifndef WANT_ROUNDING
/* Correct special case results in non-nearest rounding modes. */
# define WANT_ROUNDING 1
#endif
#ifndef WANT_ERRNO
/* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */
# define WANT_ERRNO 1
#endif
#ifndef WANT_ERRNO_UFLOW
/* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */
# define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO)
#endif
#ifndef TOINT_INTRINSICS
# define TOINT_INTRINSICS 0
#endif
#ifndef TOINT_RINT
# define TOINT_RINT 0
#endif
#ifndef TOINT_SHIFT
# define TOINT_SHIFT 1
#endif
static inline uint32_t
asuint (float f)
{
union
{
float f;
uint32_t i;
} u = {f};
return u.i;
}
static inline float
asfloat (uint32_t i)
{
union
{
uint32_t i;
float f;
} u = {i};
return u.f;
}
static inline uint64_t
asuint64 (double f)
{
union
{
double f;
uint64_t i;
} u = {f};
return u.i;
}
static inline double
asdouble (uint64_t i)
{
union
{
uint64_t i;
double f;
} u = {i};
return u.f;
}
#define NOINLINE __attribute__ ((noinline))
attribute_hidden float __math_oflowf (unsigned long);
attribute_hidden float __math_uflowf (unsigned long);
attribute_hidden float __math_may_uflowf (unsigned long);
attribute_hidden float __math_divzerof (unsigned long);
attribute_hidden float __math_invalidf (float);
/* Shared between expf, exp2f and powf. */
#define EXP2F_TABLE_BITS 5
#define EXP2F_POLY_ORDER 3
extern const struct exp2f_data
{
uint64_t tab[1 << EXP2F_TABLE_BITS];
double shift_scaled;
double poly[EXP2F_POLY_ORDER];
double shift;
double invln2_scaled;
double poly_scaled[EXP2F_POLY_ORDER];
} __exp2f_data attribute_hidden;
#endif

View File

@ -0,0 +1,76 @@
/* Single-precision math error handling.
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "math_config.h"
#if WANT_ERRNO
# include <errno.h>
/* NOINLINE reduces code size. */
NOINLINE static float
with_errnof (float y, int e)
{
errno = e;
return y;
}
#else
# define with_errnof(x, e) (x)
#endif
/* NOINLINE prevents fenv semantics breaking optimizations. */
NOINLINE static float
xflowf (unsigned long sign, float y)
{
y = (sign ? -y : y) * y;
return with_errnof (y, ERANGE);
}
attribute_hidden float
__math_uflowf (unsigned long sign)
{
return xflowf (sign, 0x1p-95f);
}
#if WANT_ERRNO_UFLOW
/* Underflows to zero in some non-nearest rounding mode, setting errno
is valid even if the result is non-zero, but in the subnormal range. */
attribute_hidden float
__math_may_uflowf (unsigned long sign)
{
return xflowf (sign, 0x1.4p-75f);
}
#endif
attribute_hidden float
__math_oflowf (unsigned long sign)
{
return xflowf (sign, 0x1p97f);
}
attribute_hidden float
__math_divzerof (unsigned long sign)
{
float y = 0;
return with_errnof ((sign ? -1 : 1) / y, ERANGE);
}
attribute_hidden float
__math_invalidf (float x)
{
float y = (x - x) / (x - x);
return isnan (x) ? y : with_errnof (y, EDOM);
}

View File

@ -1,351 +0,0 @@
/* Accurate tables for exp2f().
Copyright (C) 1998-2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* This table has the property that, for all integers -128 <= i <= 127,
exp(i/256.0 + __exp2f_deltatable[i-128]) == __exp2f_atable[i+128] + r
for some -2^-35 < r < 2^-35 (abs(r) < 2^-36 if i <= 0); and that
__exp2f_deltatable[i+128] == t * 2^-30
for integer t so that abs(t) <= 43447 * 2^0. */
#define W30 (9.31322575e-10)
static const float __exp2f_deltatable[256] = {
-810*W30, 283*W30, -1514*W30, 1304*W30,
-1148*W30, -98*W30, -744*W30, -156*W30,
-419*W30, -155*W30, 474*W30, 167*W30,
-1984*W30, -826*W30, 692*W30, 781*W30,
-578*W30, -411*W30, -129*W30, -1500*W30,
654*W30, -141*W30, -816*W30, -53*W30,
148*W30, 493*W30, -2214*W30, 760*W30,
260*W30, 750*W30, -1300*W30, 1424*W30,
-1445*W30, -339*W30, -680*W30, -349*W30,
-922*W30, 531*W30, 193*W30, -2892*W30,
290*W30, -2145*W30, -276*W30, 485*W30,
-695*W30, 215*W30, -7093*W30, 412*W30,
-4596*W30, 367*W30, 592*W30, -615*W30,
-97*W30, -1066*W30, 972*W30, -226*W30,
-625*W30, -374*W30, -5647*W30, -180*W30,
20349*W30, -447*W30, 111*W30, -4164*W30,
-87*W30, -21*W30, -251*W30, 66*W30,
-517*W30, 2093*W30, -263*W30, 182*W30,
-601*W30, 475*W30, -483*W30, -1251*W30,
-373*W30, 1471*W30, -92*W30, -215*W30,
-97*W30, -190*W30, 0*W30, -290*W30,
-2647*W30, 1940*W30, -582*W30, 28*W30,
833*W30, 1493*W30, 34*W30, 321*W30,
3327*W30, -35*W30, 177*W30, -135*W30,
-796*W30, -428*W30, 129*W30, 9332*W30,
-12*W30, -69*W30, -1743*W30, 6508*W30,
-60*W30, 359*W30, 43447*W30, 15*W30,
-23*W30, -305*W30, -375*W30, -652*W30,
667*W30, 269*W30, -1575*W30, 185*W30,
-329*W30, 200*W30, 6002*W30, 163*W30,
-647*W30, 19*W30, -603*W30, -755*W30,
742*W30, -438*W30, 3587*W30, 2560*W30,
0*W30, -520*W30, -241*W30, -299*W30,
-1270*W30, -991*W30, -1138*W30, 255*W30,
-1192*W30, 1722*W30, 1023*W30, 3700*W30,
-1388*W30, -1551*W30, -2549*W30, 27*W30,
282*W30, 673*W30, 113*W30, 1561*W30,
72*W30, 873*W30, 87*W30, -395*W30,
-433*W30, 629*W30, 3440*W30, -284*W30,
-592*W30, -103*W30, -46*W30, -3844*W30,
1712*W30, 303*W30, 1555*W30, -631*W30,
-1400*W30, -961*W30, -854*W30, -276*W30,
407*W30, 833*W30, -345*W30, -1501*W30,
121*W30, -1581*W30, 400*W30, 150*W30,
1224*W30, -139*W30, -563*W30, 879*W30,
933*W30, 2939*W30, 788*W30, 211*W30,
530*W30, -192*W30, 706*W30, -13347*W30,
1065*W30, 3*W30, 111*W30, -208*W30,
-360*W30, -532*W30, -291*W30, 483*W30,
987*W30, -33*W30, -1373*W30, -166*W30,
-1174*W30, -3955*W30, 1601*W30, -280*W30,
1405*W30, 600*W30, -1659*W30, -23*W30,
390*W30, 449*W30, 570*W30, -13143*W30,
-9*W30, -1646*W30, 1201*W30, 294*W30,
2181*W30, -1173*W30, 1388*W30, -4504*W30,
190*W30, -2304*W30, 211*W30, 239*W30,
48*W30, -817*W30, 1018*W30, 1828*W30,
-663*W30, 1408*W30, 408*W30, -36*W30,
1295*W30, -230*W30, 1341*W30, 9*W30,
40*W30, 705*W30, 186*W30, 376*W30,
557*W30, 5866*W30, 363*W30, -1558*W30,
718*W30, 669*W30, 1369*W30, -2972*W30,
-468*W30, -121*W30, -219*W30, 667*W30,
29954*W30, 366*W30, 48*W30, -203*W30
};
static const float __exp2f_atable[256] /* __attribute__((mode(SF))) */ = {
0.707106411447, /* 0x0.b504ecfff */
0.709024071690, /* 0x0.b58299fff */
0.710945606239, /* 0x0.b60088000 */
0.712874472142, /* 0x0.b67ef1000 */
0.714806139464, /* 0x0.b6fd88fff */
0.716744661340, /* 0x0.b77c94000 */
0.718687653549, /* 0x0.b7fbea000 */
0.720636486992, /* 0x0.b87ba1fff */
0.722590208040, /* 0x0.b8fbabfff */
0.724549472323, /* 0x0.b97c12fff */
0.726514220228, /* 0x0.b9fcd5fff */
0.728483855735, /* 0x0.ba7deb000 */
0.730457961549, /* 0x0.baff4afff */
0.732438981522, /* 0x0.bb811efff */
0.734425544748, /* 0x0.bc0350000 */
0.736416816713, /* 0x0.bc85d0000 */
0.738412797450, /* 0x0.bd089efff */
0.740414917465, /* 0x0.bd8bd4fff */
0.742422521111, /* 0x0.be0f66fff */
0.744434773914, /* 0x0.be9346fff */
0.746454179287, /* 0x0.bf179f000 */
0.748477637755, /* 0x0.bf9c3afff */
0.750506639473, /* 0x0.c02133fff */
0.752541840064, /* 0x0.c0a694fff */
0.754582285889, /* 0x0.c12c4e000 */
0.756628334525, /* 0x0.c1b265000 */
0.758678436269, /* 0x0.c238bffff */
0.760736882681, /* 0x0.c2bfa6fff */
0.762799203401, /* 0x0.c346cf000 */
0.764867603790, /* 0x0.c3ce5d000 */
0.766940355298, /* 0x0.c45633fff */
0.769021093841, /* 0x0.c4de90fff */
0.771104693409, /* 0x0.c5671dfff */
0.773195922364, /* 0x0.c5f02afff */
0.775292098512, /* 0x0.c6798afff */
0.777394294745, /* 0x0.c70350000 */
0.779501736166, /* 0x0.c78d6d000 */
0.781615912910, /* 0x0.c817fafff */
0.783734917628, /* 0x0.c8a2d9fff */
0.785858273516, /* 0x0.c92e02000 */
0.787990570071, /* 0x0.c9b9c0000 */
0.790125787245, /* 0x0.ca45aefff */
0.792268991467, /* 0x0.cad223fff */
0.794417440881, /* 0x0.cb5ef0fff */
0.796570718287, /* 0x0.cbec0efff */
0.798730909811, /* 0x0.cc79a0fff */
0.800892710672, /* 0x0.cd074dfff */
0.803068041795, /* 0x0.cd95ddfff */
0.805242776881, /* 0x0.ce2464000 */
0.807428598393, /* 0x0.ceb3a3fff */
0.809617877002, /* 0x0.cf431dfff */
0.811812341211, /* 0x0.cfd2eefff */
0.814013659956, /* 0x0.d06333000 */
0.816220164311, /* 0x0.d0f3ce000 */
0.818434238424, /* 0x0.d184e7fff */
0.820652604094, /* 0x0.d21649fff */
0.822877407074, /* 0x0.d2a818000 */
0.825108587751, /* 0x0.d33a51000 */
0.827342867839, /* 0x0.d3ccbdfff */
0.829588949684, /* 0x0.d45ff1000 */
0.831849217401, /* 0x0.d4f411fff */
0.834093391880, /* 0x0.d58724fff */
0.836355149750, /* 0x0.d61b5f000 */
0.838620424257, /* 0x0.d6afd3fff */
0.840896368027, /* 0x0.d744fc000 */
0.843176305293, /* 0x0.d7da66fff */
0.845462262643, /* 0x0.d87037000 */
0.847754716864, /* 0x0.d90673fff */
0.850052893157, /* 0x0.d99d10fff */
0.852359056469, /* 0x0.da3433fff */
0.854668736446, /* 0x0.dacb91fff */
0.856986224651, /* 0x0.db6373000 */
0.859309315673, /* 0x0.dbfbb1fff */
0.861639738080, /* 0x0.dc946bfff */
0.863975346095, /* 0x0.dd2d7d000 */
0.866317391394, /* 0x0.ddc6f9fff */
0.868666708472, /* 0x0.de60f1000 */
0.871022939695, /* 0x0.defb5c000 */
0.873383641229, /* 0x0.df9611fff */
0.875751554968, /* 0x0.e03141000 */
0.878126025200, /* 0x0.e0ccde000 */
0.880506813521, /* 0x0.e168e4fff */
0.882894217966, /* 0x0.e2055afff */
0.885287821299, /* 0x0.e2a239000 */
0.887686729423, /* 0x0.e33f6ffff */
0.890096127973, /* 0x0.e3dd56fff */
0.892507970338, /* 0x0.e47b67000 */
0.894928157336, /* 0x0.e51a03000 */
0.897355020043, /* 0x0.e5b90efff */
0.899788379682, /* 0x0.e65888000 */
0.902227103705, /* 0x0.e6f85afff */
0.904673457151, /* 0x0.e798ae000 */
0.907128036008, /* 0x0.e8398afff */
0.909585535528, /* 0x0.e8da99000 */
0.912051796915, /* 0x0.e97c3a000 */
0.914524436003, /* 0x0.ea1e46000 */
0.917003571999, /* 0x0.eac0bf000 */
0.919490039339, /* 0x0.eb63b2fff */
0.921983361257, /* 0x0.ec071a000 */
0.924488604054, /* 0x0.ecab48fff */
0.926989555360, /* 0x0.ed4f30000 */
0.929502844812, /* 0x0.edf3e6000 */
0.932021975503, /* 0x0.ee98fdfff */
0.934553921208, /* 0x0.ef3eecfff */
0.937083780759, /* 0x0.efe4b8fff */
0.939624726786, /* 0x0.f08b3f000 */
0.942198514924, /* 0x0.f133ebfff */
0.944726586343, /* 0x0.f1d99a000 */
0.947287976728, /* 0x0.f28176fff */
0.949856162070, /* 0x0.f329c5fff */
0.952431440345, /* 0x0.f3d28bfff */
0.955013573175, /* 0x0.f47bc5000 */
0.957603693021, /* 0x0.f52584000 */
0.960199773321, /* 0x0.f5cfa7000 */
0.962801992906, /* 0x0.f67a31000 */
0.965413510788, /* 0x0.f72556fff */
0.968030691152, /* 0x0.f7d0dc000 */
0.970655620084, /* 0x0.f87ce2fff */
0.973290979849, /* 0x0.f92998fff */
0.975926160805, /* 0x0.f9d64bfff */
0.978571653370, /* 0x0.fa83ac000 */
0.981225252139, /* 0x0.fb3193fff */
0.983885228626, /* 0x0.fbdfe6fff */
0.986552715296, /* 0x0.fc8eb7fff */
0.989228487027, /* 0x0.fd3e14000 */
0.991909801964, /* 0x0.fdedcd000 */
0.994601726545, /* 0x0.fe9e38000 */
0.997297704209, /* 0x0.ff4ee6fff */
1.000000000000, /* 0x1.000000000 */
1.002710938457, /* 0x1.00b1aa000 */
1.005429744692, /* 0x1.0163d7ffe */
1.008155703526, /* 0x1.02167dffe */
1.010888457284, /* 0x1.02c995fff */
1.013629436498, /* 0x1.037d38000 */
1.016377568250, /* 0x1.043152000 */
1.019134163841, /* 0x1.04e5f9ffe */
1.021896362316, /* 0x1.059b00000 */
1.024668931945, /* 0x1.0650b3ffe */
1.027446627635, /* 0x1.0706be001 */
1.030234098408, /* 0x1.07bd6bffe */
1.033023953416, /* 0x1.087441ffe */
1.035824656494, /* 0x1.092bce000 */
1.038632392900, /* 0x1.09e3d0001 */
1.041450142840, /* 0x1.0a9c79ffe */
1.044273972530, /* 0x1.0b558a001 */
1.047105550795, /* 0x1.0c0f1c001 */
1.049944162390, /* 0x1.0cc924001 */
1.052791833895, /* 0x1.0d83c4001 */
1.055645227426, /* 0x1.0e3ec3fff */
1.058507919326, /* 0x1.0efa60001 */
1.061377286898, /* 0x1.0fb66bfff */
1.064254641510, /* 0x1.1072fdffe */
1.067140102389, /* 0x1.113018000 */
1.070034146304, /* 0x1.11edc1fff */
1.072937250162, /* 0x1.12ac04001 */
1.075843691823, /* 0x1.136a7dfff */
1.078760385496, /* 0x1.1429a3ffe */
1.081685543070, /* 0x1.14e958000 */
1.084618330005, /* 0x1.15a98c000 */
1.087556362176, /* 0x1.166a18001 */
1.090508937863, /* 0x1.172b98001 */
1.093464612954, /* 0x1.17ed4bfff */
1.096430182434, /* 0x1.18afa5ffe */
1.099401354802, /* 0x1.19725e000 */
1.102381587017, /* 0x1.1a35adfff */
1.105370759965, /* 0x1.1af994000 */
1.108367800686, /* 0x1.1bbdfdffe */
1.111373305331, /* 0x1.1c82f6000 */
1.114387035385, /* 0x1.1d4878001 */
1.117408752440, /* 0x1.1e0e7ffff */
1.120437502874, /* 0x1.1ed4fe000 */
1.123474478729, /* 0x1.1f9c06000 */
1.126521706601, /* 0x1.2063ba001 */
1.129574775716, /* 0x1.212bd0001 */
1.132638812065, /* 0x1.21f49e000 */
1.135709524130, /* 0x1.22bddbffe */
1.138789534565, /* 0x1.2387b5fff */
1.141876101508, /* 0x1.2451fe000 */
1.144971728301, /* 0x1.251cddffe */
1.148077130296, /* 0x1.25e861ffe */
1.151189923305, /* 0x1.26b462001 */
1.154312610610, /* 0x1.278107ffe */
1.157440662410, /* 0x1.284e08001 */
1.160578370109, /* 0x1.291baa001 */
1.163725256932, /* 0x1.29e9e6000 */
1.166879892324, /* 0x1.2ab8a3ffe */
1.170044302935, /* 0x1.2b8805fff */
1.173205971694, /* 0x1.2c5739ffe */
1.176397800428, /* 0x1.2d2867ffe */
1.179586529747, /* 0x1.2df962001 */
1.182784795737, /* 0x1.2ecafbffe */
1.185991406414, /* 0x1.2f9d21ffe */
1.189206838636, /* 0x1.306fdc001 */
1.192430973067, /* 0x1.314328000 */
1.195664167430, /* 0x1.32170c001 */
1.198906540890, /* 0x1.32eb8a001 */
1.202157497408, /* 0x1.33c098000 */
1.205416083326, /* 0x1.349625fff */
1.208683252332, /* 0x1.356c43fff */
1.211961269402, /* 0x1.364318001 */
1.215246438983, /* 0x1.371a64000 */
1.218539118740, /* 0x1.37f22dffe */
1.221847295770, /* 0x1.38cafc000 */
1.225158572187, /* 0x1.39a3fdfff */
1.228481650325, /* 0x1.3a7dc5ffe */
1.231811761846, /* 0x1.3b5803fff */
1.235149741144, /* 0x1.3c32c5ffe */
1.238499879811, /* 0x1.3d0e53ffe */
1.241858124726, /* 0x1.3dea69fff */
1.245225191102, /* 0x1.3ec713fff */
1.248601436624, /* 0x1.3fa458000 */
1.251975655584, /* 0x1.40817a001 */
1.255380749731, /* 0x1.4160a2001 */
1.258783102010, /* 0x1.423f9bffe */
1.262198328973, /* 0x1.431f6e000 */
1.265619754780, /* 0x1.43ffa7fff */
1.269052743928, /* 0x1.44e0a4001 */
1.272490739830, /* 0x1.45c1f4000 */
1.275942921659, /* 0x1.46a432001 */
1.279397487615, /* 0x1.478697ffe */
1.282870173427, /* 0x1.486a2dffe */
1.286346316319, /* 0x1.494dfdffe */
1.289836049094, /* 0x1.4a32b2001 */
1.293333172770, /* 0x1.4b17e1ffe */
1.296839594835, /* 0x1.4bfdadfff */
1.300354957560, /* 0x1.4ce40fffe */
1.303882122055, /* 0x1.4dcb38001 */
1.307417988757, /* 0x1.4eb2f1ffe */
1.310960650439, /* 0x1.4f9b1dfff */
1.314516782746, /* 0x1.50842bfff */
1.318079948424, /* 0x1.516daffff */
1.321653246888, /* 0x1.5257de000 */
1.325237751030, /* 0x1.5342c8001 */
1.328829526907, /* 0x1.542e2c000 */
1.332433700535, /* 0x1.551a5fffe */
1.336045145966, /* 0x1.56070dffe */
1.339667558645, /* 0x1.56f473ffe */
1.343300342533, /* 0x1.57e287ffe */
1.346941947961, /* 0x1.58d130001 */
1.350594043714, /* 0x1.59c087ffe */
1.354256033883, /* 0x1.5ab085fff */
1.357932448365, /* 0x1.5ba175ffe */
1.361609339707, /* 0x1.5c926dfff */
1.365299344044, /* 0x1.5d8441ffe */
1.369003057507, /* 0x1.5e76fc001 */
1.372714757920, /* 0x1.5f6a3c000 */
1.376437187179, /* 0x1.605e2fffe */
1.380165219333, /* 0x1.615282001 */
1.383909463864, /* 0x1.6247e3ffe */
1.387661933907, /* 0x1.633dd0000 */
1.391424179060, /* 0x1.64345fffe */
1.395197510706, /* 0x1.652ba9fff */
1.399006724329, /* 0x1.66254dffe */
1.402773022651, /* 0x1.671c22000 */
1.406576037403, /* 0x1.68155dfff */
1.410389423392, /* 0x1.690f48001 */
};

View File

@ -0,0 +1 @@
/* Not needed. */

View File

@ -0,0 +1 @@
/* Not needed. */