nice (XPG3) calls getpriority and setpriority (in XPG4 but not XPG3,
i.e. UX-shaded in XPG4). This patch fixes this by making those
functions into weak aliases of __* functions and calling the __*
versions as needed.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by this patch).
This completes cleaning up the unsorted linknamespace test XFAILs.
[BZ #18553]
* resource/getpriority.c (getpriority): Rename to __getpriority
and define as weak alias of __getpriority.
* resource/setpriority.c (setpriority): Rename to __setpriority
and define as weak alias of __setpriority.
* sysdeps/mach/hurd/getpriority.c (getpriority): Rename to
__getpriority and define as weak alias of __getpriority.
* sysdeps/mach/hurd/setpriority.c (setpriority): Rename to
__setpriority and define as weak alias of __setpriority.
* sysdeps/unix/syscalls.list (getpriority): Use __getpriority as
strong name.
(setpriority): Use __setpriority as strong name.
* sysdeps/unix/sysv/linux/getpriority.c (getpriority): Rename to
__getpriority and define as weak alias of __getpriority.
* include/sys/resource.h (__getpriority): Declare. Use
libc_hidden_proto.
(__setpriority): Likewise.
(getpriority): Don't use libc_hidden_proto.
(setpriority): Likewise.
* sysdeps/posix/nice.c (nice): Call __getpriority instead of
getpriority. Call __setpriority instead of setpriority.
* conform/Makefile (test-xfail-XPG3/unistd.h/linknamespace):
Remove variable.
mq_notify (in the 1996 edition of POSIX) brings in references to recv
and socket (not in POSIX until the 2001 edition). This patch fixes
this by using __recv and __socket, exporting them from libc at version
GLIBC_PRIVATE.
Tested for x86_64 and x86 (testsuite and comparison of installed
stripped shared libraries; PLT / dynamic symbol table changes render
the comparison not particularly useful for libc).
[BZ #18546]
* socket/recv.c (__recv): Use libc_hidden_def.
* socket/socket.c (__socket): Likewise.
* sysdeps/mach/hurd/recv.c (__recv): Likewise.
* sysdeps/mach/hurd/socket.c (__socket): Likewise.
* sysdeps/unix/sysv/linux/generic/recv.c (__recv): Likewise.
* sysdeps/unix/sysv/linux/recv.c (__recv): Use libc_hidden_weak.
* sysdeps/unix/sysv/linux/socket.c (__socket): Use
libc_hidden_def.
* sysdeps/unix/sysv/linux/x86_64/recv.c (__recv): Use
libc_hidden_weak.
* include/sys/socket.h (__socket): Do not use attribute_hidden.
Use libc_hidden_proto.
(__recv): Likewise.
* socket/Versions (libc): Export __recv and __socket at version
GLIBC_PRIVATE.
* sysdeps/unix/sysv/linux/mq_notify.c (helper_thread): Call __recv
instead of recv.
(init_mq_netlink): Call __socket instead of socket.
* conform/Makefile (test-xfail-POSIX/mqueue.h/linknamespace):
Remove variable.
mq_receive calls mq_timedreceive, and mq_send calls mq_timedsend. But
mq_receive and mq_send were in POSIX by 1996, while mq_timed* were
added in the 2001 edition of POSIX. This patch fixes this by making
mq_timed* into weak aliases for __mq_timed* and calling the
__mq_timed* names.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18545]
* rt/mq_timedreceive.c (mq_timedreceive): Rename to
__mq_timedreceive and define as alias of __mq_timedreceive. Use
hidden_weak.
* rt/mq_timedsend.c (mq_timedsend): Rename to __mq_timedsend and
define as alias of __mq_timedsend. Use hidden_weak.
* sysdeps/unix/sysv/linux/syscalls.list (mq_timedsend): Use
__mq_timedsend as strong name.
(mq_timedreceive): Use __mq_timedreceive as strong name.
* include/mqueue.h (__mq_timedsend): Declare. Use hidden_proto.
(__mq_timedreceive): Likewise.
* sysdeps/unix/sysv/linux/mq_receive.c (mq_receive): Call
__mq_timedreceive instead of mq_timedreceive.
* sysdeps/unix/sysv/linux/mq_send.c (mq_send): Call __mq_timedsend
instead of mq_timedsend.
* conform/Makefile (test-xfail-UNIX98/mqueue.h/linknamespace):
Remove variable.
The syscall wrappers mechanism automatically creates hidden aliases
for syscalls with libc_hidden_def / libc_hidden_weak. The use of
libc_hidden_* has the side-effect that for syscall wrappers in
non-libc libraries those aliases are not created. In turn, this means
that three mq_* syscalls in sysdeps/unix/sysv/linux/syscalls.list list
the __GI_* names explicitly.
The use of libc_hidden_* dates back to the original introduction of
that support in
2002-08-03 Roland McGrath <roland@redhat.com>
* sysdeps/unix/make-syscalls.sh: Generate libc_hidden_def or
libc_hidden_weak for every system call symbol defined.
(predating the non-libc syscalls in question) and I see no reason for
excluding non-libc syscalls. This patch changes the code to use
hidden_def / hidden_weak (via a wrapper syscall_hidden_def in the case
where the argument is itself a macro, so that the argument gets
expanded before concatenation with __GI_), so avoiding the need to
specify the hidden aliases explicitly in this case.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed stripped shared libraries is unchanged by the patch; the
mq_* symbols change from weak to strong, which is of no significance
and two of them will shortly change back to weak as part of a fix for
bug 18545).
* sysdeps/unix/make-syscalls.sh (emit_weak_aliases): Use
hidden_def and hidden_weak instead of libc_hidden_def and
libc_hidden_weak.
(top level): Refer to hidden_def in comment.
* sysdeps/unix/syscall-template.S (syscall_hidden_def): New
macro. Use it instead of libc_hidden_def.
* sysdeps/unix/sysv/linux/syscalls.list (mq_timedsend): Do not
specify __GI_* name explicitly.
(mq_timedreceive): Likewise.
(mq_setattr): Likewise.
mq_notify (present in POSIX by 1996) brings in references to
pthread_barrier_init and pthread_barrier_wait (new in the 2001 edition
of POSIX). This patch fixes this by making those functions into weak
aliases of __pthread_barrier_*, exporting the __pthread_barrier_*
names at version GLIBC_PRIVATE and using them in mq_notify.
Tested for x86_64 and x86 (testsuite, and comparison of installed
stripped shared libraries). Changes in addresses from dynamic symbol
table / PLT changes render most comparisons not particularly useful,
but when the addresses of subsequent code don't change there's no sign
of unexpected changes there. This patch does not remove any
linknamespace XFAILs because of other namespace issues remaining with
mqueue.h functions.
[BZ #18544]
* nptl/pthread_barrier_init.c (pthread_barrier_init): Rename to
__pthread_barrier_init and define as weak alias of
__pthread_barrier_init.
* sysdeps/sparc/nptl/pthread_barrier_init.c
(pthread_barrier_init): Likewise.
* nptl/pthread_barrier_wait.c (pthread_barrier_wait): Rename to
__pthread_barrier_wait and define as weak alias of
__pthread_barrier_wait.
* sysdeps/sparc/nptl/pthread_barrier_wait.c
(pthread_barrier_wait): Likewise.
* sysdeps/sparc/sparc32/pthread_barrier_wait.c
(pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_barrier_wait.S
(pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_barrier_wait.S
(pthread_barrier_wait): Likewise.
* nptl/Versions (libpthread): Export __pthread_barrier_init and
__pthread_barrier_wait at version GLIBC_PRIVATE.
* include/pthread.h (__pthread_barrier_init): Declare.
(__pthread_barrier_wait): Likewise.
* sysdeps/unix/sysv/linux/mq_notify.c (notification_function):
Call __pthread_barrier_wait instead of pthread_barrier_wait.
(helper_thread): Likewise.
(init_mq_netlink): Call __pthread_barrier_init instead of
pthread_barrier_init.
Various functions in XPG4 bring in references to getlogin_r, which is
not in XPG4; this is also a bug for some older POSIX versions which
aren't yet covered by the linknamespace tests. This patch fixes this
by making getlogin_r into a weak alias for __getlogin_r and using
__getlogin_r as needed.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed stripped shared libraries is unchanged by the patch).
[BZ #18527]
* login/getlogin_r.c (getlogin_r): Rename to __getlogin_r and
define as weak alias of __getlogin_r. Use libc_hidden_weak.
* sysdeps/mach/hurd/getlogin_r.c (getlogin_r): Likewise.
* sysdeps/unix/getlogin_r.c (getlogin_r): Likewise.
* sysdeps/unix/sysv/linux/getlogin_r.c (getlogin_r): Likewise.
* include/unistd.h (__getlogin_r): Declare. Use
libc_hidden_proto.
* posix/glob.c (glob): Call __getlogin_r instead of getlogin_r.
* conform/Makefile (test-xfail-XPG3/glob.h/linknamespace): Remove
variable.
(test-xfail-XPG3/wordexp.h/linknamespace): Likewise.
(test-xfail-XPG4/glob.h/linknamespace): Likewise.
(test-xfail-XPG4/wordexp.h/linknamespace): Likewise.
Here is implementation of vectorized sin containing SSE, AVX,
AVX2 and AVX512 versions according to Vector ABI
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
* bits/libm-simd-decl-stubs.h: Added stubs for sin.
* math/bits/mathcalls.h: Added sin declaration with __MATHCALL_VEC.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New versions added.
* sysdeps/x86/fpu/bits/math-vector.h: SIMD declaration for sin.
* sysdeps/x86_64/fpu/Makefile (libmvec-support): Added new files.
* sysdeps/x86_64/fpu/Versions: New versions added.
* sysdeps/x86_64/fpu/libm-test-ulps: Regenerated.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin2_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin2_core_sse4.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin4_core_avx2.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_sin8_core_avx512.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin2_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin4_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin4_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin8_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin_data.S: New file.
* sysdeps/x86_64/fpu/svml_d_sin_data.h: New file.
* sysdeps/x86_64/fpu/test-double-vlen2-wrappers.c: Added vector sin test.
* sysdeps/x86_64/fpu/test-double-vlen2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-avx2.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen4.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8-wrappers.c: Likewise.
* sysdeps/x86_64/fpu/test-double-vlen8.c: Likewise.
* NEWS: Mention addition of x86_64 vector sin.
This patch removes the vsyscall usage for x86_64 port. As indicated
by kernel code comments [1], vsyscalls are a legacy ABI and its concept
is problematic:
- It interferes with ASLR.
- It's awkward to write code that lives in kernel addresses but is
callable by userspace at fixed addresses.
- The whole concept is impossible for 32-bit compat userspace.
- UML cannot easily virtualize a vsyscall.
The VDSO is a better approach for such functionality. Tested on i686,
x86_64, and x32.
* sysdeps/unix/sysv/linux/i386/gettimeofday.c
(__gettimeofday_syscall): Remove vsyscall fallback.
* sysdeps/unix/sysv/linux/i386/time.c (__time_syscall): Likewise.
* sysdeps/unix/sysv/linux/x86/gettimeofday.c (__gettimeofday_syscall):
Add syscall fallback function.
(gettimeofday_ifunc): Use __gettimeofday_syscall as fallback mechanism
if vDSO is not present.
* sysdeps/unix/sysv/linux/x86/time.c (__time_syscall): Add syscall
fallback function.
(time_ifunc): Use __time_syscall as fallback mechanism if vDSO is not
present.
* sysdeps/unix/sysv/linux/x86_64/gettimeofday.c: Remove file.
* sysdeps/unix/sysv/linux/x86_64/time.c: Likewise.
[1] arch/x86/kernel/vsyscall_64.c
pathconf uses __statvfs64, and fpathconf uses __fstatvfs64. On
systems using sysdeps/unix/sysv/linux/wordsize-64, __statvfs64 then
brings in the strong symbol statvfs, and __fstatvfs64 brings in the
strong symbol fstatvfs, which are not in all the standards that have
pathconf and fpathconf. This patch fixes this by making those symbols
into weak aliases.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18507]
* sysdeps/unix/sysv/linux/fstatvfs.c (fstatvfs): Rename to
__fstatvfs and define as weak alias of __fstatvfs. Use
libc_hidden_weak.
* sysdeps/unix/sysv/linux/statvfs.c (statvs): Rename to __statvfs
and define as weak alias of __statvfs. Use libc_hidden_weak.
* sysdeps/unix/sysv/linux/wordsize-64/fstatvfs.c (__fstatvfs64):
Define as alias of __fstatvfs, not fstatvfs.
(fstatvfs64): Likewise.
* sysdeps/unix/sysv/linux/wordsize-64/statvfs.c (__statvfs64):
Define as alias of __statvfs, not statvfs.
(statvfs64): Likewise.
* conform/Makefile (test-xfail-POSIX/unistd.h/linknamespace):
Remove variable.
This patch consolidates the sched_getcpu implementations across all
arches (except tile, which requires its own). This patch removes
the powerpc, x86_64 and x32 specific files and change the default
linux one to use INLINE_VSYSCALL where possible (for ports that
implements it).
Here is implementation of vectorized cosf containing SSE, AVX,
AVX2 and AVX512 versions according to Vector ABI
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
* sysdeps/x86_64/fpu/Makefile (libmvec-support): Added new files.
* sysdeps/x86_64/fpu/Versions: New versions added.
* sysdeps/x86_64/fpu/svml_s_cosf4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf4_core_sse4.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf8_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf8_core_avx2.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf16_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_s_cosf16_core_avx512.S: New file.
* sysdeps/x86_64/fpu/svml_s_wrapper_impl.h: New file.
* sysdeps/x86_64/fpu/svml_s_cosf_data.S: New file.
* sysdeps/x86_64/fpu/svml_s_cosf_data.h: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New versions added.
* sysdeps/x86/fpu/bits/math-vector.h: Added SIMD declaration for cosf.
* NEWS: Mention addition of x86_64 vector cosf.
Here is implementation of cos containing SSE, AVX, AVX2 and AVX512
versions according to Vector ABI which had been discussed in
<https://groups.google.com/forum/#!topic/x86-64-abi/LmppCfN1rZ4>.
Vector math library build and ABI testing enabled by default for x86_64.
* sysdeps/x86_64/fpu/Makefile: New file.
* sysdeps/x86_64/fpu/Versions: New file.
* sysdeps/x86_64/fpu/svml_d_cos_data.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos_data.h: New file.
* sysdeps/x86_64/fpu/svml_d_cos2_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos4_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos4_core_avx.S: New file.
* sysdeps/x86_64/fpu/svml_d_cos8_core.S: New file.
* sysdeps/x86_64/fpu/svml_d_wrapper_impl.h: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos2_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos2_core_sse4.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos4_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos4_core_avx2.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core.S: New file.
* sysdeps/x86_64/fpu/multiarch/svml_d_cos8_core_avx512.S: New file.
* sysdeps/x86_64/fpu/multiarch/Makefile (libmvec-sysdep_routines): Added
build of SSE, AVX2 and AVX512 IFUNC versions.
* sysdeps/x86/fpu/bits/math-vector.h: Added SIMD declaration for cos.
* math/bits/mathcalls.h: Added cos declaration with __MATHCALL_VEC.
* sysdeps/x86_64/configure.ac: Options for libmvec build.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/sysdep.h (cfi_offset_rel_rsp): New macro.
* sysdeps/unix/sysv/linux/x86_64/libmvec.abilist: New file.
* manual/install.texi (Configuring and compiling): Document
--disable-mathvec.
* INSTALL: Regenerated.
* NEWS: Mention addition of libmvec and x86_64 vector cos.
Beginning with the upcoming 4.1 release, Linux on a subset of 32-bit
ARM hardware will provide fast user-space implementations of the
following system calls:
- gettimeofday
- clock_gettime
The kernel implementation depends on the ARMv7 Generic Timers
Extension to accelerate these system calls. So CPUs such as
Cortex-A15 and -A7 benefit, while Cortex-A9, -A8, and pre-v7 CPUs do
not. On systems where the VDSO does not provide any speedup, the
kernel prevents the relevant symbol lookups from succeeding.
On OMAP5 (Cortex-A15) gettimeofday latency decreases from ~350ns to
~120ns. On BeagleBone Black (Cortex-A8) it goes from ~650ns to
~660ns, which to my mind is an acceptable cost.
Verified that no new test failures are introduced on kernels with and
without the VDSO.
* sysdeps/unix/sysv/linux/arm/Makefile: (sysdep_routines):
Include dl-vdso.
* sysdeps/unix/sysv/linux/arm/init-first.c: New file:
Use VDSO routines for gettimeofday, clock_gettime if
available.
* sysdeps/unix/sysv/linux/arm/libc-vdso.h: New file:
Declare VDSO symbols.
* sysdeps/unix/sysv/linux/arm/sysdep.h:
[HAVE_GETTIMEOFDAY_VSYSCALL]: Define.
[HAVE_CLOCK_GETTIME_VSYSCALL]: Define.
* sysdeps/unix/sysv/linux/arm/Versions: Add
__vdso_clock_gettime.
This patch uses inline calls (through INLINE_SYSCALL macro) to define
the non-cancellable functions macros to avoid use of the
syscall_nocancel entrypoint.
Carlos noted in
<https://sourceware.org/ml/libc-alpha/2015-05/msg00680.html> that
various ports use potentially problematic short variables names in
their syscall macros, which could shadow variables with the same name
from containing scopes.
This patch fixes variables called err and ret in MIPS macros. (I left
result_var and _sys_result - separate variables in different macros,
which need separate names - alone.)
Tested for mips64 (all three ABIs) that installed stripped shared
libraries are unchanged by this patch.
* sysdeps/unix/sysv/linux/mips/mips32/sysdep.h (INLINE_SYSCALL):
Use variable name _sc_err instead of err.
[__mips16] (INTERNAL_SYSCALL_NCS): Use variable name _sc_ret
instead of ret.
* sysdeps/unix/sysv/linux/mips/mips64/n32/sysdep.h
(INLINE_SYSCALL): Use variable name _sc_err instead of err.
* sysdeps/unix/sysv/linux/mips/mips64/n64/sysdep.h
(INLINE_SYSCALL): Likewise.
The attached patch fixes a glibc build failure with gcc 5 on powerpc64le
caused by a recent change in gcc where the compiler defines the
_ARCH_PWR6 macro when processing assembly files but doesn't invoke the
assembler in the corresponding machine mode (unless it has been
explicitly configured to target POWER 6 or later). A bug had been filed
with gcc for this (65341) but was closed as won't fix. Glibc relies on
the _ARCH_PWR6 macro in a few .S files to make use of Power ISA 2.5
instructions (specifically, the four-argument form of the mtfsf insn).
A similar problem had occurred in the past (bug 10118) but the fix that
was committed for it didn't anticipate this new problem.
At issue for INLINE_SYSCALL was that it used "err" and "val"
as variable names in a #define, so that if it was used in a context
where the "caller" was also using "err" or "val", and those
variables were passed in to INLINE_SYSCALL, we would end up
referencing the internal shadowed variables instead.
For example, "char val" in check_may_shrink_heap() in
sysdeps/unix/sysv/linux/malloc-sysdep.h was being shadowed by
the syscall return "val" in INLINE_SYSCALL, causing the "char val"
not to get updated at all, and may_shrink_heap ended up always false.
A similar fix was made to INTERNAL_VSYSCALL_CALL.
This patch removes the architecture specific gettimeofday implementation
to use the vDSO symbol and consolidate it on a common Linux one.
Similar to clock_gettime and clock_getres vDSO implementation, each port
that supports gettimeofday through vDSO should just implement INLINE_VSYSCALL
to access the symbol and define HAVE_{GETTIME,GETRES}_VSYSCAL as 1.
On 21/05/15 05:29, Siddhesh Poyarekar wrote:
> On Wed, May 20, 2015 at 06:55:02PM +0100, Szabolcs Nagy wrote:
>> i guess it's ok for consistency if i fix struct stat64
>> too to use __USE_XOPEN2K8.
>>
>> i will run some tests and come back with a patch
>
> I also think it would be appropriate to change this code in other
> architectures (microblaze and nacl IIRC) to make all of them
> consistent. It is a mechanical enough change IMO that all arch
> maintainer acks is not necessary.
>
here is the patch with consistent __USE_XOPEN2K8
ok to commit?
2015-05-21 Szabolcs Nagy <szabolcs.nagy@arm.com>
[BZ #18234]
* conform/data/sys/stat.h-data (struct stat): Add tests for st_atim,
st_mtim and st_ctim members.
* sysdeps/nacl/bits/stat.h (struct stat, struct stat64): Make
st_atim, st_ctim, st_mtim visible under __USE_XOPEN2K8 only.
* sysdeps/unix/sysv/linux/generic/bits/stat.h (struct stat,):
(struct stat64): Likewise.
* sysdeps/unix/sysv/linux/ia64/bits/stat.h (struct stat,):
(struct stat64): Likewise.
* sysdeps/unix/sysv/linux/microblaze/bits/stat.h (struct stat,):
(struct stat64): Likewise.
This patch consolidate the Linux vDSO define and usage across all ports
that uses it. The common vDSO definitions and calling through
{INLINE/INTERNAL}_VSYSCALL macros are moved to a common header
sysdep-vdso.h and vDSO name declaration and prototype is defined
using a common macro.
Also PTR_{MANGLE,DEMANGLE} is added to ports that does not use them
for vDSO calls (aarch64, powerpc, s390, and tile) and thus it will
reflect in code changes. For ports that already implement pointer
mangling/demangling in vDSO system (i386, x32, x86_64) this patch
is mainly a code refactor.
Checked on x32, x86_64, x32, ppc64le, and aarch64.
This patch removes the socket.S implementation for all ports and replace
it by a C implementation using socketcall. For ports that implement
the syscall directly, there is no change.
The patch idea is to simplify the socket function implementation that
uses the socketcall to be based on C implemetation instead of a pseudo
assembly implementation with arch specific parts. The patch then remove
the assembly implementatation for the ports which uses socketcall
(i386, microblaze, mips, powerpc, sparc, m68k, s390 and sh).
I have cross-build GLIBC for afore-mentioned ports and tested on both
i386 and ppc32 without regressions.
pathconf (sysdeps/unix/sysv/linux/pathconf.c) uses basename. But
pathconf is in POSIX back to 1990 while basename is only reserved with
external linkage in those standards including XPG functions. This
patch fixes this namespace issue in the usual way, renaming basename
to __basename and making it into a weak alias.
Tested for x86_64 and x86 (testsuite, and that disassembly of
installed shared libraries is unchanged by the patch).
[BZ #18444]
* string/basename.c (basename): Rename to __basename and define as
weak alias of __basename. Use libc_hidden_weak.
* include/string.h (__basename): Declare. Use libc_hidden_proto.
* sysdeps/unix/sysv/linux/pathconf.c (distinguish_extX): Call
__basename instead of basename.
* conform/Makefile (test-xfail-POSIX2008/unistd.h/linknamespace):
Remove variable.
(test-xfail-XOPEN2K8/unistd.h/linknamespace): Likewise.
This patch removes the specialized i386 assembly implementations for
fallocate{64}, pselect, and sync_file_range now that i386 have
support for 6 argument syscalls.
There appears to be a discrepancy among the implementations
of setcontext with regards to the function called once the last
linked-to context has finished executing via setcontext.
The POSIX standard says:
~~~
If the uc_link member of the ucontext_t structure pointed to by
the ucp argument is equal to 0, then this context is the main
context, and the thread will exit when this context returns.
~~~
It says "exit" not "exit immediately" nor "exit without running
functions registered with atexit or on_exit."
Therefore the AArch64, ARM, hppa and NIOS II implementations are
wrong and no test detects it.
It is questionable if this should even be fixed or just documented
that the above 4 targets are wrong. The functions are deprecated
and nobody should be using them, but at the same time it silly to
have cross-target differences that make it hard to port old
applications from say x86_64 to AArch64.
Therefore I will ix the 4 arches, and checkin a regression
test to prevent it from changing again.
https://sourceware.org/ml/libc-alpha/2015-03/msg00720.html
Since glibc is no longer built with -Winline, a special MIPS version
of waitid.c to disable -Winline is no longer needed, and this patch
removes it. Tested that glibc does indeed build with the patch
applied.
* sysdeps/unix/sysv/linux/mips/mips32/waitid.c: Remove file.
This patch adds support to query cache information on s390
via sysconf() function - e.g. with _SC_LEVEL1_ICACHE_SIZE.
The attributes size, linesize and assoc can be queried
for cache level 1 - 4 via "extract cpu attribute" instruction,
which was first available with z10.
* NEWS: Mention sysconf() cache information support for s390.
* sysdeps/unix/sysv/linux/s390/sysconf.c: New File.
In the course of the work on six-argument syscalls I noticed that the
i386 lowlevellock.h contained some unused macro definitions (already
unused before my patch). This patch removes them.
Tested for x86 that installed stripped shared libraries are unchanged
by this patch.
* sysdeps/unix/sysv/linux/i386/lowlevellock.h (LLL_EBX_LOAD):
Remove macro.
(LLL_EBX_REG): Likewise.
(LLL_ENTER_KERNEL): Likewise.
This patch follows the approach outlined in
<https://sourceware.org/ml/libc-alpha/2015-03/msg00656.html> to
support six-argument syscalls from INTERNAL_SYSCALL for 32-bit x86,
making them call a function __libc_do_syscall that takes the syscall
number and three syscall arguments in the registers in which the
kernel expects them, along with a pointer to a structure containing
the other three arguments.
In turn, this allows the generic lowlevellock-futex.h to be used on
32-bit x86, so supporting lll_futex_timed_wait_bitset (and so allowing
FUTEX_CLOCK_REALTIME to be used in various cases, so fixing bug 18138
for 32-bit x86 and leaving hppa as the only architecture missing
lll_futex_timed_wait_bitset). The change to lowlevellock.h's
definition of SYS_futex is because the generic lowlevelloc-futex.h
ends up bringing in bits/syscall.h which defines SYS_futex to
__NR_futex, so resulting in redefinition errors. The revised
definition in lowlevellock.h is in line with what the x86_64 version
does.
__libc_do_syscall is only needed in libpthread at present (meaning
nothing special needs to be done to make it shared-only in most
libraries containing it, static in libc only, as on ARM).
Tested for 32-bit x86, with the glibc testsuite and with the test in
bug 18138. The failures seen
FAIL: nptl/tst-cleanupx4
FAIL: rt/tst-cpuclock2
are pre-existing.
[BZ #18138]
* sysdeps/unix/sysv/linux/i386/sysdep.h (struct
libc_do_syscall_args): New structure.
(INTERNAL_SYSCALL_MAIN_0): New macro.
(INTERNAL_SYSCALL_MAIN_1): Likewise.
(INTERNAL_SYSCALL_MAIN_2): Likewise.
(INTERNAL_SYSCALL_MAIN_3): Likewise.
(INTERNAL_SYSCALL_MAIN_4): Likewise.
(INTERNAL_SYSCALL_MAIN_5): Likewise.
(INTERNAL_SYSCALL_MAIN_6): Likewise. Call __libc_do_syscall.
(INTERNAL_SYSCALL): Define to use INTERNAL_SYSCALL_MAIN_##nr.
Replace conditional definitions by conditional definitions of ....
(INTERNAL_SYSCALL_MAIN_INLINE): ... this. New macro.
* sysdeps/unix/sysv/linux/i386/libc-do-syscall.S: New file.
* sysdeps/unix/sysv/linux/i386/Makefile [$(subdir) = nptl]
(libpthread-sysdep_routines): Add libc-do-syscall.
* sysdeps/unix/sysv/linux/i386/lowlevellock-futex.h: Remove file.
* sysdeps/unix/sysv/linux/i386/lowlevellock.h (SYS_futex): Define
to __NR_futex not 240.
This patch is glibc support for a PowerPC TLS optimization, inspired
by Alexandre Oliva's TLS optimization for other processors,
http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
In essence, this optimization uses a zero module id in the tls_index
GOT entry to indicate that a TLS variable is allocated space in the
static TLS area. A special plt call linker stub for __tls_get_addr
checks for such a tls_index and if found, returns the offset
immediately. The linker communicates the fact that the special
__tls_get_addr stub is used by setting a bit in the dynamic tag
DT_PPC64_OPT/DT_PPC_OPT. glibc communicates to the linker that this
optimization is available by the presence of __tls_get_addr_opt.
tst-tlsmod2.so is built with -Wl,--no-tls-get-addr-optimize for
tst-tls-dlinfo, which otherwise would fail since it tests that no
static tls is allocated. The ld option --no-tls-get-addr-optimize has
been available since binutils-2.20 so doesn't need a configure test.
* NEWS: Advertise TLS optimization.
* elf/elf.h (R_PPC_TLSGD, R_PPC_TLSLD, DT_PPC_OPT, PPC_OPT_TLS): Define.
(DT_PPC_NUM): Increment.
* elf/dynamic-link.h (HAVE_STATIC_TLS): Define.
(CHECK_STATIC_TLS): Use here.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela): Optimize
TLS descriptors.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/dl-tls.c: New file.
* sysdeps/powerpc/Versions: Add __tls_get_addr_opt.
* sysdeps/powerpc/tst-tlsopt-powerpc.c: New tls test.
* sysdeps/unix/sysv/linux/powerpc/Makefile: Add new test.
Build tst-tlsmod2.so with --no-tls-get-addr-optimize.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/ld.abilist: Update.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/ld.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/ld-le.abilist: Likewise.
extend_alloca was used to emulate VLA deallocation. The new version
also handles the res == 0 corner case more explicitly, by returning 0
instead of the (potentially undefined, but usually zero) system call
error.
In bc0cdc498 the configure check for HAVE_ASM_PPC_REL16 was removed
on the grounds that the minimum binutils supports rel16 relocs. This
is true, but not all references to HAVE_ASM_PPC_REL16 in the sources
were removed.
* config.h.in: Remove HAVE_ASM_PPC_REL16.
* sysdeps/powerpc/powerpc32/tls-macros.h: Remove HAVE_ASM_PPC_REL16
and false branch of conditional.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/swapcontext-common.S:
Likewise.
With AIX port deprecated there is no need to check/define
HAVE_ASM_GLOBAL_DOT_NAME anymore since the current minimum binutils
supported (2.22) does not emit global symbol with dot.
This patch removes all the HAVE_ASM_GLOBAL_DOT_NAME definition and
checks for powerpc64 port.
__ASSUME_PRLIMIT64 is defined in kernel-features.h for kernels 2.6.36
and later, but hppa, microblaze and sh did not add the prlimit64
syscall until 2.6.37. This patch adds corresponding undefines of
__ASSUME_PRLIMIT64 to those architectures' kernel-features.h files.
(This concludes the kernel-features.h fixes arising out of the review
- limited to macros defined in the architecture-independent
kernel-features.h file - I did in connection with the move to 2.6.32
minimum kernel version. For that subset of macros - I didn't check
any purely architecture-specific macros - I think they are now defined
for the correct kernel versions on each architecture after this
patch.)
[BZ #17779]
* sysdeps/unix/sysv/linux/hppa/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x020625] (__ASSUME_PRLIMIT64):
Undefine.
* sysdeps/unix/sysv/linux/microblaze/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x020625] (__ASSUME_PRLIMIT64):
Likewise.
* sysdeps/unix/sysv/linux/sh/kernel-features.h
[__LINUX_KERNEL_VERSION < 0x020625] (__ASSUME_PRLIMIT64):
Likewise.
Similarly to what we did for in6_addr, we need a macro
to guard in6_pktinfo and ip6_mtuinfo too.
Cc: Carlos O'Donell <carlos@redhat.com>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Both open and openat load their last argument 'mode' lazily, using
va_arg() only if O_CREAT is found in oflag. This is wrong, mode is also
necessary if O_TMPFILE is in oflag.
By chance on x86_64, the problem wasn't evident when using O_TMPFILE
with open, as the 3rd argument of open, even when not loaded with
va_arg, is left untouched in RDX, where the syscall expects it.
However, openat was not so lucky, and O_TMPFILE couldn't be used: mode
is the 4th argument, in RCX, but the syscall expects its 4th argument in
a different register than the glibc wrapper, in R10.
Introduce a macro __OPEN_NEEDS_MODE (oflag) to test if either O_CREAT or
O_TMPFILE is set in oflag.
Tested on Linux x86_64.
[BZ #17523]
* io/fcntl.h (__OPEN_NEEDS_MODE): New macro.
* io/bits/fcntl2.h (open): Use it.
(openat): Likewise.
* io/open.c (__libc_open): Likewise.
* io/open64.c (__libc_open64): Likewise.
* io/open64_2.c (__open64_2): Likewise.
* io/open_2.c (__open_2): Likewise.
* io/openat.c (__openat): Likewise.
* io/openat64.c (__openat64): Likewise.
* io/openat64_2.c (__openat64_2): Likewise.
* io/openat_2.c (__openat_2): Likewise.
* sysdeps/mach/hurd/open.c (__libc_open): Likewise.
* sysdeps/mach/hurd/openat.c (__openat): Likewise.
* sysdeps/posix/open64.c (__libc_open64): Likewise.
* sysdeps/unix/sysv/linux/dl-openat64.c (openat64): Likewise.
* sysdeps/unix/sysv/linux/generic/open.c (__libc_open): Likewise.
(__open_nocancel): Likewise.
* sysdeps/unix/sysv/linux/generic/open64.c (__libc_open64): Likewise.
* sysdeps/unix/sysv/linux/open64.c (__libc_open64): Likewise.
* sysdeps/unix/sysv/linux/openat.c (__OPENAT): Likewise.
* sysdeps/unix/sysv/linux/s390/lowlevellock.h: Include
<sysdeps/nptl/lowlevellock.h> and remove macros and
functions that are now defined there.
(SYS_futex): Remove.
(lll_compare_and_swap): Remove.
* sysdeps/s390/bits/atomic.h (atomic_exchange_acq): Define.
posix_spawn (a standard POSIX function) brings in a use of getrlimit64
(not a standard POSIX function). This patch fixes this by using
__getrlimit64 and making getrlimit64 a weak alias.
This is more complicated than some such changes because of files that
define getrlimit64 in their own way using symbol versioning after
including the main sysdeps/unix/sysv/linux/getrlimit64.c with a
getrlimit macro defined. There are various existing patterns for such
cases in glibc; the one I've used here is that a getrlimit64 macro
disables the weak_alias / libc_hidden_weak calls, leaving it to the
including file to define the getrlimit64 name in whatever way is
appropriate.
Tested for x86_64 and x86 that installed stripped shared libraries are
unchanged by this patch.
[BZ #17991]
* include/sys/resource.h (__getrlimit64): Declare. Use
libc_hidden_proto.
* resource/getrlimit64.c (getrlimit64): Rename to __getrlimit64
and define as weak alias of __getrlimit64. Use libc_hidden_weak.
* sysdeps/posix/spawni.c (__spawni): Call __getrlimit64 instead of
getrlimit64.
* sysdeps/unix/sysv/linux/getrlimit64.c (getrlimit64): Rename to
__getrlimit64.
[!getrlimit64] (getrlimit64): Define as weak alias of
__getrlimit64. Use libc_hidden_weak.
* sysdeps/unix/sysv/linux/i386/getrlimit64.c (getrlimit64): Define
using __getrlimit64 not __new_getrlimit64.
(__GI_getrlimit64): Likewise.
* sysdeps/unix/sysv/linux/mips/getrlimit64.c (getrlimit64):
Likewise.
(__GI_getrlimit64): Likewise.
(__old_getrlimit64): Use __getrlimit64 not __new_getrlimit64.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/syscalls.list
(getrlimit): Add __getrlimit64 alias.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list (getrlimit):
Likewise.
* conform/Makefile (test-xfail-XOPEN2K/spawn.h/linknamespace):
Remove variable.
(test-xfail-POSIX2008/spawn.h/linknamespace): Likewise.
(test-xfail-XOPEN2K8/spawn.h/linknamespace): Likewise.
ia64 seems to use the same implementation of low-level locks as the
generic Linux lowlevellock.h. The futex syscalls are somewhat
different, but Roland thought it shouldn't matter. Note that the futex
calls are on the slow path always (except for PI mutexes).
Removing the custom low-level lock implementation will make further
refactoring easier, for example adding proper error checking to futex
operations.
Remove IA64 PAGE_SIZE related macros as PAGE_SIZE is not defined.
Also remove macros that are only used for BFD's trad-core support
which is not relavant for IA64 according to the thread starting
here:
https://sourceware.org/ml/libc-ports/2013-11/msg00028.html
This patch is neither built nor tested but is equivalent to a MIPS
patch for the same fix.
This reverts part of the previous commit to refactor pthread.h.
The refactoring must be done by having pthread.h include arch
bits headers, not the other way around. Then hppa provides the
arch bits header. For now we synchronzie again with pthread.h
and include the entire contents in the hppa copy.
Update all translations.
Update contributions in the manual.
Update installation notes with information about newest working tools.
Reconfigure using exactly autoconf 2.69.
Regenerate INSTALL.
(1) Fix warnings.
This is a bulk update to fix all the warnings that were causing
build failures with -Werror on hppa.
The most egregious problems are in dl-fptr.c which needs to be
entirely rewritten, thus I've used -Wno-error for that.
(2) Fix conformance errors.
The sysdep.c file had __syscall_error and syscall in one file
which caused conformance issues by including syscall when
__syscall_error was linked to. The fix is obviously to split
the file and use syscall.c to implement syscall.
This patch fix powerpc __get_clockfreq racy and cancel-safe issues by
dropping internal static cache and by using nocancel file operations.
The vDSO failure check is also removed, since kernel code does not
return an error (it cleans cr0.so bit on function return) and the static
code (to read value /proc) now uses non-cancellable calls.
This commit fixes semaphore destruction by either using 64b atomic
operations (where available), or by using two separate fields when only
32b atomic operations are available. In the latter case, we keep a
conservative estimate of whether there are any waiting threads in one
bit of the field that counts the number of available tokens, thus
allowing sem_post to atomically both add a token and determine whether
it needs to call futex_wake.
See:
https://sourceware.org/ml/libc-alpha/2014-12/msg00155.html
Linux 3.15 adds support for clock_gettime, gettimeofday, and time vDSO
(commit id 37c975545ec63320789962bf307f000f08fabd48). This patch adds
GLIBC supports to use such symbol when they are avaiable.
Along with x86 vDSO support, this patch cleanup x86_64 code by moving
all common code to x86 common folder. Only init-first.c is different
between implementations.
Linux kernel powerpc documentation states issuing a syscall inside a
transaction is not recommended and may lead to undefined behavior. It
also states syscalls does not abort transactoin neither they run in
transactional state.
To avoid side-effects being visible outside transactions, GLIBC with
lock elision enabled will issue a transaction abort instruction just
before all syscalls if hardware supports hardware transactions.
This patch adds support for lock elision using ISA 2.07 hardware
transactional memory for rwlocks. The logic is similar to the
one presented in pthread_mutex lock elision.
This patch adds support for lock elision using ISA 2.07 hardware
transactional memory instructions for pthread_mutex primitives.
Similar to s390 version, the for elision logic defined in
'force-elision.h' is only enabled if ENABLE_LOCK_ELISION is defined.
Also, the lock elision code should be able to be built even with
a compiler that does not provide HTM support with builtins.
However I have noted the performance is sub-optimal due scheduling
pressures.
Microblaze apparently has a variable page size (see thread below) and
should not hard-code any page-size related macros.
Also remove macros that are only used for BFD's trad-core support
which is not relavant for microblaze also according to the thread
starting here:
https://sourceware.org/ml/libc-ports/2013-11/msg00028.html
This patch is neither built nor tested but mirrors a MIPS patch that
fixes the same issue.
Thanks,
Matthew
* sysdepsysdeps/unix/sysv/linux/microblaze/sys/user.h
(PAGE_SHIFT, PAGE_SIZE, PAGE_MASK, NBPG, UPAGES): Remove.
(HOST_TEXT_START_ADDR, HOST_STACK_END_ADDR): Remove.
Signed-off-by: David Holsgrove <david.holsgrove@xilinx.com>
GCC 5.0 emits an warning when using sizeof on array function parameters
and powerpc internal syscall macros add a check for such cases. More
specifically, on powerpc64 and powerpc32 sysdep.h:
if (__builtin_classify_type (__arg3) != 5 && sizeof (__arg3) > 8) \
__illegally_sized_syscall_arg3 (); \
And for sysdeps/unix/sysv/linux/utimensat.c build GCC emits:
error: ‘sizeof’ on array function parameter ‘tsp’ will return size of
‘const struct timespec *’
This patch uses the address of first struct member instead of the struct
itself in syscall macro.
We simplify allocation strategy there so instead of using temporary linked list
and then copying entries to output array we keep them in resizable
array.
C99 specifies that CLOCKS_PER_SEC is an expression with the type clock_t.
This patch adds a generic <bits/time2.h> to define CLOCKS_PER_SEC and
provides the Linux/x86-64 version of <bits/time2.h> to support x32.
[BZ #17797]
* bits/time.h (CLOCKS_PER_SEC): Changed to ((clock_t) 1000000).
* sysdeps/unix/sysv/linux/bits/time.h (CLOCKS_PER_SEC): Likewise.
* sysdeps/unix/sysv/linux/clock.c (clock): _Static_assert
CLOCKS_PER_SEC == 1000000.
* time/clocktest.c (main): Replace %ld with %jd and cast to
intmax_t.
sysdeps/unix/sysv/linux/mips/mips64/n64/posix_fadvise.c defines
posix_fadvise64 as a strong alias for posix_fadvise (for
!SHLIB_COMPAT(libc, GLIBC_2_2, GLIBC_2_3_3) - i.e., for static
linking, which is the case when this matters), but it should be a weak
alias. This patch makes it a weak alias.
Tested for MIPS that this fixes the observed linknamespace test
failures.
[BZ #17796]
* sysdeps/unix/sysv/linux/mips/mips64/n64/posix_fadvise.c
[!SHLIB_COMPAT(libc, GLIBC_2_2, GLIBC_2_3_3)] (posix_fadvise64):
Define as weak alias not strong alias.
The tile vDSO vsyscalls were not properly setting the error value.
Conventionally, tile returns the same "non-negative success, negative
errno" value that x86 does (in r0), but it also returns "zero or positive
errno" in r1, which is what the regular syscall code checks. This change
uses that convention for the vDSO calls as well.
ARM posix_fadvise calls __posix_fadvise64_l64, to which
posix_fadvise64 is a strong alias, but posix_fadvise is a POSIX
function and posix_fadvise64 isn't. This patch changes it into a weak
alias.
Tested for ARM that this fixes the corresponding linknamespace test
failures.
[BZ #17793]
* sysdeps/unix/sysv/linux/arm/posix_fadvise64.c (posix_fadvise64):
Define as weak alias not strong alias.
On systems using sysdeps/unix/sysv/linux/wordsize-64, posix_fadvise64
and posix_fallocate64 (non-POSIX) are strong aliases for posix_fadvise
and posix_fallocate (POSIX), meaning references to the latter wrongly
bring in definitions of the former. They should be weak aliases; this
patch makes them so.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch).
[BZ #17777]
* sysdeps/unix/sysv/linux/wordsize-64/posix_fadvise.c
(posix_fadvise64): Define as weak alias not strong alias.
* sysdeps/unix/sysv/linux/wordsize-64/posix_fallocate.c
(posix_fallocate64): Likewise.
* conform/Makefile (test-xfail-XOPEN2K/fcntl.h/linknamespace):
Remove variable.
(test-xfail-XOPEN2K/mqueue.h/linknamespace): Likewise.
(test-xfail-POSIX2008/fcntl.h/linknamespace): Likewise.
(test-xfail-POSIX2008/mqueue.h/linknamespace): Likewise.
(test-xfail-XOPEN2K8/fcntl.h/linknamespace): Likewise.
(test-xfail-XOPEN2K8/mqueue.h/linknamespace): Likewise.
MIPS supports a variable page size but glibc defines a constant.
This causes at least two glibc tests to fail when the page size
does not match the hard-coded size:
inet/test-ifaddrs
inet/test_ifindex
[BZ #16191]
* NEWS: Mention bug fix.
* sysdeps/unix/sysv/linux/mips/sys/user.h (PAGE_SHIFT): Remove.
(PAGE_SIZE, PAGE_MASK, NBPG, UPAGES): Likewise.
(HOST_TEXT_START_ADDR, HOST_DATA_START_ADDR): Likewise.
(HOST_STACK_END_ADDR): Likewise.
sysdeps/unix/sysv/linux/mips/bits/termios.h defines TIOCSER_TEMT
unconditionally, but it's in the user's namespace. This patch
conditions it on __USE_MISC, as on powerpc. I've filed bug 17783 for
the residual inconsistency in conditions on this macro (sparc defines
it for __USE_GNU only).
[BZ #17782]
* sysdeps/unix/sysv/linux/mips/bits/termios.h (TIOCSER_TEMT):
Condition macro definition on [__USE_MISC].
sysdeps/unix/sysv/linux/mips/bits/sigaction.h gives sa_flags type
unsigned int, but POSIX says it should be signed int. This patch
gives it the correct type (the layout is unchanged, so there are no
ABI issues involved).
[BZ #17781]
* sysdeps/unix/sysv/linux/mips/bits/sigaction.h
(struct sigaction): Change type of sa_flags field to int.
sysdeps/unix/sysv/linux/mips/bits/fcntl.h has a structure field called
pad, which is in the user's namespace. This patch changes it to
__glibc_reserved0.
[BZ #17780]
* sysdeps/unix/sysv/linux/mips/bits/fcntl.h (struct flock)
[!__USE_FILE_OFFSET64 && _MIPS_SIM != _ABI64]: Rename pad field to
__glibc_reserved0.
Fixed 3 "make check" failures on glibc 32bit built by gcc 5.0 due to EBX
was enabled for allocation:
https://gcc.gnu.org/ml/gcc-patches/2014-10/msg00892.html
Tests elf/tst-tls3, elf/tst-execstack-needed, elf/tst-execstack-prog
were failed because EBX was used as PIC register.
* sysdeps/i386/tls-macros.h: Include <features.h>.
(TLS_LE): Use non-PIC version for GCC >= 5.0.
(TLS_IE): Likewise.
(TLS_LD): Likewise.
(TLS_GD): Likewise.
* sysdeps/unix/sysv/linux/i386/sysdep.h (check_consistency): Don't
define for GCC >= 5.0.
Various C90 and UNIX98 libm functions call feraiseexcept, which is not
in those standards. This causes linknamespace test failures - except
on x86 / x86_64, where feraiseexcept is inline (for the relevant
constant arguments) in bits/fenv.h.
This patch fixes this by making those functions call __feraiseexcept
instead. All changes are applied to all architectures rather than
considering the possibility that some might not be needed in some
cases (e.g. x86) as it seems most maintainable to keep architectures
consistent.
Where __feraiseexcept does not exist, it is added, with feraiseexcept
made a weak alias; where it is a strong alias, it is made weak.
libm_hidden_def / libm_hidden_proto are used with __feraiseexcept
(this might in some cases improve code generation for existing calls
to __feraiseexcept in some code on some architectures). Where there
are dummy feraiseexcept macros (on architectures without
floating-point exceptions support, to avoid compile errors from
references to undefined FE_* macros), corresponding dummy
__feraiseexcept macros are added. And on x86, to ensure
__feraiseexcept calls still get inlined, the inline function in
bits/fenv.h is refactored so that most of it can be reused in an
inline __feraiseexcept in a separate include/bits/fenv.h.
Calls are changed in C90/UNIX98 functions, but generally not in
functions missing from those standards. They are also changed in
libc_fe* functions (on the basis that those might be used in any libm
function), and in feupdateenv (on the same basis - may be used, via
default libc_*, in any libm function - of course feupdateenv will need
changing to __feupdateenv in a subsequent patch to make that fully
namespace-clean).
No __feraiseexcept is added corresponding to the feraiseexcept in
powerpc bits/fenvinline.h, because that macro definition is
conditional on !defined __NO_MATH_INLINES, and glibc libm is built
with -D__NO_MATH_INLINES, so changing internal calls to use
__feraiseexcept should make no difference.
Tested for x86_64 (testsuite; the only change in disassembly of
installed shared libraries is a slight code reordering in clog10, of
no apparent significance). Also tested for MIPS, where (in the
configuration tested) it eliminates math.h linknamespace failures for
n32 and n64 (some for o32 remain because of other issues).
[BZ #17723]
* include/fenv.h (__feraiseexcept): Use libm_hidden_proto.
* math/fraiseexcpt.c (__feraiseexcept): Use libm_hidden_def.
* sysdeps/aarch64/fpu/fraiseexcpt.c (feraiseexcept): Rename to
__feraiseexcept and define as weak alias of __feraiseexcept. Use
libm_hidden_weak.
* sysdeps/arm/fraiseexcpt.c (feraiseexcept): Likewise.
* sysdeps/hppa/fpu/fraiseexcpt.c (feraiseexcept): Likewise.
* sysdeps/i386/fpu/fraiseexcpt.c (__feraiseexcept): Use
libm_hidden_def.
* sysdeps/ia64/fpu/fraiseexcpt.c (feraiseexcept): Rename to
__feraiseexcept and define as weak alias of __feraiseexcept. Use
libm_hidden_weak.
* sysdeps/m68k/coldfire/fpu/fraiseexcpt.c (feraiseexcept):
Likewise.
* sysdeps/microblaze/math_private.h (__feraiseexcept): New macro.
* sysdeps/mips/fpu/fraiseexcpt.c (feraiseexcept): Rename to
__feraiseexcept and define as weak alias of __feraiseexcept. Use
libm_hidden_weak.
* sysdeps/powerpc/fpu/fraiseexcpt.c (__feraiseexcept): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/fraiseexcpt.c (__feraiseexcept): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fraiseexcpt.c
(__feraiseexcept): Likewise.
* sysdeps/s390/fpu/fraiseexcpt.c (feraiseexcept): Rename to
__feraiseexcept and define as weak alias of __feraiseexcept. Use
libm_hidden_weak.
* sysdeps/sh/sh4/fpu/fraiseexcpt.c (feraiseexcept): Likewise.
* sysdeps/sparc/fpu/fraiseexcpt.c (__feraiseexcept): Use
libm_hidden_def.
* sysdeps/tile/math_private.h (__feraiseexcept): New macro.
* sysdeps/unix/sysv/linux/alpha/fraiseexcpt.S (__feraiseexcept):
Use libm_hidden_def.
* sysdeps/x86_64/fpu/fraiseexcpt.c (__feraiseexcept): Use
libm_hidden_def.
(feraiseexcept): Define as weak not strong alias. Use
libm_hidden_weak.
* sysdeps/x86/fpu/bits/fenv.h (__feraiseexcept_invalid_divbyzero):
New inline function. Factored out of ...
(feraiseexcept): ... here. Use __feraiseexcept_invalid_divbyzero.
* sysdeps/x86/fpu/include/bits/fenv.h: New file.
* math/e_scalb.c (invalid_fn): Call __feraiseexcept instead of
feraiseexcept.
* math/w_acos.c (__acos): Likewise.
* math/w_asin.c (__asin): Likewise.
* math/w_ilogb.c (__ilogb): Likewise.
* math/w_j0.c (y0): Likewise.
* math/w_j1.c (y1): Likewise.
* math/w_jn.c (yn): Likewise.
* math/w_log.c (__log): Likewise.
* math/w_log10.c (__log10): Likewise.
* sysdeps/aarch64/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/aarch64/fpu/math_private.h
(libc_feupdateenv_test_aarch64): Likewise.
* sysdeps/alpha/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/arm/fenv_private.h (libc_feupdateenv_test_vfp): Likewise.
* sysdeps/arm/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/ia64/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/m68k/fpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/mips/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/powerpc/fpu/e_sqrt.c (__slow_ieee754_sqrt): Likewise.
* sysdeps/s390/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sh/sh4/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sparc/fpu/feupdateenv.c (__feupdateenv): Likewise.
These definitions were added back before __ASSUME_POSIX_CPU_TIMERS
was removed. There used to be a vsyscall to clock_getres() in
maybe_syscall_settime_cpu(), but that function was removed in commit
26889eac. The presence of the vsyscall definitions means that platforms
that don't provide clock_getres as a vsyscall hit a symbol redefinition
warning in this file, becoming fatal with -Werror. Removing the
vsyscall definitions is the obvious fix.
No change to generated code on x86_64.
The symbol for HAVE_CLOCK_GETTIME_VSYSCALL was being
only conditionally defined under [SHARED]. However, it turns
out this causes a preprocessor symbol redefinition warning
when building clock_gettime.o. Move the symbol definition
down to make it unconditional, like other platforms do.
This patch makes __ASSUME_UTIMES hppa-specific, removing mentions of
the macro from architecture-independent code and code for other
architectures. (All other architectures either have the utimes
syscall in all relevant kernel versions, or use the asm-generic
interface so only have utimensat and won't get the utimes syscall.) A
similar approach is used to that used for futimesat for MicroBlaze: if
the kernel is recent enough that the utimes syscall can be assumed to
be present, use the implementation in terms of the utimes syscall, and
otherwise use the linux/generic implementation in terms of utimensat.
Tested x86_64 that the disassembly of installed shared libraries is
unchanged by the patch. Not tested for hppa.
* sysdeps/unix/sysv/linux/kernel-features.h (__ASSUME_UTIMES): Do
not define.
* sysdeps/unix/sysv/linux/utimes.c: Do not include
<kernel-features.h>.
(__utimes) [__NR_utimes]: Make code unconditional.
(__utimes) [!__ASSUME_UTIMES]: Remove conditional code.
* sysdeps/unix/sysv/linux/aarch64/kernel-features.h
(__ASSUME_UTIMES): Do not undefine.
* sysdeps/unix/sysv/linux/tile/kernel-features.h
(__ASSUME_UTIMES): Likewise.
* sysdeps/unix/sysv/linux/hppa/kernel-features.h
(__ASSUME_UTIMES): Define for [__LINUX_KERNEL_VERSION >= 0x030e00]
instead of undefining for [__LINUX_KERNEL_VERSION < 0x030e00].
* sysdeps/unix/sysv/linux/hppa/utimes.c: New file.
On Linux architectures using socketcall, the resolver ends up bringing
in strong symbols for bind and getsockname, which are not in
POSIX.1-1996. This causes linknamespace test failures:
FAIL: conform/POSIX/pthread.h/linknamespace
FAIL: conform/POSIX/sched.h/linknamespace
FAIL: conform/POSIX/time.h/linknamespace
These functions are defined as strong symbols with __bind and
__getsockname as weak aliases. This patch switches this to the other
way round by removing the NO_WEAK_ALIAS definitions and so letting the
default case in socket.S act; I see no reason for the existing
arrangements.
Tested for x86 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch).
[BZ #17733]
* sysdeps/unix/sysv/linux/bind.S (NO_WEAK_ALIAS): Do not define.
(__bind): Do not define as weak alias.
* sysdeps/unix/sysv/linux/getsockname.S (NO_WEAK_ALIAS): Do not
define.
(__getsockname): Do not define as weak alias.
__tls_get_addr/___tls_get_addr is always defined in ld.so. There is
no need to call them via PLT inside ld.so. This patch adds the hidden
__tls_get_addr/___tls_get_addr aliases and calls them directly from
_dl_tlsdesc_dynamic. There is no need to set up the EBX register in
i386 _dl_tlsdesc_dynamic when calling the hidden ___tls_get_addr.
* elf/dl-tls.c (__tls_get_addr): Provide the hidden definition
if not defined.
* sysdeps/i386/dl-tls.h (___tls_get_addr): Provide the hidden
definition.
* sysdeps/i386/dl-tlsdesc.S (_dl_tlsdesc_dynamic): Call the
hidden ___tls_get_addr.
* sysdeps/x86_64/dl-tlsdesc.S (_dl_tlsdesc_dynamic): Call the
hidden __tls_get_addr.
* sysdeps/generic/localplt.data (__tls_get_addr): Removed.
* sysdeps/unix/sysv/linux/i386/localplt.data (___tls_get_addr):
Likewise.
On ARM, where profil_counter is not static, it is brought in by
references to various standard functions, as noted in
<https://sourceware.org/ml/libc-alpha/2014-11/msg00890.html>, although
it is not a standard function itself. I don't know if this also
causes test failures on SPARC, although I see no reason for it not to
do so.
This patch fixes this namespace issue. profil_counter is renamed to
__profil_counter and made a weak alias on ARM and SPARC. Because of
the uses in profil.c / sprofil.c it seems simplest to make the rename
globally, including on the other architectures for which
profil_counter was static and so the change is of no substance. The
variant names profil_counter_* used in sprofil.c are also renamed to
start with __ so that undesired function names do not get exported in
static libc.
As I noted in bug 17726, profil_counter should probably be a compat
symbol on ARM and SPARC, so it wouldn't exist at all in static libc
even as a weak alias. Since defining a compat symbol still requires
an internal name as a target of an alias, this patch still seems
reasonable as an intermediate step towards that goal: it wouldn't be
possible for the function simply to be static profil_counter on ARM
and SPARC with profil_counter also being the exported compat symbol
name, so profil.c / sprofil.c would still need to be prepared to call
the function under another name (here, __profil_counter).
Tested for x86_64 (testsuite, and that stripped installed shared
libraries are unchanged by the patch) and ARM (ABI and linknamespace
tests - this patch reduces the number of linknamespace failures I see
on ARM from 227 to 5, the residue being math.h failures for fe*
functions and for j0l/j1n/jnl/y0l/y1l/ynl aliases).
2014-12-17 Joseph Myers <joseph@codesourcery.com>
[BZ #17725]
* sysdeps/generic/profil-counter.h (profil_counter): Rename to
__profil_counter.
* sysdeps/unix/sysv/linux/hppa/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/i386/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/ia64/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/profil-counter.h
(profil_counter): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/profil-counter.h
(profil_counter): Likewise.
* sysdeps/unix/sysv/linux/sh/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/tile/profil-counter.h (profil_counter):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/profil-counter.h
(profil_counter): Likewise.
* sysdeps/unix/sysv/linux/arm/profil-counter.h (profil_counter):
Likewise.
[!__profil_counter] (profil_counter): Define as weak alias of
__profil_counter.
* sysdeps/unix/sysv/linux/sparc/sparc32/profil-counter.h
(profil_counter): Rename to __profil_counter.
[!__profil_counter] (profil_counter): Define as weak alias of
__profil_counter.
* sysdeps/unix/sysv/linux/sparc/sparc64/profil-counter.h
(profil_counter): Rename to __profil_counter.
[!__profil_counter] (profil_counter): Define as weak alias of
__profil_counter.
* sysdeps/posix/profil.c: Update comment referring to
profil_counter.
(__profil): Use __profil_counter instead of profil_counter.
* sysdeps/posix/sprofil.c (profil_counter): Rename to
__profil_counter. Use __profil_counter_ushort and
__profil_counter_uint in definitions.
(__sprofil): Use __profil_counter_uint and __profil_counter_ushort
instead of profil_counter_uint and profil_counter_ushort.
Resolver code, brought in by pthreads (at least), uses if_* interfaces
that weren't in POSIX before 2001, resulting in linknamespace
failures. This patch changes those interfaces to be weak aliases of
__if_* and makes the resolver use __if_* directly.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by this patch).
[BZ #17717]
* inet/if_index.c (if_nametoindex): Rename to __if_nametoindex and
define as weak alias of __if_nametoindex. Use libc_hidden_weak.
(if_indextoname): Rename to __if_indextoname and define as weak
alias of __if_indextoname. Use libc_hidden_weak.
(if_freenameindex): Rename to __if_freenameindex and define as
weak alias of __if_freenameindex.
(if_nameindex): Rename to __if_nameindex and define as weak alias
of __if_nameindex.
* sysdeps/mach/hurd/if_index.c (if_nametoindex): Rename to
__if_nametoindex and define as weak alias of __if_nametoindex.
Use libc_hidden_weak.
(if_freenameindex): Rename to __if_freenameindex and define as
weak alias of __if_freenameindex.
(if_nameindex): Rename to __if_nameindex and define as weak alias
of __if_nameindex.
(if_indextoname): Rename to __if_indextoname and define as weak
alias of __if_indextoname. Use libc_hidden_weak.
* sysdeps/unix/sysv/linux/if_index.c (if_nametoindex): Rename to
__if_nametoindex and define as weak alias of __if_nametoindex.
Use libc_hidden_weak.
(if_freenameindex): Rename to __if_freenameindex and define as
weak alias of __if_freenameindex. Use libc_hidden_weak.
(if_nameindex_netlink): Use __if_freenameindex instead of
if_freenameindex.
(if_nameindex): Rename to __if_nameindex and define as weak alias
of __if_nameindex. Use libc_hidden_weak.
(if_indextoname): Rename to __if_indextoname and define as weak
alias of __if_indextoname. Use libc_hidden_weak.
* include/net/if.h [!_ISOMAC] (__if_nametoindex): Declare and use
libc_hidden_proto.
[!_ISOMAC] (__if_freenameindex): Likewise.
* resolv/res_init.c (__res_vinit): Use __if_nametoindex instead of
if_nametoindex.
* conform/Makefile (test-xfail-XPG4/grp.h/linknamespace): Remove
variable.
(test-xfail-XPG4/pwd.h/linknamespace): Likewise.
(test-xfail-UNIX98/aio.h/linknamespace): Likewise.
(test-xfail-UNIX98/grp.h/linknamespace): Likewise.
(test-xfail-UNIX98/pthread.h/linknamespace): Likewise.
(test-xfail-UNIX98/pwd.h/linknamespace): Likewise.
(test-xfail-UNIX98/sched.h/linknamespace): Likewise.
(test-xfail-UNIX98/time.h/linknamespace): Likewise.
As previously discussed in
<https://sourceware.org/ml/libc-alpha/2012-11/msg00798.html>, MIPS (o32)
waitid has build warnings (now errors) because a function is declared
inline but functions with five-argument syscalls cannot be inlined for
MIPS o32.
This patch disables the -Winline warnings for waitid.c using a
MIPS-specific wrapper file. As it's whole-file disabling, there's no
point in using push and pop, so just DIAG_IGNORE_NEEDS_COMMENT is
used.
* sysdeps/unix/sysv/linux/mips/mips32/waitid.c: New file.
Building MIPS sigaction (for ABIs other than o32) fails because of
"'restore_rt' used but never defined", arising from static functions
being defined in asms and referred to from C code. There is no
corresponding -W option for that warning, so this patch uses
-Wno-error for building sigaction.c.
* sysdeps/unix/sysv/linux/mips/mips64/Makefile
[$(subdir) == signal] (CFLAGS-sigaction.c): New variable.
[$(subdir) == nptl] (CFLAGS-sigaction.c): Likewise.
Various objects in glibc bring in ifaddrs.o (via references to
__netlink_*) and thereby getifaddrs and freeifaddrs, which are not
part of any standard supported by glibc. These should be weak aliases
of __getifaddrs and __freeifaddrs; this patch makes them so.
(The path by which these functions are brought in is Linux-specific,
but it seems less confusing to make all versions of these functions
weak aliases rather than only the Linux-specific versions that
definitely need it.)
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by this patch).
[BZ #17668]
* inet/ifaddrs.c (getifaddrs): Rename to __getifaddrs and define
as weak alias of __getifaddrs. Use libc_hidden_weak.
(freeifaddrs): Rename to __freeifaddrs and define as weak alias of
__freeifaddrs. Use libc_hidden_weak.
* sysdeps/gnu/ifaddrs.c (getifaddrs): Rename to __getifaddrs and
define as weak alias of __getifaddrs. Use libc_hidden_weak.
(freeifaddrs): Rename to __freeifaddrs and define as weak alias of
__freeifaddrs. Use libc_hidden_weak.
* sysdeps/unix/sysv/linux/ifaddrs.c (getifaddrs): Rename to
__getifaddrs and define as weak alias of __getifaddrs. Use
libc_hidden_weak.
(freeifaddrs): Rename to __freeifaddrs and define as weak alias of
__freeifaddrs. Use libc_hidden_weak.
* conform/Makefile (test-xfail-XOPEN2K/net/if.h/linknamespace):
Remove variable.
(test-xfail-POSIX2008/net/if.h/linknamespace): Likewise.
(test-xfail-XOPEN2K8/net/if.h/linknamespace): Likewise.
This patch fixes a warning
../include/features.h:328:4: warning: #warning _FORTIFY_SOURCE requires compiling with optimization (-O) [-Wcpp]
seen when building for ARM. This warning comes from libc-do-syscall.S
being built for nscd: the nscd build uses _FORTIFY_SOURCE, while .S
files aren't built with -O, and the combination produces a warning.
As _FORTIFY_SOURCE doesn't do anything for .S files, undefining it in
libc-do-syscall.S seems the simplest solution.
Tested for ARM.
* sysdeps/unix/sysv/linux/arm/libc-do-syscall.S (_FORTIFY_SOURCE):
Undefine.
Replace with IS_IN (ldconfig). No change in generated code.
* elf/Makefile (CFLAGS-ldconfig.c): Remove definition of
IS_IN_ldconfig.
* sysdeps/unix/sysv/linux/x86_64/dl-procinfo.c: Use IS_IN.
* sysdeps/unix/sysv/linux/x86_64/dl-procinfo.h: Likewise.
This sets __HAVE_64B_ATOMICS if provided. It also sets
USE_ATOMIC_COMPILER_BUILTINS to true if the existing atomic ops use the
__atomic* builtins (aarch64, mips partially) or if this has been
tested (x86_64); otherwise, this is set to false so that C11 atomics will
be based on the existing atomic operations.
The current scheme to identify which module a translation unit is
built in depends on defining multiple macros IS_IN_* and also defining
NOT_IN_libc if we're building a non-libc module. In addition, there
is an IN_LIB macro that does effectively the same thing, but for
different modules (notably the systemtap probes). This macro scheme
unifies both ideas to use just one macro IN_MODULE and assign it a
value depending on the module it is being built into. If the module
is not defined, it defaults to MODULE_libc.
Patches that follow will replace uses of IS_IN_* variables with the
IS_IN() macro. libc-symbols.h has been converted already to give an
example of how such a transition will look.
Verified that there are no relevant binary changes. One source change
that will crop up repeatedly is that of nscd_stat, since it uses the
build timestamp as a constant in its logic.
* Makeconfig (in-module): Get value of libof set for the
translation unit.
(CPPFLAGS): Use $(in-module).
* Makerules: Don't suffix routine names for nonlib.
* include/libc-modules.h: New file.
* include/libc-symbols.h: Include libc-modules.h
(IS_IN): New macro to replace IS_IN_* macros.
* elf/Makefile: Set libof-* for each routine.
* elf/rtld-Rules: Likewise.
* extra-modules.mk: Likewise.
* iconv/Makefile: Likewise.
* iconvdata/Makefile: Likewise.
* locale/Makefile: Likewise.
* malloc/Makefile: Likewise.
* nss/Makefile: Likewise.
* sysdeps/gnu/Makefile: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile: Likewise.
* sysdeps/unix/sysv/linux/Makefile: Likewise.
* sysdeps/s390/s390-64/Makefile: Likewise.
* nscd/Makefile: Set libof-* for each routine. Set CFLAGS and
CPPFLAGS for nscd instead of nonlib.
__get_nprocs is called from malloc code, but calls fgets_unlocked,
which is not an ISO C or POSIX function. This patch fixes it to call
a new __fgets_unlocked name instead.
Note: there are various other uses of fgets_unlocked in glibc's
libraries, and I haven't yet investigated which others might also be
problematic (called directly or indirectly from standard functions)
and so need to change to use __fgets_unlocked.
Tested for x86_64 (testsuite, and that disassembly of installed shared
libraries is unchanged by the patch).
[BZ #17582]
* libio/iofgets.c [weak_alias && !_IO_MTSAFE_IO]
(__fgets_unlocked): Add alias of _IO_fgets. Use libc_hidden_def.
* libio/iofgets_u.c (fgets_unlocked): Rename to __fgets_unlocked
and define as weak alias of __fgets_unlocked. Use
libc_hidden_weak.
(__fgets_unlocked): Use libc_hidden_def.
* include/stdio.h (__fgets_unlocked): Declare. Use
libc_hidden_proto.
* sysdeps/unix/sysv/linux/getsysstats.c (phys_pages_info): Use
__fgets_unlocked instead of fgets_unlocked.
* sysdeps/unix/sysv/linux/alpha/getsysstats.c
(GET_NPROCS_CONF_PARSER): Likewise.
* sysdeps/unix/sysv/linux/sparc/getsysstats.c
(GET_NPROCS_CONF_PARSER): Likewise.