When optimization for size is on (-Os), fpclassify does not use the
type-generic __builtin_fpclassify builtin, instead it uses __MATH_TG.
However, when library support for float128 is available, __MATH_TG uses
__builtin_types_compatible_p, which is not available in C++ mode.
On the other hand, libstdc++ undefines (in cmath) many macros from
math.h, including fpclassify, so that it can provide its own functions.
However, during its configure tests, libstdc++ just tests for the
availability of the macros (it does not undefine them, nor does it
provide its own functions).
Finally, when libstdc++ is configured with optimization for size
enabled, its configure tests include math.h and get the definition of
fpclassify that uses __MATH_TG (and __builtin_types_compatible_p).
Since libstdc++ does not undefine the macros during its configure tests,
they fail.
This patch lets fpclassify use the builtin in C++ mode, even when
optimization for size is on. This allows the configure test in
libstdc++ to work.
Tested for powerpc64le and x86_64.
[BZ #22146]
math/math.h: Let fpclassify use the builtin in C++ mode, even
when optimazing for size.
(cherry picked from commit c5c4a62609)
Since Martin Sebor's commit
commit ee4e992ebe
Author: Martin Sebor <msebor@redhat.com>
Date: Tue Aug 22 09:35:23 2017 -0600
Declare ifunc resolver to return a pointer to the same type as the target
function to help GCC detect incompatibilities between the two when it's
enhanced to do so.
builds for powerpc64le fail in the declaration of some ifunc resolvers,
because the ifunc is declared with unmatching return types. One of the
declarations comes from the __ifunc_resolver macro, which was patched by
the aforementioned commit:
/* Helper / base macros for indirect function symbols. */
#define __ifunc_resolver(type_name, name, expr, arg, init, classifier) \
classifier inhibit_stack_protector \
__typeof (type_name) *name##_ifunc (arg) \
whereas the other comes from the unpatched __ifunc macro when
HAVE_GCC_IFUNC is not defined:
# define __ifunc(type_name, name, expr, arg, init) \
extern __typeof (type_name) name; \
void *name##_ifunc (arg) __asm__ (#name); \
This patch changes the return type of the ifunc resolver in the __ifunc
macro, so that it matches the return type of the target function,
similarly to what the aforementioned commit does.
Tested for powerpc64le and s390x with unpatched GCC.
* include/libc-symbols.h: [!defined HAVE_GCC_IFUNC] (__ifunc):
Change the return type of the ifunc resolver to match the return
type of the target function.
(cherry picked from commit b513da7e80)
This makes the __tls_get_addr_opt test run as a shared library, and so
actually test that DTPMOD64/DTPREL64 pairs are processed by ld.so to
support the __tls_get_adfr_opt call stub fast return. After a
2017-01-24 patch (binutils f0158f4416) ld.bfd no longer emitted
unnecessary dynamic relocations against local thread variables,
instead setting up the __tls_index GOT entries for the call stub fast
return. This meant tst-tlsopt-powerpc passed but did not check ld.so
relocation support. After a 2017-07-16 patch (binutils 676ee2b5fa)
ld.bfd no longer set up the __tls_index GOT entries for the call stub
fast return, and tst-tlsopt-powerpc failed.
Compiling mod-tlsopt-powerpc.c with -DSHARED exposed a bug in
powerpc64/tls-macros.h, which defines a __TLS_GET_ADDR macro that
clashes with one defined in dl-tls.h. The tls-macros.h version is
only used in that file, so delete it and expand.
* sysdeps/powerpc/mod-tlsopt-powerpc.c: Extract from
tst-tlsopt-powerpc.c with function name change and no test harness.
* sysdeps/powerpc/tst-tlsopt-powerpc.c: Remove body of test.
Call tls_get_addr_opt_test.
* sysdeps/powerpc/Makefile (LDFLAGS-tst-tlsopt-powerpc): Don't define.
(modules-names): Add mod-tlsopt-powerpc.
(mod-tlsopt-powerpc.so-no-z-defs): Define.
(tst-tlsopt-powerpc): Depend on .so.
* sysdeps/powerpc/powerpc64/tls-macros.h (__TLS_GET_ADDR): Don't
define. Expand use in TLS_GD and TLS_LD.
(cherry picked from commit e98c925fa4)
Fix GCC 7 errors when string/stratcliff.c is compiled with -O3:
stratcliff.c: In function ‘do_test’:
cc1: error: assuming signed overflow does not occur when assuming that (X - c) <= X is always true [-Werror=strict-overflow]
[BZ #21982]
* string/stratcliff.c (do_test): Declare size, nchars, inner,
middle and outer with size_t instead of int. Repleace %d and
%Zd with %zu in printf. Update "MAX (0, nchars - 128)" and
"MAX (outer, nchars - 64)" to support unsigned outer and
nchars. Also exit loop when outer == 0.
(cherry picked from commit 376b40a27a)
Since sofini.os terminates .eh_frame section, it should be placed last.
[BZ #22051]
* Makerules (build-module-helper-objlist): Filter out
$(elf-objpfx)sofini.os.
(build-shlib-objlist): Append $(elf-objpfx)sofini.os if it is
needed.
(cherry picked from commit ecd0747df3)
The old code uses errno as the primary indicator for success or
failure. This is wrong because errno is only set for specific
combinations of the status return value and the h_errno variable.
(cherry picked from commit f4a6be2582)
This simplifies the code because it is not necessary to propagate the
temporary h_errno value to the thread-local variable. It also increases
compatibility with NSS modules which update only one of the two places.
(cherry picked from commit 53250a21b8)
tests-unsupported has to be defined before the inclusion of Rules in a
subdirectory Makefile; otherwise it is ineffective. This patch fixes
the ordering in assert/Makefile, where a recent test addition put
tests-unsupported too late (resulting in build failures when the C++
compiler was missing or broken, and thereby showing up the unrelated
bug 21987).
Incidentally, I don't see why these tests depend on
$(have-cxx-thread_local) rather than just a working C++ compiler.
Tested in such a configuration (broken compiler/libstdc++) with
build-many-glibcs.py.
* assert/Makefile [$(have-cxx-thread_local)]: Move conditional
variable definitions above inclusion of ../Rules.
(cherry picked from commit 75dfe623df)
When signaling nans are enabled (with -fsignaling-nans), the C++ version
of iszero uses the fpclassify macro, which is defined with __MATH_TG.
However, when support for float128 is available, __MATH_TG uses the
builtin __builtin_types_compatible_p, which is only available in C mode.
This patch refactors the C++ version of iszero so that it uses function
overloading to select between the floating-point types, instead of
relying on fpclassify and __MATH_TG.
Tested for powerpc64le, s390x, x86_64, and with build-many-glibcs.py.
[BZ #21930]
* math/math.h [defined __cplusplus && defined __SUPPORT_SNAN__]
(iszero): New C++ implementation that does not use
fpclassify/__MATH_TG/__builtin_types_compatible_p, when
signaling nans are enabled, since __builtin_types_compatible_p
is a C-only feature.
* math/test-math-iszero.cc: When __HAVE_DISTINCT_FLOAT128 is
defined, include ieee754_float128.h for access to the union and
member ieee854_float128.ieee.
[__HAVE_DISTINCT_FLOAT128] (do_test): Call check_float128.
[__HAVE_DISTINCT_FLOAT128] (check_float128): New function.
* sysdeps/powerpc/powerpc64le/Makefile [subdir == math]
(CXXFLAGS-test-math-iszero.cc): Add -mfloat128 to the build
options of test-math-zero on powerpc64le.
(cherry picked from commit 42496114ec)
When __NO_LONG_DOUBLE_MATH is defined, __issignalingl is not available,
thus issignaling with long double argument should call __issignaling,
instead.
Tested for powerpc64le.
* math/math.h [defined __cplusplus] (issignaling): In the long
double case, call __issignalingl only if __NO_LONG_DOUBLE_MATH
is not defined. Call __issignaling, otherwise.
(cherry picked from commit 3d7b66f66c)
The macro __MATH_TG contains the logic to select between long double and
_Float128, when these types are ABI-distinct. This logic relies on
__builtin_types_compatible_p, which is not available in C++ mode.
On the other hand, C++ function overloading provides the means to
distinguish between the floating-point types. The overloading
resolution will match the correct parameter regardless of type
qualifiers, i.e.: const and volatile.
Tested for powerpc64le, s390x, and x86_64.
* math/math.h [defined __cplusplus] (issignaling): Provide a C++
definition for issignaling that does not rely on __MATH_TG,
since __MATH_TG uses __builtin_types_compatible_p, which is only
available in C mode.
(CFLAGS-test-math-issignaling.cc): New variable.
* math/Makefile [CXX] (tests): Add test-math-issignaling.
* math/test-math-issignaling.cc: New test for C++ implementation
of type-generic issignaling.
* sysdeps/powerpc/powerpc64le/Makefile [subdir == math]
(CXXFLAGS-test-math-issignaling.cc): Add -mfloat128 to the build
options of test-math-issignaling on powerpc64le.
(cherry picked from commit a16e8bc08e)
The hidden attribute was overridden by libc_hidden_proto on GNU/Linux.
It is incorrect because the function is used from nscd.
internal_function is not supposed to be used across DSO boundaries,
so this commit removes it (again, due to the use in nscd).
(cherry picked from commit f87cc2bfba)
The logic to protect the use of generic selection (_Generic) does not
check for C or C++ mode, however, generic selection is a C-only
feature.
Tested for powerpc64le.
* misc/sys/cdefs.h (__HAVE_GENERIC_SELECTION): Define to 0, if
in C++ mode.
(cherry picked from commit 6913ad65e0)
The logic to define isinf for float128 depends on the availability of
__builtin_types_compatible_p, which is only available in C mode,
however, the conditionals do not check for C or C++ mode. This lead to
an error in libstdc++ configure, as reported by bug 21930.
This patch adds a conditional for C mode in the definition of isinf for
float128. No definition is provided in C++ mode, since libstdc++
headers undefine isinf.
Tested for powerpc64le (glibc test suite and libstdc++-v3 configure).
[BZ #21930]
* math/math.h (isinf): Check if in C or C++ mode before using
__builtin_types_compatible_p, since this is a C mode feature.
(cherry picked from commit 47a67213a9)
POWER ISA 3.0 introduces the xssqrtqp instructions, which expects
operands to be in Vector Registers (Altivec/VMX), even though this
instruction belongs to the Vector-Scalar Instruction Set.
In GCC's Extended Assembly for POWER, the 'wq' register constraint is
provided for use with IEEE 754 128-bit floating-point values. However,
this constraint does not limit the register allocation to Vector
Registers (Altivec/VMX) and could assign a Vector-Scalar Register (VSX)
to the operands of the instruction.
This patch changes the register constraint used in sqrtf128 from 'wq' to
'v', in order to request a Vector Register (Altivec/VMX) for use with
the xssqrtqp instruction.
Tested for powerpc64le and --with-cpu=power9.
[BZ #21941]
* sysdeps/powerpc/fpu/math_private.h (__ieee754_sqrtf128): Since
xssqrtqp requires operands to be in Vector Registers
(Altivec/VMX), replace the register constraint 'wq' with 'v'.
* sysdeps/powerpc/powerpc64le/power9/fpu/e_sqrtf128.c
(__ieee754_sqrtf128): Likewise.
(cherry picked from commit 4d98ace9de)
Different than other architectures hppa-linux-gnu define different values
for ENOTSUP and EOPNOTSUPP, where the later is a Linux specific one.
This leads to tst-preadwritev{64}v2 tests failures:
$ ./testrun.sh misc/tst-preadvwritev2
error: tst-preadvwritev2-common.c:35: preadv2 failure did not set errno to ENOTSUP (223)
error: 1 test failures
The straightforward fix is to return the POSIX defined ENOTSUP on all
p{read,write}v{64}v2 implementations instead of Linux specific one.
Checked on x86_64-linux-gnu and the tst-preadwritev{64}v2 on
hppa-linux-gnu (although due the installed kernel on my testing system
the pwritev{64}v2 with an invalid flag still fails due a known kernel
issue [1]).
[BZ #21780]
* sysdeps/posix/preadv2.c (preadv2): Use ENOTSUP instead of
EOPNOTSUPP.
* sysdeps/posix/preadv64v2.c (preadv64v2): Likewise.
* sysdeps/posix/pwritev2.c (pwritev2): Likewise.
* sysdeps/posix/pwritev64v2.c (pwritev64v2): Likewise.
* sysdeps/unix/sysv/linux/preadv2.c (preadv2): Likewise.
* sysdeps/unix/sysv/linux/preadv64v2.c (preadv64v2): Likewise.
* sysdeps/unix/sysv/linux/pwritev2.c (pwritev2): Likewise.
* sysdeps/unix/sysv/linux/pwritev64v2.c (pwritev64v2): Likewise.
[1] https://sourceware.org/ml/libc-alpha/2017-06/msg00726.html
Cherry-pick of 852d631207
On AVX machines with XGETBV (ECX == 1) like Skylake processors,
(gdb) disass _dl_runtime_resolve_avx_opt
Dump of assembler code for function _dl_runtime_resolve_avx_opt:
0x0000000000015890 <+0>: push %rax
0x0000000000015891 <+1>: push %rcx
0x0000000000015892 <+2>: push %rdx
0x0000000000015893 <+3>: mov $0x1,%ecx
0x0000000000015898 <+8>: xgetbv
0x000000000001589b <+11>: mov %eax,%r11d
0x000000000001589e <+14>: pop %rdx
0x000000000001589f <+15>: pop %rcx
0x00000000000158a0 <+16>: pop %rax
0x00000000000158a1 <+17>: and $0x4,%r11d
0x00000000000158a5 <+21>: bnd je 0x16200 <_dl_runtime_resolve_sse_vex>
End of assembler dump.
is slower than:
(gdb) disass _dl_runtime_resolve_avx_slow
Dump of assembler code for function _dl_runtime_resolve_avx_slow:
0x0000000000015850 <+0>: vorpd %ymm0,%ymm1,%ymm8
0x0000000000015854 <+4>: vorpd %ymm2,%ymm3,%ymm9
0x0000000000015858 <+8>: vorpd %ymm4,%ymm5,%ymm10
0x000000000001585c <+12>: vorpd %ymm6,%ymm7,%ymm11
0x0000000000015860 <+16>: vorpd %ymm8,%ymm9,%ymm9
0x0000000000015865 <+21>: vorpd %ymm10,%ymm11,%ymm10
0x000000000001586a <+26>: vpcmpeqd %xmm8,%xmm8,%xmm8
0x000000000001586f <+31>: vorpd %ymm9,%ymm10,%ymm10
0x0000000000015874 <+36>: vptest %ymm10,%ymm8
0x0000000000015879 <+41>: bnd jae 0x158b0 <_dl_runtime_resolve_avx>
0x000000000001587c <+44>: vzeroupper
0x000000000001587f <+47>: bnd jmpq 0x16200 <_dl_runtime_resolve_sse_vex>
End of assembler dump.
(gdb)
since xgetbv takes much more cycles than single cycle operations like
vpord/vvpcmpeq/ptest. _dl_runtime_resolve_opt should be used only with
AVX512 where AVX512 instructions lead to lower CPU frequency on Skylake
server.
[BZ #21871]
* sysdeps/x86/cpu-features.c (init_cpu_features): Set
bit_arch_Use_dl_runtime_resolve_opt only with AVX512F.
(cherry picked from commit d2cf37c0a2)
The return type of the getentropy stub is wrongly defined as ssize_t,
while both the <sys/random.h> header and the Linux implementation
define it as int. This patch fixes that.
Changelog:
* stdlib/getentropy.c (getentropy): Change return type to int.
(cherry picked from commit 2b34e2716f)
This comes from running “make regen-ulps” on an AMD Opteron 2378 CPU.
Changelog:
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Regenerated.
(cherry picked from commit 144bdab050)
2015-02-20 Tulio Magno Quites Machado Filho <tuliom@linux.vnet.ibm.com>
* elf/get-dynamic-info.h: Remove asserts that prevent ld.so from
having the flags DT_RPATH and DT_RUNPATH.