since
https://sourceware.org/ml/libc-alpha/2014-04/msg00006.html
setcontext etc is no longer tied to the kernel use of ucontext.
in that patch the ucontext reserved space is not used consistently
with the kernel abi: the d8,d9 pair is saved in the slot of q8.
this is ok (*context functions work together), but probably not
desirable (ucontexts created by the kernel and getcontext are
subtly different).
the fix just replaces dN with qN in the save/restore code, which
does a bit more than needed (saves/restores the top half of qN that
is not callee saved), but this should not be an issue (and avoids
having to deal with endianness).
(kernel fpsimd context layout: the first 64bit contains 0x210 the fpsimd
context size and 0x46508001 the FPSIMD_MAGIC, the second 64bit is for
fpsr and fpcr, and the rest is the 128bit q0..q31 registers).
given d8=8.1, d9=9.1,... d15=15.1, the context created by getcontext is
current:
(gdb) x/40xg ctx.uc_mcontext.__reserved
0x410df0 <ctx+464>: 0x0000021046508001 0x0000000000000000
0x410e00 <ctx+480>: 0x0000000000000000 0x0000000000000000
0x410e10 <ctx+496>: 0x0000000000000000 0x0000000000000000
0x410e20 <ctx+512>: 0x0000000000000000 0x0000000000000000
0x410e30 <ctx+528>: 0x0000000000000000 0x0000000000000000
0x410e40 <ctx+544>: 0x0000000000000000 0x0000000000000000
0x410e50 <ctx+560>: 0x0000000000000000 0x0000000000000000
0x410e60 <ctx+576>: 0x0000000000000000 0x0000000000000000
0x410e70 <ctx+592>: 0x0000000000000000 0x0000000000000000
0x410e80 <ctx+608>: 0x4020333333333333 0x4022333333333333
0x410e90 <ctx+624>: 0x0000000000000000 0x0000000000000000
0x410ea0 <ctx+640>: 0x4024333333333333 0x4026333333333333
0x410eb0 <ctx+656>: 0x0000000000000000 0x0000000000000000
0x410ec0 <ctx+672>: 0x4028333333333333 0x402a333333333333
0x410ed0 <ctx+688>: 0x0000000000000000 0x0000000000000000
0x410ee0 <ctx+704>: 0x402c333333333333 0x402e333333333333
0x410ef0 <ctx+720>: 0x0000000000000000 0x0000000000000000
0x410f00 <ctx+736>: 0x0000000000000000 0x0000000000000000
0x410f10 <ctx+752>: 0x0000000000000000 0x0000000000000000
0x410f20 <ctx+768>: 0x0000000000000000 0x0000000000000000
fixed:
(gdb) x/40xg ctx.uc_mcontext.__reserved
0x410d70 <ctx+464>: 0x0000021046508001 0x0000000000000000
0x410d80 <ctx+480>: 0x0000000000000000 0x0000000000000000
0x410d90 <ctx+496>: 0x0000000000000000 0x0000000000000000
0x410da0 <ctx+512>: 0x0000000000000000 0x0000000000000000
0x410db0 <ctx+528>: 0x0000000000000000 0x0000000000000000
0x410dc0 <ctx+544>: 0x0000000000000000 0x0000000000000000
0x410dd0 <ctx+560>: 0x0000000000000000 0x0000000000000000
0x410de0 <ctx+576>: 0x0000000000000000 0x0000000000000000
0x410df0 <ctx+592>: 0x0000000000000000 0x0000000000000000
0x410e00 <ctx+608>: 0x4020333333333333 0x0000000000000000
0x410e10 <ctx+624>: 0x4022333333333333 0x0000000000000000
0x410e20 <ctx+640>: 0x4024333333333333 0x0000000000000000
0x410e30 <ctx+656>: 0x4026333333333333 0x0000000000000000
0x410e40 <ctx+672>: 0x4028333333333333 0x0000000000000000
0x410e50 <ctx+688>: 0x402a333333333333 0x0000000000000000
0x410e60 <ctx+704>: 0x402c333333333333 0x0000000000000000
0x410e70 <ctx+720>: 0x402e333333333333 0x0000000000000000
0x410e80 <ctx+736>: 0x0000000000000000 0x0000000000000000
0x410e90 <ctx+752>: 0x0000000000000000 0x0000000000000000
0x410ea0 <ctx+768>: 0x0000000000000000 0x0000000000000000
2015-07-06 Szabolcs Nagy <szabolcs.nagy@arm.com>
* sysdeps/unix/sysv/linux/aarch64/getcontext.S (__getcontext): Use q
registers instead of d ones so the layout is kernel abi compatible.
* sysdeps/unix/sysv/linux/aarch64/setcontext.S (__setcontext): Likewise.
* sysdeps/unix/sysv/linux/aarch64/swapcontext.S (__swapcontext):
Likewise.# Please enter the commit message for your changes. Lines starting
In the ldbl-128 implementation of expm1l, when expm1l's result should
underflow to 0 (argument minus the least subnormal, in some rounding
modes), it can be a zero of the wrong sign. This patch fixes this in
the same way previously used for the x86 / x86_64 versions.
Tested for mips64.
[BZ #18619]
* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Force underflow
and return argument in case of subnormal argument.
This patch combines BUSY_WAIT_NOP and atomic_delay into a new
atomic_spin_nop function and adjusts all clients. The new function is
put into atomic.h because what is best done in a spin loop is
architecture-specific, and atomics must be used for spinning. The
function name is meant to tell users that this has no effect on
synchronization semantics but is a performance aid for spinning.
In non-default rounding modes, tgamma can be slightly less accurate
than permitted by glibc's accuracy goals.
Part of the problem is error accumulation, addressed in this patch by
setting round-to-nearest for internal computations. However, there
was also a bug in the code dealing with computing pow (x + n, x + n)
where x + n is not exactly representable, providing another source of
error even in round-to-nearest mode; it was necessary to address both
bugs to get errors for all testcases within glibc's accuracy goals.
Given this second fix, accuracy in round-to-nearest mode is also
improved (hence regeneration of ulps for tgamma should be from scratch
- truncate libm-test-ulps or at least remove existing tgamma entries -
so that the expected ulps can be reduced).
Some additional complications also arose. Certain tgamma tests should
strictly, according to IEEE semantics, overflow or not depending on
the rounding mode; this is beyond the scope of glibc's accuracy goals
for any function without exactly-determined results, but
gen-auto-libm-tests doesn't handle being lax there as it does for
underflow. (libm-test.inc also doesn't handle being lax about whether
the result in cases very close to the overflow threshold is infinity
or a finite value close to overflow, but that doesn't cause problems
in this case though I've seen it cause problems with random test
generation for some functions.) Thus, spurious-overflow markings,
with a comment, are added to auto-libm-test-in (no bug in Bugzilla
because the issue is with the testsuite, not a user-visible bug in
glibc). And on x86, after the patch I saw ERANGE issues as previously
reported by Carlos (see my commentary in
<https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>), which
needed addressing by ensuring excess range and precision were
eliminated at various points if FLT_EVAL_METHOD != 0.
I also noticed and fixed a cosmetic issue where 1.0f was used in long
double functions and should have been 1.0L.
This completes the move of all functions to testing in all rounding
modes with ALL_RM_TEST, so gen-libm-have-vector-test.sh is updated to
remove the workaround for some functions not using ALL_RM_TEST.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18613]
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Take log of
X_ADJ not X when adjusting exponent.
(__ieee754_gamma_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Take log
of X_ADJ not X when adjusting exponent.
(__ieee754_gammaf_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive): Take
log of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive): Take
log of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive): Take log
of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* math/libm-test.inc (tgamma_test_data): Remove one test. Moved
to auto-libm-test-in.
(tgamma_test): Use ALL_RM_TEST.
* math/auto-libm-test-in: Add one test of tgamma. Mark some other
tests of tgamma with spurious-overflow.
* math/auto-libm-test-out: Regenerated.
* math/gen-libm-have-vector-test.sh: Do not check for START.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The ldbl-128 implementation of j1l produces spurious underflow
exceptions for some small arguments, as a result of squaring the
argument. This patch fixes it just to use a linear approximation for
sufficiently small arguments, and then to force an underflow exception
only in the cases where it is required.
Tested for mips64.
[BZ #18612]
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): For small
arguments, just return 0.5 times the argument, with underflow
forced as needed.
* math/auto-libm-test-in: Add more tests of j1.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, j1 and jn implementations
can fail to raise the underflow exception when the internal
computation is exact although the actual function is inexact. This
patch forces the exception in a similar way to other such fixes. (The
ldbl-128 / ldbl-128ibm j1l implementation is different and doesn't
need a change for this until spurious underflows in it are fixed.)
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16559]
* sysdeps/ieee754/dbl-64/e_j1.c: Include <float.h>.
(__ieee754_j1): Force underflow exception for small results.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Include <float.h>.
(__ieee754_j1f): Force underflow exception for small results.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c: Include <float.h>.
(__ieee754_j1l): Force underflow exception for small results.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Add more tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
This patch updates installed glibc headers for new definitions from
Linux 4.0 and 4.1 that seem relevant to glibc headers. In addition, I
noticed that PF_IB / AF_IB, added in Linux 3.11, were missing for no
obvious reason, so added those as well.
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch).
* sysdeps/unix/sysv/linux/bits/in.h (IP_CHECKSUM): New macro.
* sysdeps/unix/sysv/linux/bits/socket.h (PF_IB): Likewise.
(PF_MPLS): Likewise.
(AF_IB): Likewise.
(AF_MPLS): Likewise.
* sysdeps/unix/sysv/linux/sys/mount.h (MS_LAZYTIME): New enum
value and macro.
(MS_RMT_MASK): Include MS_LAZYTIME.
This tag allows debugging of MIPS position independent executables
and provides access to shared library information.
* elf/elf.h (DT_MIPS_RLD_MAP_REL): New macro.
(DT_MIPS_NUM): Update.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_DEBUG_SETUP): Handle
DT_MIPS_RLD_MAP_REL.
Some existing jn tests, if run in non-default rounding modes, produce
errors above those accepted in glibc, which causes problems for moving
tests of jn to use ALL_RM_TEST. This patch makes jn set rounding
to-nearest internally, as was done for yn some time ago, then computes
the appropriate underflowing value for results that underflowed to
zero in to-nearest, and moves the tests to ALL_RM_TEST. It does
nothing about the general inaccuracy of Bessel function
implementations in glibc, though it should make jn more accurate on
average in non-default rounding modes through reduced error
accumulation. The recomputation of results that underflowed to zero
should as a side-effect fix some cases of bug 16559, where jn just
used an exact zero, but that is *not* the goal of this patch and other
cases of that bug remain unfixed.
(Most of the changes in the patch are reindentation to add new scopes
for SET_RESTORE_ROUND*.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16559]
[BZ #18602]
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Set
round-to-nearest internally then recompute results that
underflowed to zero in the original rounding mode.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise
* math/libm-test.inc (jn_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
cexp, ccos, ccosh, csin and csinh have spurious underflows in cases
where they compute sin of the smallest normal, that produces an
underflow exception (depending on which sin implementation is in use)
but the final result does not underflow. ctan and ctanh may also have
such underflows, or they may be latent (the issue there is that
e.g. ctan (DBL_MIN) should, rounded upwards, be the next double value
above DBL_MIN, which under glibc's accuracy goals may not have an
underflow exception, but the intermediate computation of sin (DBL_MIN)
would legitimately underflow on before-rounding architectures).
This patch fixes all those functions so they use plain comparisons (>
DBL_MIN etc.) instead of comparing the result of fpclassify with
FP_SUBNORMAL (in all these cases, we already know the number being
compared is finite). Note that in the case of csin / csinf / csinl,
there is no need for fabs calls in the comparison because the real
part has already been reduced to its absolute value.
As the patch fixes the failures that previously obstructed moving
tests of cexp to use ALL_RM_TEST, those tests are moved to ALL_RM_TEST
by the patch (two functions remain yet to be converted).
Tested for x86_64 and x86 and ulps updated accordingly.
[BZ #18594]
* math/s_ccosh.c (__ccosh): Compare with least normal value
instead of comparing class with FP_SUBNORMAL.
* math/s_ccoshf.c (__ccoshf): Likewise.
* math/s_ccoshl.c (__ccoshl): Likewise.
* math/s_cexp.c (__cexp): Likewise.
* math/s_cexpf.c (__cexpf): Likewise.
* math/s_cexpl.c (__cexpl): Likewise.
* math/s_csin.c (__csin): Likewise.
* math/s_csinf.c (__csinf): Likewise.
* math/s_csinh.c (__csinh): Likewise.
* math/s_csinhf.c (__csinhf): Likewise.
* math/s_csinhl.c (__csinhl): Likewise.
* math/s_csinl.c (__csinl): Likewise.
* math/s_ctan.c (__ctan): Likewise.
* math/s_ctanf.c (__ctanf): Likewise.
* math/s_ctanh.c (__ctanh): Likewise.
* math/s_ctanhf.c (__ctanhf): Likewise.
* math/s_ctanhl.c (__ctanhl): Likewise.
* math/s_ctanl.c (__ctanl): Likewise.
* math/auto-libm-test-in: Add more tests of ccos, ccosh, cexp,
csin, csinh, ctan and ctanh.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (cexp_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
csin and csinh can produce bad results when overflowing in directed
rounding modes, because a multiplication that can overflow is followed
by a possible negation. This patch fixes this by negating one of the
arguments of the multiplication before the multiplication instead of
negating the result.
The new tests for this issue are added to auto-libm-test-in, starting
use of that file for csin and csinh. The issue was found in the
course of moving existing tests for csin and csinh (existing tests, by
being enabled in more cases than previously, showed the issue for
float and double but not for long double); that move will now be done
separately.
Tested for x86_64 and x86 and ulps updated accordingly.
[BZ #18593]
* math/s_csin.c (__csin): Negate before rather than after possibly
overflowing multiplication.
* math/s_csinf.c (__csinf): Likewise.
* math/s_csinh.c (__csinh): Likewise.
* math/s_csinhf.c (__csinhf): Likewise.
* math/s_csinhl.c (__csinhl): Likewise.
* math/s_csinl.c (__csinl): Likewise.
* math/auto-libm-test-in: Add some tests of csin and csinh.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (csin_test_data): Use AUTO_TESTS_c_c.
(csinh_test_data): Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
Similar to various other bugs in this area, the ldbl-128 expl
implementation does not raise the underflow exception for all
subnormal results, if the scaling down is exact although the actual
result is inexact. This patch fixes this by forcing the exception in
this case (the tests that failed before and pass after the test are
already in the testsuite).
Tested for mips64.
[BZ #18586]
* sysdeps/ieee754/ldbl-128/e_expl.c (__ieee754_expl): Force
underflow exception for small results.
Similar to various other bugs in this area, some sin and sincos
implementations do not raise the underflow exception for subnormal
arguments, when the result is tiny and inexact. This patch forces the
exception in a similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16526]
[BZ #16538]
* sysdeps/ieee754/dbl-64/s_sin.c: Include <float.h>.
(__sin): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/k_sinf.c: Include <float.h>.
(__kernel_sinf): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/k_sincosl.c: Include <float.h>.
(__kernel_sincosl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/k_sincosl.c: Include <float.h>.
(__kernel_sincosl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-96/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/powerpc/fpu/k_sinf.c: Include <float.h>.
(__kernel_sinf): Force underflow exception for arguments with
small absolute value.
* math/auto-libm-test-in: Add more tests of sin and sincos.
* math/auto-libm-test-out: Regenerated.
__kernel_standard_l converts long double arguments to double for use
in SVID "struct exception". This has special-case handling for when
that conversion would overflow or underflow but the original long
double function wouldn't. However, it turns out that "inexact"
exceptions can be spurious here as well, when the function is exactly
determined and __kernel_standard_l is being called for a domain error.
This patch fixes this by using feholdexcept / fesetenv to avoid
exceptions from the conversion, replacing the previous special-case
logic for overflow and underflow (this covers all functions using
__kernel_standard_l, not just those that actually need a change, since
there doesn't seem to be much point in restricting things just to the
functions that mustn't get "inexact" here).
Tested for x86_64 and x86.
[BZ #18245]
[BZ #18583]
* sysdeps/ieee754/k_standardl.c: Include <fenv.h>.
(__kernel_standard_l): Use feholdexcept and fesetenv around
conversion to double instead of special-casing overflow and
underflow.
* math/libm-test.inc (fmod_test_data): Add more tests.
(remainder_test_data): Likewise.
(sqrt_test_data): Likewise.
This fixes BZ #17403 by defining atomic_full_barrier,
atomic_read_barrier, and atomic_write_barrier on x86 and x86_64. A full
barrier is implemented through an atomic idempotent modification to the
stack and not through using mfence because the latter can supposedly be
somewhat slower due to having to provide stronger guarantees wrt.
self-modifying code, for example.
The csqrt implementations in glibc can cause spurious underflows in
some cases as a side-effect of the scaling for large arguments (when
underflow is correct for the square root of the argument that was
scaled down to avoid overflow, but not for the original argument).
This patch arranges to avoid the underflowing intermediate computation
(eliminating a multiplication in 0.5 in the problem cases where a
subsequent scaling by 2 would follow).
Tested for x86_64 and x86 and ulps updated accordingly (only needed
for x86).
[BZ #18371]
* math/s_csqrt.c (__csqrt): Avoid multiplication by 0.5 where
intermediate but not final result might underflow.
* math/s_csqrtf.c (__csqrtf): Likewise.
* math/s_csqrtl.c (__csqrtl): Likewise.
* math/auto-libm-test-in: Add more tests of csqrt.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
The dbl-64 and flt-32 implementations of exp2 functions produce
spurious underflow exceptions. The underlying reason is the same in
both cases: the computation works as (2^a - 1)*2^b + 2^b for suitably
chosen a and b, where a has small magnitude so 2^a - 1 can be computed
with a low-degree polynomial approximation, and (2^a - 1)*2^b can
underflow even when the final result does not. This patch fixes this
by adjusting the threshold for when scaling is used to avoid
intermediate underflow so it works for any possible value of a where
the final result would not underflow.
Tested for x86_64 and x86.
[BZ #18219]
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Reduce
threshold on absolute value of exponent for which scaling is used.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Likewise.
* math/auto-libm-test-in: Add more tests of exp2.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some expm1 implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
(The issue does not apply to the ldbl-* implementations or to those
for x86 / x86_64 long double. The change to
sysdeps/ieee754/dbl-64/wordsize-64/e_cosh.c is one I missed when
previously fixing bug 16354; the bug in that implementation was
previously latent, but the expm1 fixes stopped it being latent and so
required it to be fixed to avoid spurious underflows from cosh.)
Tested for x86_64 and x86.
[BZ #16353]
* sysdeps/i386/fpu/s_expm1.S (dbl_min): New object.
(__expm1): Force underflow exception for arguments with small
absolute value.
* sysdeps/i386/fpu/s_expm1f.S (flt_min): New object.
(__expm1f): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/dbl-64/s_expm1.c: Include <float.h>.
(__expm1): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/s_expm1f.c: Include <float.h>.
(__expm1f): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/dbl-64/wordsize-64/e_cosh.c (__ieee754_cosh):
Check for small arguments before calling __expm1.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 16353.
* math/auto-libm-test-out: Regenerated.
In the x86 / x86_64 implementations of expm1l, when expm1l's result
should underflow to 0 (argument minus the least subnormal, in some
rounding modes), it can be a zero of the wrong sign. This patch fixes
this by returning the argument with underflow forced in that case
(this is a 1ulp error relative to the correctly rounded result of -0,
which is OK in terms of the documented accuracy goals, whereas a
result with the wrong sign never is).
Tested for x86_64 and x86.
[BZ #18569]
* sysdeps/i386/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]: Force
underflow and return argument in case of subnormal argument.
* sysdeps/x86_64/fpu/e_expl.S (IEEE754_EXPL) [USE_AS_EXPM1L]:
Likewise.
* math/auto-libm-test-in: Add more tests of expm1.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, the x86 and x86_64
implementations of expl / exp10l can fail to produce underflow
exceptions when the unscaled result has trailing 0 bits so the scaling
down to subnormal precision is exact. This patch fixes this by
forcing the exception in the case of tiny results.
Tested for x86_64 and x86.
[BZ #16361]
* sysdeps/i386/fpu/e_expl.S [!USE_AS_EXPM1L] (cmin): New object.
[!USE_AS_EXPM1L] (IEEE754_EXPL): Force underflow exception for
tiny results.
* sysdeps/x86_64/fpu/e_expl.S [!USE_AS_EXPM1L] (cmin): New object.
[!USE_AS_EXPM1L] (IEEE754_EXPL): Force underflow exception for
tiny results.
* math/auto-libm-test-in: Add more tests of exp and exp10. Do not
mark underflow exceptions as possibly missing for bug 16361.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some asinh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86 and mips64.
[BZ #16350]
* sysdeps/i386/fpu/s_asinh.S (__asinh): Force underflow exception
for arguments with small absolute value.
* sysdeps/i386/fpu/s_asinhf.S (__asinhf): Likewise.
* sysdeps/i386/fpu/s_asinhl.S (__asinhl): Likewise.
* sysdeps/ieee754/dbl-64/s_asinh.c: Include <float.h>.
(__asinh): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/s_asinhf.c: Include <float.h>.
(__asinhf): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128ibm/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-96/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 16350.
* math/auto-libm-test-out: Regenerated.
sysdeps/unix/sysv/linux/bits/in.h (as included in netinet/in.h, and
via that in netdb.h and arpa/inet.h) defines a series of MCAST_*
macros, both under __USE_MISC and then again unconditionally. These
are not POSIX macros, nor in any of the namespaces listed in POSIX as
reserved for this header, so should not be defined unconditionally.
This patch duly removes the unconditional definitions, leaving the
ones conditional on __USE_MISC.
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch).
[BZ #18558]
* sysdeps/unix/sysv/linux/bits/in.h (MCAST_JOIN_GROUP): Remove
unconditional definition.
(MCAST_BLOCK_SOURCE): Likewise.
(MCAST_UNBLOCK_SOURCE): Likewise.
(MCAST_LEAVE_GROUP): Likewise.
(MCAST_JOIN_SOURCE_GROUP): Likewise.
(MCAST_LEAVE_SOURCE_GROUP): Likewise.
(MCAST_MSFILTER): Likewise.
* conform/Makefile (test-xfail-XOPEN2K/arpa/inet.h/conform):
Remove variable.
(test-xfail-XOPEN2K/netdb.h/conform): Likewise.
(test-xfail-XOPEN2K/netinet/in.h/conform): Likewise.
(test-xfail-XOPEN2K8/arpa/inet.h/conform): Likewise.
(test-xfail-XOPEN2K8/netdb.h/conform): Likewise.
(test-xfail-XOPEN2K8/netinet/in.h/conform): Likewise.
sysdeps/ieee754/ldbl-128ibm has its own versions of cprojl, ctanhl and
ctanl.
Having its own versions, where otherwise the math/ copies are
generally used for all floating-point formats, means they are liable
to get out of sync and not benefit from bug fixes to the generic
versions. The substantive differences (not arising from getting out
of sync and slightly different fixes for the same issues) are: long
double compat handling (also done in the ldbl-opt versions, so doesn't
require special versions for ldbl-128ibm); handling of LDBL_EPSILON
(conditionally undefined and redefined in other math/ implementations,
so doesn't justify a special version), and:
/* __gcc_qmul does not respect -0.0 so we need the following fixup. */
if ((__real__ res == 0.0L) && (__real__ x == 0.0L))
__real__ res = __real__ x;
if ((__real__ res == 0.0L) && (__imag__ x == 0.0L))
__imag__ res = __imag__ x;
But if that statement about __gcc_qmul was ever true for an old
version of that libgcc function, it's not the case for any GCC version
now supported to build glibc; there's explicit logic early in that
function (and similarly in __gcc_qdiv) to return an appropriately
signed zero if the product of the high parts is zero. So this patch
adds the special LDBL_EPSILON handling to the generic functions and
removes the ldbl-128ibm versions.
Tested for powerpc32 (compared test-ldouble.out before and after the
changes; there are slight changes to results for ctanl / ctanhl,
arising from divergence of the implementations, but nothing that
affects the overall nature of the issues shown by the testsuite, and
in particular nothing related to signs of zero resutls).
* math/s_ctanhl.c [LDBL_MANT_DIG == 106] (LDBL_EPSILON): Undefine
and redefine.
* math/s_ctanl.c [LDBL_MANT_DIG == 106] (LDBL_EPSILON): Undefine
and redefine.
* sysdeps/ieee754/ldbl-128ibm/s_cprojl.c: Remove file.
* sysdeps/ieee754/ldbl-128ibm/s_ctanhl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_ctanl.c: Likewise.
nice (XPG3) calls getpriority and setpriority (in XPG4 but not XPG3,
i.e. UX-shaded in XPG4). This patch fixes this by making those
functions into weak aliases of __* functions and calling the __*
versions as needed.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by this patch).
This completes cleaning up the unsorted linknamespace test XFAILs.
[BZ #18553]
* resource/getpriority.c (getpriority): Rename to __getpriority
and define as weak alias of __getpriority.
* resource/setpriority.c (setpriority): Rename to __setpriority
and define as weak alias of __setpriority.
* sysdeps/mach/hurd/getpriority.c (getpriority): Rename to
__getpriority and define as weak alias of __getpriority.
* sysdeps/mach/hurd/setpriority.c (setpriority): Rename to
__setpriority and define as weak alias of __setpriority.
* sysdeps/unix/syscalls.list (getpriority): Use __getpriority as
strong name.
(setpriority): Use __setpriority as strong name.
* sysdeps/unix/sysv/linux/getpriority.c (getpriority): Rename to
__getpriority and define as weak alias of __getpriority.
* include/sys/resource.h (__getpriority): Declare. Use
libc_hidden_proto.
(__setpriority): Likewise.
(getpriority): Don't use libc_hidden_proto.
(setpriority): Likewise.
* sysdeps/posix/nice.c (nice): Call __getpriority instead of
getpriority. Call __setpriority instead of setpriority.
* conform/Makefile (test-xfail-XPG3/unistd.h/linknamespace):
Remove variable.
mq_notify (in the 1996 edition of POSIX) brings in references to recv
and socket (not in POSIX until the 2001 edition). This patch fixes
this by using __recv and __socket, exporting them from libc at version
GLIBC_PRIVATE.
Tested for x86_64 and x86 (testsuite and comparison of installed
stripped shared libraries; PLT / dynamic symbol table changes render
the comparison not particularly useful for libc).
[BZ #18546]
* socket/recv.c (__recv): Use libc_hidden_def.
* socket/socket.c (__socket): Likewise.
* sysdeps/mach/hurd/recv.c (__recv): Likewise.
* sysdeps/mach/hurd/socket.c (__socket): Likewise.
* sysdeps/unix/sysv/linux/generic/recv.c (__recv): Likewise.
* sysdeps/unix/sysv/linux/recv.c (__recv): Use libc_hidden_weak.
* sysdeps/unix/sysv/linux/socket.c (__socket): Use
libc_hidden_def.
* sysdeps/unix/sysv/linux/x86_64/recv.c (__recv): Use
libc_hidden_weak.
* include/sys/socket.h (__socket): Do not use attribute_hidden.
Use libc_hidden_proto.
(__recv): Likewise.
* socket/Versions (libc): Export __recv and __socket at version
GLIBC_PRIVATE.
* sysdeps/unix/sysv/linux/mq_notify.c (helper_thread): Call __recv
instead of recv.
(init_mq_netlink): Call __socket instead of socket.
* conform/Makefile (test-xfail-POSIX/mqueue.h/linknamespace):
Remove variable.
mq_receive calls mq_timedreceive, and mq_send calls mq_timedsend. But
mq_receive and mq_send were in POSIX by 1996, while mq_timed* were
added in the 2001 edition of POSIX. This patch fixes this by making
mq_timed* into weak aliases for __mq_timed* and calling the
__mq_timed* names.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18545]
* rt/mq_timedreceive.c (mq_timedreceive): Rename to
__mq_timedreceive and define as alias of __mq_timedreceive. Use
hidden_weak.
* rt/mq_timedsend.c (mq_timedsend): Rename to __mq_timedsend and
define as alias of __mq_timedsend. Use hidden_weak.
* sysdeps/unix/sysv/linux/syscalls.list (mq_timedsend): Use
__mq_timedsend as strong name.
(mq_timedreceive): Use __mq_timedreceive as strong name.
* include/mqueue.h (__mq_timedsend): Declare. Use hidden_proto.
(__mq_timedreceive): Likewise.
* sysdeps/unix/sysv/linux/mq_receive.c (mq_receive): Call
__mq_timedreceive instead of mq_timedreceive.
* sysdeps/unix/sysv/linux/mq_send.c (mq_send): Call __mq_timedsend
instead of mq_timedsend.
* conform/Makefile (test-xfail-UNIX98/mqueue.h/linknamespace):
Remove variable.
The syscall wrappers mechanism automatically creates hidden aliases
for syscalls with libc_hidden_def / libc_hidden_weak. The use of
libc_hidden_* has the side-effect that for syscall wrappers in
non-libc libraries those aliases are not created. In turn, this means
that three mq_* syscalls in sysdeps/unix/sysv/linux/syscalls.list list
the __GI_* names explicitly.
The use of libc_hidden_* dates back to the original introduction of
that support in
2002-08-03 Roland McGrath <roland@redhat.com>
* sysdeps/unix/make-syscalls.sh: Generate libc_hidden_def or
libc_hidden_weak for every system call symbol defined.
(predating the non-libc syscalls in question) and I see no reason for
excluding non-libc syscalls. This patch changes the code to use
hidden_def / hidden_weak (via a wrapper syscall_hidden_def in the case
where the argument is itself a macro, so that the argument gets
expanded before concatenation with __GI_), so avoiding the need to
specify the hidden aliases explicitly in this case.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed stripped shared libraries is unchanged by the patch; the
mq_* symbols change from weak to strong, which is of no significance
and two of them will shortly change back to weak as part of a fix for
bug 18545).
* sysdeps/unix/make-syscalls.sh (emit_weak_aliases): Use
hidden_def and hidden_weak instead of libc_hidden_def and
libc_hidden_weak.
(top level): Refer to hidden_def in comment.
* sysdeps/unix/syscall-template.S (syscall_hidden_def): New
macro. Use it instead of libc_hidden_def.
* sysdeps/unix/sysv/linux/syscalls.list (mq_timedsend): Do not
specify __GI_* name explicitly.
(mq_timedreceive): Likewise.
(mq_setattr): Likewise.
mq_notify (present in POSIX by 1996) brings in references to
pthread_barrier_init and pthread_barrier_wait (new in the 2001 edition
of POSIX). This patch fixes this by making those functions into weak
aliases of __pthread_barrier_*, exporting the __pthread_barrier_*
names at version GLIBC_PRIVATE and using them in mq_notify.
Tested for x86_64 and x86 (testsuite, and comparison of installed
stripped shared libraries). Changes in addresses from dynamic symbol
table / PLT changes render most comparisons not particularly useful,
but when the addresses of subsequent code don't change there's no sign
of unexpected changes there. This patch does not remove any
linknamespace XFAILs because of other namespace issues remaining with
mqueue.h functions.
[BZ #18544]
* nptl/pthread_barrier_init.c (pthread_barrier_init): Rename to
__pthread_barrier_init and define as weak alias of
__pthread_barrier_init.
* sysdeps/sparc/nptl/pthread_barrier_init.c
(pthread_barrier_init): Likewise.
* nptl/pthread_barrier_wait.c (pthread_barrier_wait): Rename to
__pthread_barrier_wait and define as weak alias of
__pthread_barrier_wait.
* sysdeps/sparc/nptl/pthread_barrier_wait.c
(pthread_barrier_wait): Likewise.
* sysdeps/sparc/sparc32/pthread_barrier_wait.c
(pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_barrier_wait.S
(pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_barrier_wait.S
(pthread_barrier_wait): Likewise.
* nptl/Versions (libpthread): Export __pthread_barrier_init and
__pthread_barrier_wait at version GLIBC_PRIVATE.
* include/pthread.h (__pthread_barrier_init): Declare.
(__pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/mq_notify.c (notification_function):
Call __pthread_barrier_wait instead of pthread_barrier_wait.
(helper_thread): Likewise.
(init_mq_netlink): Call __pthread_barrier_init instead of
pthread_barrier_init.
The sem_* functions bring in references to tdelete, tfind, tsearch and
twalk. But the t* functions are XSI-shaded, while sem_* aren't. This
patch fixes this by using __t* instead, exporting those functions from
libc at version GLIBC_PRIVATE (since sem_* are in libpthread) and
using libc_hidden_* for the benefit of calls within libc.
Tested for x86_64 and x86 (testsuite, and comparison of disassembly of
installed stripped shared libraries). libpthread gets changes from
PLT reordering; addresses in libc change because of PLT / dynamic
symbol table changes.
[BZ #18536]
* misc/tsearch.c (__tsearch): Use libc_hidden_def.
(__tfind): Likewise.
(__tdelete): Likewise.
(__twalk): Likewise.
* misc/Versions (libc): Add __tdelete, __tfind, __tsearch and
__twalk to GLIBC_PRIVATE.
* include/search.h (__tsearch): Use libc_hidden_proto.
(__tfind): Likewise.
(__tdelete): Likewise.
(__twalk): Likewise.
* nptl/sem_close.c (sem_close): Call __twalk instead of twalk.
Call __tdelete instead of tdelete.
* nptl/sem_open.c (check_add_mapping): Call __tfind instead of
tfind. Call __tsearch instead of tsearch.
* sysdeps/sparc/sparc32/sem_open.c (check_add_mapping): Likewise.
* conform/Makefile (test-xfail-POSIX/semaphore.h/linknamespace):
Remove variable.
(test-xfail-POSIX2008/semaphore.h/linknamespace): Likewise.
Some of the cfi annotations used incorrect sign.
* sysdeps/aarch64/dl-tlsdesc.S (_dl_tlsdesc_return_lazy): Fix
cfi_adjust_cfa_offset argument.
(_dl_tlsdesc_undefweak, _dl_tlsdesc_dynamic): Likewise.
(_dl_tlsdesc_resolve_rela, _dl_tlsdesc_resolve_hold): Likewise.
Lazy TLSDESC initialization needs to be synchronized with concurrent TLS
accesses. The TLS descriptor contains a function pointer (entry) and an
argument that is accessed from the entry function. With lazy initialization
the first call to the entry function updates the entry and the argument to
their final value. A final entry function must make sure that it accesses an
initialized argument, this needs synchronization on systems with weak memory
ordering otherwise the writes of the first call can be observed out of order.
There are at least two issues with the current code:
tlsdesc.c (i386, x86_64, arm, aarch64) uses volatile memory accesses on the
write side (in the initial entry function) instead of C11 atomics.
And on systems with weak memory ordering (arm, aarch64) the read side
synchronization is missing from the final entry functions (dl-tlsdesc.S).
This patch only deals with aarch64.
* Write side:
Volatile accesses were replaced with C11 relaxed atomics, and a release
store was used for the initialization of entry so the read side can
synchronize with it.
* Read side:
TLS access generated by the compiler and an entry function code is roughly
ldr x1, [x0] // load the entry
blr x1 // call it
entryfunc:
ldr x0, [x0,#8] // load the arg
ret
Various alternatives were considered to force the ordering in the entry
function between the two loads:
(1) barrier
entryfunc:
dmb ishld
ldr x0, [x0,#8]
(2) address dependency (if the address of the second load depends on the
result of the first one the ordering is guaranteed):
entryfunc:
ldr x1,[x0]
and x1,x1,#8
orr x1,x1,#8
ldr x0,[x0,x1]
(3) load-acquire (ARMv8 instruction that is ordered before subsequent
loads and stores)
entryfunc:
ldar xzr,[x0]
ldr x0,[x0,#8]
Option (1) is the simplest but slowest (note: this runs at every TLS
access), options (2) and (3) do one extra load from [x0] (same address
loads are ordered so it happens-after the load on the call site),
option (2) clobbers x1 which is problematic because existing gcc does
not expect that, so approach (3) was chosen.
A new _dl_tlsdesc_return_lazy entry function was introduced for lazily
relocated static TLS, so non-lazy static TLS can avoid the synchronization
cost.
[BZ #18034]
* sysdeps/aarch64/dl-tlsdesc.h (_dl_tlsdesc_return_lazy): Declare.
* sysdeps/aarch64/dl-tlsdesc.S (_dl_tlsdesc_return_lazy): Define.
(_dl_tlsdesc_undefweak): Guarantee TLSDESC entry and argument load-load
ordering using ldar.
(_dl_tlsdesc_dynamic): Likewise.
(_dl_tlsdesc_return_lazy): Likewise.
* sysdeps/aarch64/tlsdesc.c (_dl_tlsdesc_resolve_rela_fixup): Use
relaxed atomics instead of volatile and synchronize with release store.
(_dl_tlsdesc_resolve_hold_fixup): Use relaxed atomics instead of
volatile.
* elf/tlsdeschtab.h (_dl_tlsdesc_resolve_early_return_p): Likewise.
Various functions in XPG4 bring in references to getlogin_r, which is
not in XPG4; this is also a bug for some older POSIX versions which
aren't yet covered by the linknamespace tests. This patch fixes this
by making getlogin_r into a weak alias for __getlogin_r and using
__getlogin_r as needed.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed stripped shared libraries is unchanged by the patch).
[BZ #18527]
* login/getlogin_r.c (getlogin_r): Rename to __getlogin_r and
define as weak alias of __getlogin_r. Use libc_hidden_weak.
* sysdeps/mach/hurd/getlogin_r.c (getlogin_r): Likewise.
* sysdeps/unix/getlogin_r.c (getlogin_r): Likewise.
* sysdeps/unix/sysv/linux/getlogin_r.c (getlogin_r): Likewise.
* include/unistd.h (__getlogin_r): Declare. Use
libc_hidden_proto.
* posix/glob.c (glob): Call __getlogin_r instead of getlogin_r.
* conform/Makefile (test-xfail-XPG3/glob.h/linknamespace): Remove
variable.
(test-xfail-XPG3/wordexp.h/linknamespace): Likewise.
(test-xfail-XPG4/glob.h/linknamespace): Likewise.
(test-xfail-XPG4/wordexp.h/linknamespace): Likewise.
aio_* bring in references to pread, which isn't in all the standards
containing aio_* (as a reference from one library to another, this is
a bug for dynamic as well as static linking). This patch fixes this
by using __libc_pread instead, exporting that function from libc at
symbol version GLIBC_PRIVATE; the code, with conditionals that may
call either __pread64 or __libc_pread, becomes exactly analogous to
that elsewhere in the same file that may call either __pwrite64 or
__libc_pwrite.
Tested for x86_64 and x86 (testsuite, and comparison of disassembly of
installed shared libraries). libc changes because of the PLT entry
for the newly exported __libc_pread; librt changes because of
assertion line numbers and PLT rearrangement; other stripped installed
shared libraries do not change.
[BZ #18519]
* posix/Versions (libc): Export __libc_pread at version
GLIBC_PRIVATE.
* sysdeps/pthread/aio_misc.c (handle_fildes_io): Call __libc_pread
instead of pread.
* conform/Makefile (test-xfail-POSIX/aio.h/linknamespace): Remove
variable.
Here is implementation of vectorized sin containing SSE, AVX,
AVX2 and AVX512 versions according to Vector ABI
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
* bits/libm-simd-decl-stubs.h: Added stubs for sin.
* math/bits/mathcalls.h: Added sin declaration with __MATHCALL_VEC.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New versions added.
* sysdeps/x86/fpu/bits/math-vector.h: SIMD declaration for sin.
* sysdeps/x86_64/fpu/Makefile (libmvec-support): Added new files.
* sysdeps/x86_64/fpu/Versions: New versions added.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenerated.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin2_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin2_core_sse4.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin4_core_avx2.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core_avx512.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin2_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin4_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin4_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin8_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin_data.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin_data.h: New file.
* sysdeps/x86_64/fpu/test-double-vlen2-wrappers.c: Added vector sin test.
* sysdeps/x86_64/fpu/test-double-vlen2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8.c: Likewise.
* NEWS: Mention addition of x86_64 vector sin.
Binutils 2.24 doesn't support some AVX512 instructions with ZMM
registers, so we need add more strict check.
* configure.ac: Added more strict check.
* configure: Regenerated.
This patch removes the vsyscall usage for x86_64 port. As indicated
by kernel code comments [1], vsyscalls are a legacy ABI and its concept
is problematic:
- It interferes with ASLR.
- It's awkward to write code that lives in kernel addresses but is
callable by userspace at fixed addresses.
- The whole concept is impossible for 32-bit compat userspace.
- UML cannot easily virtualize a vsyscall.
The VDSO is a better approach for such functionality. Tested on i686,
x86_64, and x32.
* sysdeps/unix/sysv/linux/i386/gettimeofday.c
(__gettimeofday_syscall): Remove vsyscall fallback.
* sysdeps/unix/sysv/linux/i386/time.c (__time_syscall): Likewise.
* sysdeps/unix/sysv/linux/x86/gettimeofday.c (__gettimeofday_syscall):
Add syscall fallback function.
(gettimeofday_ifunc): Use __gettimeofday_syscall as fallback mechanism
if vDSO is not present.
* sysdeps/unix/sysv/linux/x86/time.c (__time_syscall): Add syscall
fallback function.
(time_ifunc): Use __time_syscall as fallback mechanism if vDSO is not
present.
* sysdeps/unix/sysv/linux/x86_64/gettimeofday.c: Remove file.
* sysdeps/unix/sysv/linux/x86_64/time.c: Likewise.
[1] arch/x86/kernel/vsyscall_64.c
regcomp brings in references to wcscoll, which isn't in all the
standards that contain regcomp. In turn, wcscoll brings in references
to wcscmp, also not in all those standards. This patch fixes this by
making those functions into weak aliases of __wcscoll and __wcscmp and
calling those names instead as needed.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18497]
* wcsmbs/wcscmp.c [!WCSCMP] (WCSCMP): Define as __wcscmp instead
of wcscmp.
(wcscmp): Define as weak alias of WCSCMP.
* wcsmbs/wcscoll.c (STRCOLL): Define as __wcscoll instead of
wcscoll.
(USE_HIDDEN_DEF): Define.
[!USE_IN_EXTENDED_LOCALE_MODEL] (wcscoll): Define as weak alias of
__wcscoll. Don't use libc_hidden_weak.
* wcsmbs/wcscoll_l.c (STRCMP): Define as __wcscmp instead of
wcscmp.
* sysdeps/i386/i686/multiarch/wcscmp-c.c
[SHARED] (libc_hidden_def): Define __GI___wcscmp instead of
__GI_wcscmp.
(weak_alias): Undefine and redefine.
* sysdeps/i386/i686/multiarch/wcscmp.S (wcscmp): Rename to
__wcscmp and define as weak alias of __wcscmp.
* sysdeps/x86_64/wcscmp.S (wcscmp): Likewise.
* include/wchar.h (__wcscmp): Declare. Use libc_hidden_proto.
(__wcscoll): Likewise.
(wcscmp): Don't use libc_hidden_proto.
(wcscoll): Likewise.
* posix/regcomp.c (build_range_exp): Call __wcscoll instead of
wcscoll.
* posix/regexec.c (check_node_accept_bytes): Likewise.
* conform/Makefile (test-xfail-XPG3/regex.h/linknamespace): Remove
variable.
(test-xfail-XPG4/regex.h/linknamespace): Likewise.
(test-xfail-POSIX/regex.h/linknamespace): Likewise.
pathconf uses __statvfs64, and fpathconf uses __fstatvfs64. On
systems using sysdeps/unix/sysv/linux/wordsize-64, __statvfs64 then
brings in the strong symbol statvfs, and __fstatvfs64 brings in the
strong symbol fstatvfs, which are not in all the standards that have
pathconf and fpathconf. This patch fixes this by making those symbols
into weak aliases.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18507]
* sysdeps/unix/sysv/linux/fstatvfs.c (fstatvfs): Rename to
__fstatvfs and define as weak alias of __fstatvfs. Use
libc_hidden_weak.
* sysdeps/unix/sysv/linux/statvfs.c (statvs): Rename to __statvfs
and define as weak alias of __statvfs. Use libc_hidden_weak.
* sysdeps/unix/sysv/linux/wordsize-64/fstatvfs.c (__fstatvfs64):
Define as alias of __fstatvfs, not fstatvfs.
(fstatvfs64): Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/statvfs.c (__statvfs64):
Define as alias of __statvfs, not statvfs.
(statvfs64): Likewise.
* conform/Makefile (test-xfail-POSIX/unistd.h/linknamespace):
Remove variable.
This patch consolidates the sched_getcpu implementations across all
arches (except tile, which requires its own). This patch removes
the powerpc, x86_64 and x32 specific files and change the default
linux one to use INLINE_VSYSCALL where possible (for ports that
implements it).
* math/Makefile: Added CFLAGS for new tests.
* math/test-float-vlen16.h: New file.
* math/test-float-vlen4.h: New file.
* math/test-float-vlen8.h: New file.
* math/test-double-vlen2.h: Fixed 2 argument macro and comment.
* sysdeps/x86_64/fpu/Makefile: Added new tests and variables.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenerated.
* sysdeps/x86_64/fpu/test-float-vlen16-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen16.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen4-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen4.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen8-avx2-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen8-avx2.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen8-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-float-vlen8.c: New file.
Here is implementation of vectorized cosf containing SSE, AVX,
AVX2 and AVX512 versions according to Vector ABI
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
* sysdeps/x86_64/fpu/Makefile (libmvec-support): Added new files.
* sysdeps/x86_64/fpu/Versions: New versions added.
* sysdeps/x86_64/fpu/svml_s_cosf4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf4_core_sse4.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf8_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf8_core_avx2.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf16_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core_avx512.S: New file.
* sysdeps/x86_64/fpu/svml_s_wrapper_impl.h: New file.
* sysdeps/x86_64/fpu/svml_s_cosf_data.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf_data.h: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New versions added.
* sysdeps/x86/fpu/bits/math-vector.h: Added SIMD declaration for cosf.
* NEWS: Mention addition of x86_64 vector cosf.
We test vector math functions using scalar tests infrastructure with
help of special wrappers from scalar versions to vector ones. Wrapper
implemented using platform specific vector types and placed in separate
file for compilation with architecture specific options, main part of
test has no such options. With help of system of definitions unfolding
of which is drived from test code we have wrapper called in individual
testing function instead of scalar function. Also system of definitions
includes generated during make check header math/libm-have-vector-test.h
with series of conditional definitions which help to avoid build fails
for functions having no vector versions; runtime architecture check
to prevent runtime fails of test run on inappropriate hardware.
* math/Makefile: Added rules for vector tests.
* math/gen-libm-have-vector-test.sh: Added generation of wrapper
declaration under condition.
* math/test-double-vlen2.h: New file.
* math/test-double-vlen4.h: New file.
* math/test-double-vlen8.h: New file.
* math/test-vec-loop.h: Added initialization macro.
* sysdeps/x86_64/fpu/Makefile: Added variables for vector tests.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenarated.
* sysdeps/x86_64/fpu/math-tests-arch.h: New file.
* sysdeps/x86_64/fpu/test-double-vlen2-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen2.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen4-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen4.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen8-wrappers.c: New file.
* sysdeps/x86_64/fpu/test-double-vlen8.c: New file.
Here is implementation of cos containing SSE, AVX, AVX2 and AVX512
versions according to Vector ABI which had been discussed in
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
Vector math library build and ABI testing enabled by default for x86_64.
* sysdeps/x86_64/fpu/Makefile: New file.
* sysdeps/x86_64/fpu/Versions: New file.
* sysdeps/x86_64/fpu/svml_d_cos_data.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos_data.h: New file.
* sysdeps/x86_64/fpu/svml_d_cos2_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos4_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos4_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos8_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_wrapper_impl.h: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos2_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos2_core_sse4.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos4_core_avx2.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core_avx512.S: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/x86/fpu/bits/math-vector.h: Added SIMD declaration for cos.
* math/bits/mathcalls.h: Added cos declaration with __MATHCALL_VEC.
* sysdeps/x86_64/configure.ac: Options for libmvec build.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/sysdep.h (cfi_offset_rel_rsp): New macro.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New file.
* manual/install.texi (Configuring and compiling): Document
--disable-mathvec.
* INSTALL: Regenerated.
* NEWS: Mention addition of libmvec and x86_64 vector cos.
Handle signed integer overflow correctly. Detect and reject O_APPEND.
Document drawbacks of emulation.
This does not completely address bug 15661, but improves the situation
somewhat.
Beginning with the upcoming 4.1 release, Linux on a subset of 32-bit
ARM hardware will provide fast user-space implementations of the
following system calls:
- gettimeofday
- clock_gettime
The kernel implementation depends on the ARMv7 Generic Timers
Extension to accelerate these system calls. So CPUs such as
Cortex-A15 and -A7 benefit, while Cortex-A9, -A8, and pre-v7 CPUs do
not. On systems where the VDSO does not provide any speedup, the
kernel prevents the relevant symbol lookups from succeeding.
On OMAP5 (Cortex-A15) gettimeofday latency decreases from ~350ns to
~120ns. On BeagleBone Black (Cortex-A8) it goes from ~650ns to
~660ns, which to my mind is an acceptable cost.
Verified that no new test failures are introduced on kernels with and
without the VDSO.
* sysdeps/unix/sysv/linux/arm/Makefile: (sysdep_routines):
Include dl-vdso.
* sysdeps/unix/sysv/linux/arm/init-first.c: New file:
Use VDSO routines for gettimeofday, clock_gettime if
available.
* sysdeps/unix/sysv/linux/arm/libc-vdso.h: New file:
Declare VDSO symbols.
* sysdeps/unix/sysv/linux/arm/sysdep.h:
[HAVE_GETTIMEOFDAY_VSYSCALL]: Define.
[HAVE_CLOCK_GETTIME_VSYSCALL]: Define.
* sysdeps/unix/sysv/linux/arm/Versions: Add
__vdso_clock_gettime.
This patch uses inline calls (through INLINE_SYSCALL macro) to define
the non-cancellable functions macros to avoid use of the
syscall_nocancel entrypoint.
Carlos noted in
<https://sourceware.org/ml/libc-alpha/2015-05/msg00680.html> that
various ports use potentially problematic short variables names in
their syscall macros, which could shadow variables with the same name
from containing scopes.
This patch fixes variables called err and ret in MIPS macros. (I left
result_var and _sys_result - separate variables in different macros,
which need separate names - alone.)
Tested for mips64 (all three ABIs) that installed stripped shared
libraries are unchanged by this patch.
* sysdeps/unix/sysv/linux/mips/mips32/sysdep.h (INLINE_SYSCALL):
Use variable name _sc_err instead of err.
[__mips16] (INTERNAL_SYSCALL_NCS): Use variable name _sc_ret
instead of ret.
* sysdeps/unix/sysv/linux/mips/mips64/n32/sysdep.h
(INLINE_SYSCALL): Use variable name _sc_err instead of err.
* sysdeps/unix/sysv/linux/mips/mips64/n64/sysdep.h
(INLINE_SYSCALL): Likewise.
Various code in glibc uses __strnlen instead of strnlen for namespace
reasons. However, __strnlen does not use libc_hidden_proto /
libc_hidden_def (as is normally done for any function defined and
called within the same library, whether or not exported from the
library and whatever namespace it is in), so the compiler does not
know that those calls are to a function within libc.
This patch uses libc_hidden_proto / libc_hidden_def with __strnlen.
On x86_64, it makes no difference to the installed stripped shared
libraries. On 32-bit x86, it causes __strnlen calls to go to the same
place as strnlen calls (the fallback strnlen implementation), rather
than through a PLT entry for the strnlen IFUNC; I'm not sure of the
logic behind when calls from within libc should use IFUNCs versus when
they should go direct to a particular function implementation, but
clearly it doesn't make sense for strnlen and __strnlen to be handled
differently in this regard.
Tested for x86_64 and x86 (testsuite, and comparison of installed
shared libraries as described above).
* string/strnlen.c [!STRNLEN] (__strnlen): Use libc_hidden_def.
* include/string.h (__strnlen): Use libc_hidden_proto.
* sysdeps/aarch64/strnlen.S (__strnlen): Use libc_hidden_def.
* sysdeps/i386/i686/multiarch/strnlen-c.c [SHARED]
(libc_hidden_def): Define __GI___strnlen as well as __GI_strnlen.
* sysdeps/powerpc/powerpc32/power4/multiarch/strnlen-power7.S
(libc_hidden_def): Undefine and redefine.
* sysdeps/powerpc/powerpc32/power4/multiarch/strnlen-ppc32.c
[SHARED] (libc_hidden_def): Define __GI___strnlen as well as
__GI_strnlen.
* sysdeps/powerpc/powerpc32/power7/strnlen.S (__strnlen): Use
libc_hidden_def.
* sysdeps/tile/tilegx/strnlen.c (__strnlen): Likewise.
The attached patch fixes a glibc build failure with gcc 5 on powerpc64le
caused by a recent change in gcc where the compiler defines the
_ARCH_PWR6 macro when processing assembly files but doesn't invoke the
assembler in the corresponding machine mode (unless it has been
explicitly configured to target POWER 6 or later). A bug had been filed
with gcc for this (65341) but was closed as won't fix. Glibc relies on
the _ARCH_PWR6 macro in a few .S files to make use of Power ISA 2.5
instructions (specifically, the four-argument form of the mtfsf insn).
A similar problem had occurred in the past (bug 10118) but the fix that
was committed for it didn't anticipate this new problem.
At issue for INLINE_SYSCALL was that it used "err" and "val"
as variable names in a #define, so that if it was used in a context
where the "caller" was also using "err" or "val", and those
variables were passed in to INLINE_SYSCALL, we would end up
referencing the internal shadowed variables instead.
For example, "char val" in check_may_shrink_heap() in
sysdeps/unix/sysv/linux/malloc-sysdep.h was being shadowed by
the syscall return "val" in INLINE_SYSCALL, causing the "char val"
not to get updated at all, and may_shrink_heap ended up always false.
A similar fix was made to INTERNAL_VSYSCALL_CALL.
This patch removes the architecture specific gettimeofday implementation
to use the vDSO symbol and consolidate it on a common Linux one.
Similar to clock_gettime and clock_getres vDSO implementation, each port
that supports gettimeofday through vDSO should just implement INLINE_VSYSCALL
to access the symbol and define HAVE_{GETTIME,GETRES}_VSYSCAL as 1.
On 21/05/15 05:29, Siddhesh Poyarekar wrote:
> On Wed, May 20, 2015 at 06:55:02PM +0100, Szabolcs Nagy wrote:
>> i guess it's ok for consistency if i fix struct stat64
>> too to use __USE_XOPEN2K8.
>>
>> i will run some tests and come back with a patch
>
> I also think it would be appropriate to change this code in other
> architectures (microblaze and nacl IIRC) to make all of them
> consistent. It is a mechanical enough change IMO that all arch
> maintainer acks is not necessary.
>
here is the patch with consistent __USE_XOPEN2K8
ok to commit?
2015-05-21 Szabolcs Nagy <szabolcs.nagy@arm.com>
[BZ #18234]
* conform/data/sys/stat.h-data (struct stat): Add tests for st_atim,
st_mtim and st_ctim members.
* sysdeps/nacl/bits/stat.h (struct stat, struct stat64): Make
st_atim, st_ctim, st_mtim visible under __USE_XOPEN2K8 only.
* sysdeps/unix/sysv/linux/generic/bits/stat.h (struct stat,):
(struct stat64): Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/stat.h (struct stat,):
(struct stat64): Likewise.
* sysdeps/unix/sysv/linux/microblaze/bits/stat.h (struct stat,):
(struct stat64): Likewise.
This patch consolidate the Linux vDSO define and usage across all ports
that uses it. The common vDSO definitions and calling through
{INLINE/INTERNAL}_VSYSCALL macros are moved to a common header
sysdep-vdso.h and vDSO name declaration and prototype is defined
using a common macro.
Also PTR_{MANGLE,DEMANGLE} is added to ports that does not use them
for vDSO calls (aarch64, powerpc, s390, and tile) and thus it will
reflect in code changes. For ports that already implement pointer
mangling/demangling in vDSO system (i386, x32, x86_64) this patch
is mainly a code refactor.
Checked on x32, x86_64, x32, ppc64le, and aarch64.
This patch removes the socket.S implementation for all ports and replace
it by a C implementation using socketcall. For ports that implement
the syscall directly, there is no change.
The patch idea is to simplify the socket function implementation that
uses the socketcall to be based on C implemetation instead of a pseudo
assembly implementation with arch specific parts. The patch then remove
the assembly implementatation for the ports which uses socketcall
(i386, microblaze, mips, powerpc, sparc, m68k, s390 and sh).
I have cross-build GLIBC for afore-mentioned ports and tested on both
i386 and ppc32 without regressions.
The ldbl-128 and ldbl-128ibm implementations of tanl produce
uninitialized variable warnings with -Wuninitialized because of a
variable that is initialized only conditionally, then used under the
same conditions under which it is set. This patch uses DIAG_* macros
to suppress those warnings.
Tested for powerpc and mips64.
* sysdeps/ieee754/ldbl-128/k_tanl.c: Include <libc-internal.h>.
(__kernel_tanl): Ignore uninitialized warnings around use of SIGN.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c: Include <libc-internal.h>.
(__kernel_tanl): Ignore uninitialized warnings around use of SIGN.
The ldbl-128 and ldbl-128ibm implementations of erfcl produce
uninitialized variable warnings with -Wuninitialized because of switch
statements where in fact one of the cases will always be executed, but
the compiler does not see that these cases cover all possibilities
(and because the reasoning that it does involves inequalities on the
representation of a floating point value leading to a set of possible
values for 8.0 times that value, converted to int, it's highly
nontrivial for the compiler to see that). This patch fixes those
warnings by converting the last case in those switch statements to a
"default" case.
Tested for powerpc and mips64.
* sysdeps/ieee754/ldbl-128/s_erfl.c (__erfcl): Make case 9 in
switch statement into default case.
* sysdeps/ieee754/ldbl-128ibm/s_erfl.c (__erfcl): Likewise.
The ldbl-128 and ldbl-128ibm implementations of asinl produce
uninitialized variable warnings with -Wuninitialized because the code
for small arguments in fact always returns but the compiler cannot see
this and instead sees that a variable would be uninitialized if the
"if (huge + x > one)" conditional used to force the "inexact"
exception were false.
All the code in libm trying to force "inexact" for functions that are
not exactly defined is suspect and should be removed at some point
given that we now have a clear definition of the accuracy goals for
libm functions which, following C99/C11, does not require anything
about "inexact" for most functions (likewise, the multi-precision code
that tries to give correctly-rounded results, very slowly, for
functions for which the goals clearly do not include correct rounding,
if the faster paths are accurate enough). However, for now this patch
simply changes the code to use math_force_eval, rather than "if", to
ensure the evaluation of the inexact computation.
Tested for powerpc and mips64.
* sysdeps/ieee754/ldbl-128/e_asinl.c (__ieee754_asinl): Don't use
a conditional in forcing "inexact".
* sysdeps/ieee754/ldbl-128ibm/e_asinl.c (__ieee754_asinl):
Likewise.
pathconf (sysdeps/unix/sysv/linux/pathconf.c) uses basename. But
pathconf is in POSIX back to 1990 while basename is only reserved with
external linkage in those standards including XPG functions. This
patch fixes this namespace issue in the usual way, renaming basename
to __basename and making it into a weak alias.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18444]
* string/basename.c (basename): Rename to __basename and define as
weak alias of __basename. Use libc_hidden_weak.
* include/string.h (__basename): Declare. Use libc_hidden_proto.
* sysdeps/unix/sysv/linux/pathconf.c (distinguish_extX): Call
__basename instead of basename.
* conform/Makefile (test-xfail-POSIX2008/unistd.h/linknamespace):
Remove variable.
(test-xfail-XOPEN2K8/unistd.h/linknamespace): Likewise.
If you remove the "override CFLAGS += -Wno-uninitialized" in
math/Makefile, you get errors from lgamma implementations of the form:
../sysdeps/ieee754/dbl-64/e_lgamma_r.c: In function '__ieee754_lgamma_r':
../sysdeps/ieee754/dbl-64/e_lgamma_r.c:297:13: error: 'nadj' may be used uninitialized in this function [-Werror=maybe-uninitialized]
if(hx<0) r = nadj - r;
This is one of the standard kinds of false positive uninitialized
warnings: nadj is set under a certain condition, and then later used
under the same condition. This patch uses DIAG_* macros to suppress
the warning on the use of nadj. The ldbl-128 / ldbl-128ibm
implementation has a substantially different structure that avoids
this issue.
Tested for x86_64. (In fact this patch eliminates the need for that
-Wno-uninitialized on x86_64, but I want to test on more architectures
before removing it.)
* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Include <libc-internal.h>.
(__ieee754_lgamma_r): Ignore uninitialized warnings around use of
NADJ.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c: Include <libc-internal.h>.
(__ieee754_lgammaf_r): Ignore uninitialized warnings around use of
NADJ.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c: Include <libc-internal.h>.
(__ieee754_lgammal_r): Ignore uninitialized warnings around use of
NADJ.
If you remove the "override CFLAGS += -Wno-uninitialized" in
math/Makefile, one of the errors you get is:
../sysdeps/ieee754/dbl-64/mpa.c: In function '__mp_dbl.part.0':
../sysdeps/ieee754/dbl-64/mpa.c:183:5: error: 'c' may be used uninitialized in this function [-Werror=maybe-uninitialized]
c *= X[0];
The problem is that the p < 5 case initializes c if p is 1, 2, 3 or 4
but not otherwise, and in fact p is positive for all calls to this
function so the uninitialized case can't actually occur. This patch
replaces the "if (p == 4)" last case with a comment so the compiler
can see that all paths do initialize c.
Tested for x86_64.
* sysdeps/ieee754/dbl-64/mpa.c (norm): Remove if condition on
(p == 4) case.
This patch removes the specialized i386 assembly implementations for
fallocate{64}, pselect, and sync_file_range now that i386 have
support for 6 argument syscalls.
ldbl-96 remquol wrongly handles the case where the first argument is
finite and the second infinite, because the check for the second
argument being a NaN fails to disregard the explicit high mantissa bit
and so wrongly interprets an infinity as being a NaN. This patch
fixes this by masking off that bit, and improves test coverage for
both remainder and remquo (various cases were missing tests, or, as in
the case of the bug, were tested only for one of the two functions).
Tested for x86_64 and x86.
[BZ #18244]
* sysdeps/ieee754/ldbl-96/s_remquol.c (__remquol): Ignore explicit
high mantissa bit when testing whether P is a NaN.
* math/libm-test.inc (remainder_test_data): Add more tests.
(remquo_test_data): Likewise.
The i386 implementation of atanhl, for small arguments, does a
calculation that involves computing twice the square of the argument,
resulting in spurious underflows for some arguments. This patch fixes
this by just returning the argument when its exponent is below -32,
with underflow being forced as needed for subnormal arguments.
Tested for x86 and x86_64.
[BZ #18049]
* sysdeps/i386/fpu/e_atanhl.S (__ieee754_atanhl): For exponents
below -32, return the argument, with underflow if subnormal.
* math/auto-libm-test-in: Add more tests of atanh.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some atanh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes. (No change in this regard is needed
for the i386 implementation; special handling to force underflows in
these cases will only be needed there when the spurious underflows,
bug 18049, get fixed.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16352]
* sysdeps/i386/fpu/e_atanh.S (dbl_min): New object.
(__ieee754_atanh): Force underflow exception for results with
small absolute value.
* sysdeps/i386/fpu/e_atanhf.S (flt_min): New object.
(__ieee754_atanhf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/dbl-64/e_atanh.c: Include <float.h>.
(__ieee754_atanh): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/flt-32/e_atanhf.c: Include <float.h>.
(__ieee754_atanhf): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/ldbl-96/e_atanhl.c: Include <float.h>.
(__ieee754_atanhl): Force underflow exception for results with
small absolute value.
* math/auto-libm-test-in: Do not allow missing underflow
exceptions from atanh.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of tanf produces spurious underflow
exceptions for some small arguments, through computing values on the
order of x^5. This patch fixes this by adjusting the threshold for
returning x (or, as applicable, +/- 1/x) to 2**-13 (the next term in
the power series being x^3/3).
Tested for x86_64 and x86.
[BZ #18221]
* sysdeps/ieee754/flt-32/k_tanf.c (__kernel_tanf): Use 2**-13 not
2**-28 as threshold for returning x or +/- 1/x.
* math/auto-libm-test-in: Add more tests of tan.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of lgammaf produces spurious underflow
exceptions for some large arguments, because of calculations involving
x^-2 multiplied by small constants. This patch fixes this by
adjusting the threshold for a simpler computation to 2**26 (the error
in the simpler computation is on the order of 0.5 * log (x), for a
result on the order of x * log (x)).
Tested for x86_64 and x86.
[BZ #18220]
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Use
2**26 not 2**58 as threshold for returning x * (log (x) - 1).
* math/auto-libm-test-in: Add another test of lgamma.
* math/auto-libm-test-out: Regenerated.
The flt-32 implementation of erfcf produces spurious underflow
exceptions for some arguments close to 0, because of calculations
squaring the argument and then multiplying by small constants. This
patch fixes this by adjusting the threshold for arguments for which
the result is so close to 1 that 1 - x will give the right result from
2**-56 to 2**-26. (If 1 - x * 2/sqrt(pi) were used, the errors would be
on the order of x^3 and a much larger threshold could be used.)
Tested for x86_64 and x86.
[BZ #18217]
* sysdeps/ieee754/flt-32/s_erff.c (__erfcf): Use 2**-26 not 2**-56
as threshold for returning 1 - x.
* math/auto-libm-test-in: Add more tests of erfc.
* math/auto-libm-test-out: Regenerated.
The sysdeps/ieee754/flt-32 version of atanf produces spurious
underflow exceptions for some large arguments, because of computations
that compute x^-4. This patch fixes this by adjusting the threshold
for large arguments (for which +/- pi/2 can just be returned, the
correct result being roughly +/- pi/2 - 1/x) from 2^34 to 2^25.
Tested for x86_64 and x86.
[BZ #18196]
* sysdeps/ieee754/flt-32/s_atanf.c (__atanf): Use 2^25 not 2^34 as
threshold for large arguments.
* math/auto-libm-test-in: Add another test of atan.
* math/auto-libm-test-out: Regenerated.
Similar to various other bugs in this area, some log1p implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes. (The ldbl-128ibm implementation
doesn't currently need any change as it already generates this
exception, albeit through code that would generate spurious exceptions
in other cases; special code for this issue will only be needed there
when fixing the spurious exceptions.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16339]
* sysdeps/i386/fpu/s_log1p.S (dbl_min): New object.
(__log1p): Force underflow exception for results with small
absolute value.
* sysdeps/i386/fpu/s_log1pf.S (flt_min): New object.
(__log1pf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/dbl-64/s_log1p.c: Include <float.h>.
(__log1p): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/flt-32/s_log1pf.c: Include <float.h>.
(__log1pf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_log1pl.c: Include <float.h>.
(__log1pl): Force underflow exception for results with small
absolute value.
* math/auto-libm-test-in: Do not allow missing underflow
exceptions from log1p.
* math/auto-libm-test-out: Regenerated.
To make a strtok faster and improve performance in general we need to do one
additional change.
A comment:
/* It doesn't make sense to send libc-internal strcspn calls through a PLT.
The speedup we get from using SSE4.2 instruction is likely eaten away
by the indirect call in the PLT. */
Does not make sense at all because nobody bothered to check it. Gap
between these implementations is quite big, when haystack is empty a
sse2 is around 40 cycles slower because it needs to populate a lookup
table and difference only increases with size. That is much bigger than
plt slowdown which is few cycles.
Even benchtest show a gap which also may be reverse by branch
misprediction but my internal benchmark shown.
simple_strspn stupid_strspn __strspn_sse42 __strspn_sse2
Length 0, alignment 0, acc len 6: 18.6562 35.2344 17.0469 61.6719
Length 6, alignment 0, acc len 6: 59.5469 72.5781 16.4219 73.625
This patch also handles strpbrk which is implemented by including a
x86_64/multiarch/strcspn.S file.
* sysdeps/x86_64/multiarch/strspn.S: Remove plt indirection.
* sysdeps/x86_64/multiarch/strcspn.S: Likewise.
Programs are supposed to be able to define the __fpu_control variable,
overriding the library's version to cause the floating-point control
word to be set to the chosen value at startup.
This is broken for mips16 for static linking because the library's
__fpu_control variable is in the same object file as the helper
functions used by fpu_control.h for mips16, so test-fpucw-ieee-static
fails to link with multiple definitions of __fpu_control.
This patch fixes this by putting the helpers in a separate file rather
than overriding fpu_control.c. Tested for mips16 that this fixes the
link failure and the ABI tests still pass.
[BZ #18397]
* sysdeps/mips/mips32/fpu/fpu_control.c: Move to ....
* sysdeps/mips/mips32/fpu/fpucw-helpers.c: ... here. Include
<fpu_control.h> instead of <math/fpu_control.c>.
* sysdeps/mips/mips32/fpu/Makefile: New file.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of csqrt, lgamma, log10
and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
There appears to be a discrepancy among the implementations
of setcontext with regards to the function called once the last
linked-to context has finished executing via setcontext.
The POSIX standard says:
~~~
If the uc_link member of the ucontext_t structure pointed to by
the ucp argument is equal to 0, then this context is the main
context, and the thread will exit when this context returns.
~~~
It says "exit" not "exit immediately" nor "exit without running
functions registered with atexit or on_exit."
Therefore the AArch64, ARM, hppa and NIOS II implementations are
wrong and no test detects it.
It is questionable if this should even be fixed or just documented
that the above 4 targets are wrong. The functions are deprecated
and nobody should be using them, but at the same time it silly to
have cross-target differences that make it hard to port old
applications from say x86_64 to AArch64.
Therefore I will ix the 4 arches, and checkin a regression
test to prevent it from changing again.
https://sourceware.org/ml/libc-alpha/2015-03/msg00720.html
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of acosh, atanh, cos,
csqrt, erfc, sin and sincos.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64. (This process
must eventually converge, when my random test generation stops finding
inputs that increase the listed ulps, except maybe for any cases
uncovered where the errors exceed the maximum allowed 9ulp error and
so indicate actual libm bugs needing fixing.)
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of acosh, atanh, clog,
clog10, csqrt, erfc, exp2, expm1, log10, log2 and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds more randomly-generated tests of various libm
functions that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of atan, clog, clog10,
cos, csqrt, erf, erfc, exp2, lgamma, log1p, sin, sincos, tanh and
tgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tgamma that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tanh that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of tan that are observed
to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of tan.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of cos, sin and sincos
that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cos, sin and sincos.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds a randomly-generated test of pow that is observed to
increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out: Regenerated.
* sysdeps/x86_64/fpu/libm-test-ulps: Update.
This patch adds some randomly-generated tests of lgamma that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of log, log10, log1p and
log2 that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of log, log10, log2 and
log1p.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of exp, exp10, exp2 and
expm1 that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of exp, exp10, exp2 and
expm1.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of erf and erfc that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of erf and erfc.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some randomly-generated tests of csqrt that are
observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of csqrt.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This patch adds some further randomly-generated tests of cosh and sinh
that are observed to increase ulps on x86_64.
Tested for x86_64 and x86 and ulps updated accordingly.
* math/auto-libm-test-in: Add more tests of cosh and sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
Since glibc is no longer built with -Winline, a special MIPS version
of waitid.c to disable -Winline is no longer needed, and this patch
removes it. Tested that glibc does indeed build with the patch
applied.
* sysdeps/unix/sysv/linux/mips/mips32/waitid.c: Remove file.
The implementation of roundl for ldbl-128 involves undefined behavior
for arguments with exponents from 31 to 47 inclusive, from the shift:
u_int64_t i = -1ULL >> (j0 - 48);
For example, on mips64, this means roundl (0xffffffffffff.8p0L)
wrongly returns its argument, which is not an integer. A condition
checking for exponents < 31 should actually be checking for exponents
< 48, and this patch makes it do so. (That condition is for whether
the bit representing 0.5 is in the high 64-bit half of the
floating-point number. The value 31 might have arisen from an
incorrect conversion of the ldbl-96 version to handle ldbl-128.)
This was originally reported as a GCC libquadmath bug
<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65757>.
Tested for mips64; also tested for x86_64 and x86 to make sure the new
tests pass there.
[BZ #18346]
* sysdeps/ieee754/ldbl-128/s_roundl.c (__roundl): Handle all
exponents less than 48 as cases where high part of mantissa needs
examining to determine whether argument is integral.
* math/libm-test.inc (round_test_data): Add more tests.