The implementation of memcmp for s390-32 (31bit) and
s390-64 (64bit) is nearly the same.
This patch unifies it for maintability reasons.
__memcmp_z10 and __memcmp_z196 differs between 31 and 64bit:
-31bit needs .machinemode "zarch_nohighgprs" and llgfr %r4,%r4
-lr vs lgr and some other instructions:
But lgr and co can be also used on 31bit as this ifunc variant
is only called if we are on a zarch machine.
__memcmp_default differs between 31 and 64bit:
-Some 31bit vs 64bit instructions (e.g. ltr vs ltgr.
Solved with 31/64 specific instruction macros).
-The address of mvc instruction is setup in different ways
(larl vs bras). Solved with #if defined __s390x__.
Otherwise 31/64bit implementation has the same structure of the code.
ChangeLog:
* sysdeps/s390/s390-64/memcmp.S: Move to ...
* sysdeps/s390/memcmp.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/memcmp.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines): Add memcmp.
* sysdeps/s390/s390-32/multiarch/Makefile (sysdep_routines):
Remove memcmp.
* sysdeps/s390/s390-64/multiarch/Makefile: Likewise.
* sysdeps/s390/s390-64/multiarch/memcmp-s390x.S: Move to ...
* sysdeps/s390/multiarch/memcmp-s390x.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/multiarch/memcmp-s390.S: Delete File.
* sysdeps/s390/s390-64/multiarch/memcmp.c: Move to ...
* sysdeps/s390/multiarch/memcmp.c: ... here.
* sysdeps/s390/s390-32/multiarch/memcmp.c: Delete File.
This patch moves all ifunc variants for memset
to sysdeps/s390/memset-z900.S. The configure-check/preprocessor logic
in sysdeps/s390/ifunc-memset.h decides if ifunc is needed at all
and which ifunc variants should be available.
E.g. if the compiler/assembler already supports z196 by default,
the older ifunc variants are not included.
If we only need the newest ifunc variant,
then we can skip ifunc at all.
Therefore the ifunc-resolvers and __libc_ifunc_impl_list are adjusted
in order to handle only the available ifunc variants.
ChangeLog:
* sysdeps/s390/ifunc-memset.h: New File.
* sysdeps/s390/memset.S: Move to ...
* sysdeps/s390/memset-z900.S ... here.
Move implementations from memset-s390x.s to here.
* sysdeps/s390/multiarch/memset-s390x.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines):
Remove memset variants.
* sysdeps/s390/Makefile (sysdep_routines):
Add memset variants.
* sysdeps/s390/multiarch/ifunc-impl-list.c
(__libc_ifunc_impl_list): Adjust ifunc variants for
memset.
* sysdeps/s390/multiarch/memset.c: Move ifunc resolver
to ...
* sysdeps/s390/memset.c: ... here.
Adjust ifunc variants for memset.
The implementation of memset for s390-32 (31bit) and
s390-64 (64bit) is nearly the same.
This patch unifies it for maintability reasons.
__memset_z10 and __memset_z196 differs between 31 and 64bit:
-31bit needs .machinemode "zarch_nohighgprs" and llgfr %r4,%r4
-lr vs lgr and some other instructions:
But lgr and co can be also used on 31bit as this ifunc variant
is only called if we are on a zarch machine.
__memset_default differs between 31 and 64bit:
-Some 31bit vs 64bit instructions (e.g. ltr vs ltgr.
Solved with 31/64 specific instruction macros).
-The address of mvc instruction is setup in different ways
(larl vs bras). Solved with #if defined __s390x__.
Otherwise 31/64bit implementation has the same structure of the code.
ChangeLog:
* sysdeps/s390/s390-64/memset.S: Move to ...
* sysdeps/s390/memset.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/memset.S: Delete File.
* sysdeps/s390/multiarch/Makefile (sysdep_routines): Add memset.
* sysdeps/s390/s390-32/multiarch/Makefile (sysdep_routines):
Remove memset.
* sysdeps/s390/s390-64/multiarch/Makefile: Likewise.
* sysdeps/s390/s390-64/multiarch/memset-s390x.S: Move to ...
* sysdeps/s390/multiarch/memset-s390x.S: ... here.
Adjust to be usable for 31/64bit.
* sysdeps/s390/s390-32/multiarch/memset-s390.S: Delete File.
* sysdeps/s390/s390-64/multiarch/memset.c: Move to ...
* sysdeps/s390/multiarch/memset.c: ... here.
* sysdeps/s390/s390-32/multiarch/memset.c: Delete File.
The renaming of hwcap arguments in ifunc-resolvers is needed
in order to prepare for further commits which refactors
ifunc handling for memset, memcmp, and memcpy. Now you are able
to use s390_libc_ifunc_init which stores the stfle bits
within the expression for an ifunc-resolver generated by
s390_libc_ifunc_expr.
ChangeLog:
* sysdeps/s390/multiarch/ifunc-resolve.h
(s390_libc_ifunc_init, s390_libc_ifunc,
s390_vx_libc_ifunc2_redirected): Use hwcap instead of dl_hwcap.
Add a configure check for z10 in the same way as done for z196.
ChangeLog:
* config.h.in (HAVE_S390_MIN_Z10_ZARCH_ASM_SUPPORT): New undefine.
* sysdeps/s390/configure.ac: Add check for z10 support.
* sysdeps/s390/configure: Regenerated.
* Since __fentry__ is almost the same as _mcount, reuse the code by
#including it twice with different #defines around.
* Remove LA usages - they are needed in 31-bit mode to clear the top
bit, but in 64-bit they appear to do nothing.
* Add CFI rule for the nonstandard return register. This rule applies
to the current function (binutils generates a new CIE - see
gas/dw2gencfi.c:select_cie_for_fde()), so it is not necessary to put
__fentry__ into a new file.
* Fix CFI offset for %r14.
* Add CFI rule for %r0.
* Fix unwound value of %r15 being off by 244 bytes.
* Unwinding in __fentry__@plt does not work, no plan to fix it - it
would require asking linker to generate CFI for return address in
%r0. From functional perspective keeping it broken is fine, since
the callee did not have a chance to do anything yet. From
convenience perspective it would be possible to enhance GDB in the
future to treat __fentry__@plt in a special way.
* Fix whitespace.
* Fix offsets in comments, which were copied from 32-bit code.
* 32-bit version will not be implemented, since it's not compatible
with the corresponding PLT stubs: they assume %r12 points to GOT,
which is not the case for gcc-emitted __fentry__ stub, which runs
before the prolog.
This patch adds the runtime support in glibc for the -mfentry
gcc feature introduced in [1] and [2].
[1] https://gcc.gnu.org/ml/gcc-patches/2018-07/msg00784.html
[2] https://gcc.gnu.org/ml/gcc-patches/2018-07/msg00912.html
ChangeLog:
* sysdeps/s390/s390-64/Versions (__fentry__): Add.
* sysdeps/s390/s390-64/s390x-mcount.S: Move the common
code to s390x-mcount.h and #include it.
* sysdeps/s390/s390-64/s390x-mcount.h: New file.
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist
(__fentry__): Add.
The following combinations need to be tested:
* 32- (g5, esa and zarch) and 64-bit
* linux32 glibc/configure CC='gcc -m31 -march=g5'
* linux32 glibc/configure CC='gcc -m31'
* linux32 glibc/configure CC='gcc -m31 -mzarch'
* With and without VX:
* glibc/configure libc_cv_asm_s390_vx=no
* With and without profiling (using LD_PROFILE)
* With and without pltexit (using LD_AUDIT)
ChangeLog:
* sysdeps/s390/Makefile: Register the new tests.
* sysdeps/s390/tst-dl-runtime-mod.S: New file.
* sysdeps/s390/tst-dl-runtime-profile-audit.c: New file.
* sysdeps/s390/tst-dl-runtime-profile-noaudit.c: New file.
* sysdeps/s390/tst-dl-runtime-resolve-audit.c: New file.
* sysdeps/s390/tst-dl-runtime-resolve-noaudit.c: New file.
* sysdeps/s390/tst-dl-runtime.c: New file.
_init and _fini are special functions provided by glibc for linker to
define DT_INIT and DT_FINI in executable and shared library. They
should never be put in dynamic symbol table. This patch marks them as
hidden to remove them from dynamic symbol table.
Tested with build-many-glibcs.py.
[BZ #23145]
* elf/Makefile (tests-special): Add $(objpfx)check-initfini.out.
($(all-built-dso:=.dynsym): New target.
(common-generated): Add $(all-built-dso:$(common-objpfx)%=%.dynsym).
($(objpfx)check-initfini.out): New target.
(generated): Add check-initfini.out.
* scripts/check-initfini.awk: New file.
* sysdeps/aarch64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/alpha/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/arm/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/hppa/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/i386/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/ia64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/m68k/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/microblaze/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/mips/mips64/n64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/nios2/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/powerpc/powerpc64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-32/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/s390/s390-64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sh/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/sparc/crti.S (_init): Mark as hidden.
(_fini): Likewise.
* sysdeps/x86_64/crti.S (_init): Mark as hidden.
(_fini): Likewise.
Wrap symbol address run-time calculation into a macro and use it
throughout, replacing inline calculations.
There are a couple of variants, most of them different in a functionally
insignificant way. Most calculations are right following RESOLVE_MAP,
at which point either the map or the symbol returned can be checked for
validity as the macro sets either both or neither. In some places both
the symbol and the map has to be checked however.
My initial implementation therefore always checked both, however that
resulted in code larger by as much as 0.3%, as many places know from
elsewhere that no check is needed. I have decided the size growth was
unacceptable.
Having looked closer I realized that it's the map that is the culprit.
Therefore I have modified LOOKUP_VALUE_ADDRESS to accept an additional
boolean argument telling it to access the map without checking it for
validity. This in turn has brought quite nice results, with new code
actually being smaller for i686, and MIPS o32, n32 and little-endian n64
targets, unchanged in size for x86-64 and, unusually, marginally larger
for big-endian MIPS n64, as follows:
i686:
text data bss dec hex filename
152255 4052 192 156499 26353 ld-2.27.9000-base.so
152159 4052 192 156403 262f3 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/el:
text data bss dec hex filename
142906 4396 260 147562 2406a ld-2.27.9000-base.so
142890 4396 260 147546 2405a ld-2.27.9000-elf-symbol-value.so
MIPS/n32/el:
text data bss dec hex filename
142267 4404 260 146931 23df3 ld-2.27.9000-base.so
142171 4404 260 146835 23d93 ld-2.27.9000-elf-symbol-value.so
MIPS/n64/el:
text data bss dec hex filename
149835 7376 408 157619 267b3 ld-2.27.9000-base.so
149787 7376 408 157571 26783 ld-2.27.9000-elf-symbol-value.so
MIPS/o32/eb:
text data bss dec hex filename
142870 4396 260 147526 24046 ld-2.27.9000-base.so
142854 4396 260 147510 24036 ld-2.27.9000-elf-symbol-value.so
MIPS/n32/eb:
text data bss dec hex filename
142019 4404 260 146683 23cfb ld-2.27.9000-base.so
141923 4404 260 146587 23c9b ld-2.27.9000-elf-symbol-value.so
MIPS/n64/eb:
text data bss dec hex filename
149763 7376 408 157547 2676b ld-2.27.9000-base.so
149779 7376 408 157563 2677b ld-2.27.9000-elf-symbol-value.so
x86-64:
text data bss dec hex filename
148462 6452 400 155314 25eb2 ld-2.27.9000-base.so
148462 6452 400 155314 25eb2 ld-2.27.9000-elf-symbol-value.so
[BZ #19818]
* sysdeps/generic/ldsodefs.h (LOOKUP_VALUE_ADDRESS): Add `set'
parameter.
(SYMBOL_ADDRESS): New macro.
[!ELF_FUNCTION_PTR_IS_SPECIAL] (DL_SYMBOL_ADDRESS): Use
SYMBOL_ADDRESS for symbol address calculation.
* elf/dl-runtime.c (_dl_fixup): Likewise.
(_dl_profile_fixup): Likewise.
* elf/dl-symaddr.c (_dl_symbol_address): Likewise.
* elf/rtld.c (dl_main): Likewise.
* sysdeps/aarch64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/alpha/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/hppa/dl-symaddr.c (_dl_symbol_address): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Likewise.
(elf_machine_rela): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/mips/dl-machine.h (ELF_MACHINE_BEFORE_RTLD_RELOC):
Likewise.
(elf_machine_reloc): Likewise.
(elf_machine_got_rel): Likewise.
* sysdeps/mips/dl-trampoline.c (__dl_runtime_resolve): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/riscv/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_rela):
Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_rela): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Remove the now unused target specific__ieee754_sqrt(f/l) inlines.
Also remove inlines of sqrt which are for really old GCC versions.
Removing these is desirable, under the general principle of leaving
such inlining to the compiler rather than trying to do it in installed
headers, especially when only very old compilers are affected.
Note that removing inlines for __ieee754_sqrt disables inlining in the
sqrt wrapper functions. Given the sqrt function will typically only be
called for negative arguments, it doesn't matter whether the inlining
happens or not.
* sysdeps/aarch64/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/alpha/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/generic/math-type-macros.h (M_SQRT): Use sqrt.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Remove.
* sysdeps/powerpc/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
* sysdeps/s390/fpu/bits/mathinline.h: Remove file.
* sysdeps/sparc/fpu/bits/mathinline.h (sqrt) Remove.
(sqrtf): Remove.
(sqrtl): Remove.
(__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
(__ieee754_sqrtl): Remove.
* sysdeps/m68k/m680x0/fpu/mathimpl.h (__ieee754_sqrt): Remove.
* sysdeps/x86/fpu/math_private.h (__ieee754_sqrt): Remove.
* sysdeps/x86_64/fpu/math_private.h (__ieee754_sqrt): Remove.
(__ieee754_sqrtf): Remove.
(__ieee754_sqrtl): Remove.
Since __libc_longjmp is a private interface for cancellation implementation
in libpthread, there is no need to provide hidden __libc_longjmp in libc.
Tested with build-many-glibcs.py.
* include/setjmp.h (__libc_longjmp): Remove libc_hidden_proto.
* setjmp/longjmp.c (__libc_longjmp): Remove libc_hidden_def.
* sysdeps/s390/longjmp.c (__libc_longjmp): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/longjmp.S (__libc_longjmp):
Likewise.
Building glibc for s390 with -Os (32-bit only, with GCC 7) fails with:
In file included from ../sysdeps/s390/multiarch/8bit-generic.c:370:0,
from ebcdic-at-de.c:28:
../iconv/loop.c: In function '__to_generic_vx':
../iconv/loop.c:264:22: error: 'ch' may be used uninitialized in this function [-Werror=maybe-uninitialized]
if (((Character) >> 7) == (0xe0000 >> 7)) \
^~
In file included from ebcdic-at-de.c:28:0:
../sysdeps/s390/multiarch/8bit-generic.c:340:15: note: 'ch' was declared here
uint32_t ch; \
^
../iconv/loop.c:325:7: note: in expansion of macro 'BODY'
BODY
^~~~
It's fairly easy to see, looking at the (long) expansion of the BODY
macro, that this is a false positive and the relevant variable 'ch' is
always initialized before use, in one of two possible places. As
such, disabling the warning for -Os with the DIAG_* macros is the
natural approach to fix this build failure. However, because of the
location at which the warning is reported, the disabling needs to go
in iconv/loop.c, around the definition of UNICODE_TAG_HANDLER (not
inside the definition), as that macro definition is where the
uninitialized use is reported, whereas the code that needs to be
reasoned about to see that the warning is a false positive is in the
definition of BODY elsewhere.
Thus, the patch adds such disabling in iconv/loop.c, with a comment
pointing to the s390-specific code and a comment in the s390-specific
code pointing to the generic file to alert people to the possible need
to update one place when changing the other. It would be possible if
desired to use #ifdef __s390__ around the disabling, though in general
we try to avoid that sort of thing in generic files. (Or some
extremely specialized macros for "disable -Wmaybe-uninitialized in
this particular place" could be specified, defined to 0 in a lot of
different files that include iconv/loop.c and to 1 in that particular
s390 file.)
Tested that this fixed -Os compilation for s390-linux-gnu with
build-many-glibcs.py.
* iconv/loop.c (UNICODE_TAG_HANDLER): Disable
-Wmaybe-uninitialized for -Os.
* sysdeps/s390/multiarch/8bit-generic.c (BODY): Add comment about
this disabling.
After regenerating ULPs from scratch in
commit 8e7196c875, I've missed
to test it with multiple gcc versions. Hence, here is a further update.
ChangeLog:
* sysdeps/s390/fpu/libm-test-ulps: Regenerated.
We have a general principle of preferring optimizations for library
facilities to use compiler built-in functions rather than being
located in library headers, where the compiler can reasonably optimize
code without needing to know glibc implementation details.
This patch applies this principle to bits/byteswap.h, eliminating all
the architecture-specific variants and bits/byteswap-16.h. The
__bswap_16, __bswap_32 and __bswap_64 interfaces all become inline
functions, never macros, using the GCC built-in functions where
available and otherwise a single architecture-independent definition
using shifts and masking (which compilers may well be able to detect
and optimize; GCC has detection of various byte-swapping idioms).
The __bswap_constant_32 macro needs to stay around because of uses in
static initializers within glibc and its tests, and so for consistency
all __bswap_constant_* are kept rather than just being inlined into
the old-GCC-or-non-GCC parts of the __bswap_* inline function
definitions.
Various open bugs are addressed by this cleanup, with caveats about
exactly what is covered by those bugs and when the bugs applied at
all.
Bug 14508 reports -Wformat warnings building glibc because __bswap_*
sometimes returned the wrong types. Obviously we already don't have
such warnings any more or the build would be failing, given -Werror,
and I suspect that bug was originally for wrong types for x86_64, as
fixed by commit d394eb742a (glibc 2.17).
The only case I saw removed by this patch where the types would still
have been wrong was the non-__GNUC__ case of __bswap_64 in the s390
header (using unsigned long long int, but uint64_t would be unsigned
long int for 64-bit). In any case, the single header consistently
uses __uintN_t types after this patch, thereby eliminating all such
bugs. The existing string/test-endian-types.c test already suffices
to verify that the types are correct with the compiler used to build
glibc and its tests.
Bug 15512 reports an error from __bswap_constant_16 with -Werror
-Wsign-conversion. I am unable to reproduce this with any GCC version
supporting -Wsign-conversion - all seem to be able to avoid warning
for ((x) >> 8) & 0xffu, where x is uint16_t, which while it formally
does involve an implicit conversion from int to unsigned int, is also
a case where it should be easy for the compiler to see that the value
converted is never negative. But in this patch __bswap_constant_16 is
changed to use signed 0xff so that no such implicit conversion occurs
at all, and a test with -Werror -Wsign-conversion is added.
Bug 17082 objects to the use of ({}) statement expressions in these
macros preventing use at file scope (in C, that's in sizeof etc.; in
C++, more generally in static initializers). The particular case of
these interfaces is fixed by this patch as it changes them to inline
functions, eliminating all uses of ({}) in bits/byteswap.h, and a
corresponding testcase is added. The bug tries to raise a more
general policy question about use of ({}) in macros in installed
headers, referring to "many other libc functions" (unspecified which
functions are being considered).
Since such policy questions belong on libc-alpha, and since there
*are* macros in installed headers which can't really avoid using ({})
(where they are type-generic, so can't use an inline function, but
need a temporary variable, and a few where the interface involves
returning memory from alloca so can't use an inline function either),
I propose to consider that bug fixed with this change. That is
without prejudice to any other new bugs anyone wishes to file *for
precisely defined sets of macros* requesting moving away from ({})
*where it is clearly possible for those interfaces*. Where ({}) can
be avoided, typically by use of an inline function, I think that's a
good idea - that inline functions are typically to be preferred to
({}) for header interfaces where such optimizations are useful but the
interface is suited to being defined using an inline function.
Bug 20530 requests use of __builtin_bswap16 when available (GCC 4.8
and later), which this patch implements.
Tested for x86_64, and with build-many-glibcs.py. Also did an x86_64
test with the __GNUC_PREREQ conditionals changed to "#if 0" to verify
the old-GCC/non-GCC case in the headers. (There are already existing
tests for correctness of results of these interfaces.)
[BZ #14508]
[BZ #15512]
[BZ #17082]
[BZ #20530]
* bits/byteswap.h: Update file comment. Do not include
<bits/byteswap-16.h>.
(__bswap_constant_16): Cast result to __uint16_t. Use signed 0xff
constant.
(__bswap_16): Define as inline function.
(__bswap_constant_32): Reformat definition.
(__bswap_32): Always define as inline function, not macro, using
__uint32_t. Use __builtin_bswap32 if [__GNUC_PREREQ (4, 3)],
otherwise __bswap_constant_32.
(__bswap_constant_64): Reformat definition. Do not use
__extension__ here.
(__bswap_64): Always define as inline function, not macro. Use
__extension__ on function definition. Use __builtin_bswap64 if
[__GNUC_PREREQ (4, 3)], otherwise __bswap_constant_64.
* string/test-endian-file-scope.c: New file.
* string/test-endian-sign-conversion.c: Likewise.
* string/Makefile (headers): Remove bits/byteswap-16.h.
(tests): Add test-endian-file-scope and
test-endian-sign-conversion.
(CFLAGS-test-endian-sign-conversion.c): New variable.
* bits/byteswap-16.h: Remove file.
* sysdeps/ia64/bits/byteswap-16.h: Likewise.
* sysdeps/ia64/bits/byteswap.h: Likewise.
* sysdeps/m68k/bits/byteswap.h: Likewise.
* sysdeps/s390/bits/byteswap-16.h: Likewise.
* sysdeps/s390/bits/byteswap.h: Likewise.
* sysdeps/tile/bits/byteswap.h: Likewise.
* sysdeps/x86/bits/byteswap-16.h: Likewise.
* sysdeps/x86/bits/byteswap.h: Likewise.
My fix for bug 22702 introduced linknamespace test failures on
s390x-linux-gnu and s390-linux-gnu because it made remainder call
__feholdexcept, and the s390 __feholdexcept calls fegetenv, and
remainder is in Unix98 and XPG4.2 but fegetenv isn't. This patch
makes __feholdexcept call __fegetenv instead to avoid that namespace
issue.
Tested (compilation) with build-many-glibcs.py for s390x-linux-gnu,
where it resolves the test failures.
* sysdeps/s390/fpu/feholdexcpt.c (__feholdexcept): Call __fegetenv
instead of fegetenv.
In _dl_runtime_resolve[_vx], unwinding fails after the new stack frame
is created as there is no CFI rule for r15. This is also observeable in
GDB: Backtrace stopped: previous frame inner to this frame (corrupt stack?)
Therefore this patch is now storing r15 on stack and is using cfi_offset rule.
The stmg/lmg instruction is used to store/load r14 and r15 with one instruction.
On 64bit, the offsets of the fprs have moved to store r15 directly after r14.
On 31bit, the r14/r15 is now stored between the other gprs and fprs as the space
wasn't used.
ChangeLog:
* sysdeps/s390/s390-64/dl-trampoline.h (_dl_runtime_resolve):
Store r15 on stack and add cfi rule.
* sysdeps/s390/s390-32/dl-trampoline.h (_dl_runtime_resolve):
Likewise.
This patch adds several new tunables to control the behavior of
elision on supported platforms[1]. Since elision now depends
on tunables, we should always *compile* with elision enabled,
and leave the code disabled, but available for runtime
selection. This gives us *much* better compile-time testing of
the existing code to avoid bit-rot[2].
Tested on ppc, ppc64, ppc64le, s390x and x86_64.
[1] This part of the patch was initially proposed by
Paul Murphy but was "staled" because the framework have changed
since the patch was originally proposed:
https://patchwork.sourceware.org/patch/10342/
[2] This part of the patch was inititally proposed as a RFC by
Carlos O'Donnell. Make sense to me integrate this on the patch:
https://sourceware.org/ml/libc-alpha/2017-05/msg00335.html
* elf/dl-tunables.list: Add elision parameters.
* manual/tunables.texi: Add entries about elision tunable.
* sysdeps/unix/sysv/linux/powerpc/elision-conf.c:
Add callback functions to dynamically enable/disable elision.
Add multiple callbacks functions to set elision parameters.
Deleted __libc_enable_secure check.
* sysdeps/unix/sysv/linux/s390/elision-conf.c: Likewise.
* sysdeps/unix/sysv/linux/x86/elision-conf.c: Likewise.
* configure: Regenerated.
* configure.ac: Option enable_lock_elision was deleted.
* config.h.in: ENABLE_LOCK_ELISION flag was deleted.
* config.make.in: Remove references to enable_lock_elision.
* manual/install.texi: Elision configure option was removed.
* INSTALL: Regenerated to remove enable_lock_elision.
* nptl/Makefile:
Disable elision so it can verify error case for destroying a mutex.
* sysdeps/powerpc/nptl/elide.h:
Cleanup ENABLE_LOCK_ELISION check.
Deleted macros for the case when ENABLE_LOCK_ELISION was not defined.
* sysdeps/s390/configure: Regenerated.
* sysdeps/s390/configure.ac: Remove references to enable_lock_elision..
* nptl/tst-mutex8.c:
Deleted all #ifndef ENABLE_LOCK_ELISION from the test.
* sysdeps/powerpc/powerpc32/sysdep.h:
Deleted all ENABLE_LOCK_ELISION checks.
* sysdeps/powerpc/powerpc64/sysdep.h: Likewise.
* sysdeps/powerpc/sysdep.h: Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/force-elision.h: Likewise.
* sysdeps/unix/sysv/linux/s390/elision-conf.h: Likewise.
* sysdeps/unix/sysv/linux/s390/force-elision.h: Likewise.
* sysdeps/unix/sysv/linux/s390/lowlevellock.h: Likewise.
* sysdeps/unix/sysv/linux/s390/Makefile: Remove references to
enable-lock-elision.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.vnet.ibm.com>
Continuing the preparation for additional _FloatN / _FloatNx function
aliases, this patch makes an s390 libm function implementation use
libm_alias_float to define function aliases.
Tested with build-many-glibcs.py for s390-linux-gnu and
s390x-linux-gnu that installed stripped shared libraries are unchanged
by the patch.
* sysdeps/s390/fpu/s_fmaf.c: Include <libm-alias-float.h>.
[!__fmaf] (fmaf): Define using libm_alias_float.
Continuing the preparation for additional _FloatN / _FloatNx function
aliases, this patch makes s390 libm function implementations use
libm_alias_double to define function aliases. This allows
sysdeps/unix/sysv/linux/s390/fpu/s_fma.c to be removed, as
libm_alias_double handles symbol versioning for long double compat
symbols.
Tested with build-many-glibcs.py for s390-linux-gnu and
s390x-linux-gnu that installed stripped shared libraries are unchanged
by the patch.
* sysdeps/s390/fpu/s_fma.c: Include <libm-alias-double.h>.
[!__fma] (fma): Define using libm_alias_double.
* sysdeps/unix/sysv/linux/s390/fpu/s_fma.c: Remove.
GDB failed to detect the outermost frame while showing the backtrace
within a thread:
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
Before this patch, the start routines like thread_start had no cfi information.
GDB is then using the prologue unwinder if no cfi information is available.
This unwinder tries to unwind r15 and stops e.g. if r15 was updated or
on some jump-instructions.
On older glibc-versions (before commit "Remove cached PID/TID in clone"
c579f48edb), the thread_start function used
such a jump-instruction and GDB did not fail with an error.
This patch adds cfi information for _start, thread_start and __makecontext_ret
and marks r14 as undefined which marks the frame as outermost frame and GDB
stops the backtrace. Also tested different gcc versions in order to test
_Unwind_Backtrace() in libgcc as this is used by backtrace() in glibc.
ChangeLog:
* sysdeps/s390/s390-64/start.S (_start): Add cfi information for r14.
* sysdeps/s390/s390-32/start.S: (_start): Likewise
* sysdeps/unix/sysv/linux/s390/s390-64/clone.S
(thread_start): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/clone.S
(thread_start): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/__makecontext_ret.S
(__makecontext_ret): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/__makecontext_ret.S
(__makecontext_ret): Likewise.
This patch adds two new internal defines to set the internal
pthread_mutex_t layout required by the supported ABIS:
1. __PTHREAD_MUTEX_NUSERS_AFTER_KIND which control whether to define
__nusers fields before or after __kind. The preferred value for
is 0 for new ports and it sets __nusers before __kind.
2. __PTHREAD_MUTEX_USE_UNION which control whether internal __spins and
__list members will be place inside an union for linuxthreads
compatibility. The preferred value is 0 for ports and it sets
to not use an union to define both fields.
It fixes the wrong offsets value for __kind value on x86_64-linux-gnu-x32.
Checked with a make check run-built-tests=no on all afected ABIs.
[BZ #22298]
* nptl/allocatestack.c (allocate_stack): Check if
__PTHREAD_MUTEX_HAVE_PREV is non-zero, instead if
__PTHREAD_MUTEX_HAVE_PREV is defined.
* nptl/descr.h (pthread): Likewise.
* nptl/nptl-init.c (__pthread_initialize_minimal_internal):
Likewise.
* nptl/pthread_create.c (START_THREAD_DEFN): Likewise.
* sysdeps/nptl/fork.c (__libc_fork): Likewise.
* sysdeps/nptl/pthread.h (PTHREAD_MUTEX_INITIALIZER): Likewise.
* sysdeps/nptl/bits/thread-shared-types.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION): New
defines.
(__pthread_internal_list): Check __PTHREAD_MUTEX_USE_UNION instead
of __WORDSIZE for internal layout.
(__pthread_mutex_s): Check __PTHREAD_MUTEX_NUSERS_AFTER_KIND instead
of __WORDSIZE for internal __nusers layout and __PTHREAD_MUTEX_USE_UNION
instead of __WORDSIZE whether to use an union for __spins and __list
fields.
(__PTHREAD_MUTEX_HAVE_PREV): Define also for __PTHREAD_MUTEX_USE_UNION
case.
* sysdeps/aarch64/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION): New
defines.
* sysdeps/alpha/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/arm/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/hppa/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/powerpc/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/sparc/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
* sysdeps/x86/nptl/bits/pthreadtypes-arch.h
(__PTHREAD_MUTEX_NUSERS_AFTER_KIND, __PTHREAD_MUTEX_USE_UNION):
Likewise.
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch adds a new build test to check for internal fields
offsets for user visible internal field. Although currently
the only field which is statically initialized to a non zero value
is pthread_mutex_t.__data.__kind value, the tests also check the
offset of __kind, __spins, __elision (if supported), and __list
internal member. A internal header (pthread-offset.h) is added
to each major ABI with the reference value.
Checked on x86_64-linux-gnu and with a build check for all affected
ABIs (aarch64-linux-gnu, alpha-linux-gnu, arm-linux-gnueabihf,
hppa-linux-gnu, i686-linux-gnu, ia64-linux-gnu, m68k-linux-gnu,
microblaze-linux-gnu, mips64-linux-gnu, mips64-n32-linux-gnu,
mips-linux-gnu, powerpc64le-linux-gnu, powerpc-linux-gnu,
s390-linux-gnu, s390x-linux-gnu, sh4-linux-gnu, sparc64-linux-gnu,
sparcv9-linux-gnu, tilegx-linux-gnu, tilegx-linux-gnu-x32,
tilepro-linux-gnu, x86_64-linux-gnu, and x86_64-linux-x32).
* nptl/pthreadP.h (ASSERT_PTHREAD_STRING,
ASSERT_PTHREAD_INTERNAL_OFFSET): New macro.
* nptl/pthread_mutex_init.c (__pthread_mutex_init): Add build time
checks for internal pthread_mutex_t offsets.
* sysdeps/aarch64/nptl/pthread-offsets.h
(__PTHREAD_MUTEX_NUSERS_OFFSET, __PTHREAD_MUTEX_KIND_OFFSET,
__PTHREAD_MUTEX_SPINS_OFFSET, __PTHREAD_MUTEX_ELISION_OFFSET,
__PTHREAD_MUTEX_LIST_OFFSET): New macro.
* sysdeps/alpha/nptl/pthread-offsets.h: Likewise.
* sysdeps/arm/nptl/pthread-offsets.h: Likewise.
* sysdeps/hppa/nptl/pthread-offsets.h: Likewise.
* sysdeps/i386/nptl/pthread-offsets.h: Likewise.
* sysdeps/ia64/nptl/pthread-offsets.h: Likewise.
* sysdeps/m68k/nptl/pthread-offsets.h: Likewise.
* sysdeps/microblaze/nptl/pthread-offsets.h: Likewise.
* sysdeps/mips/nptl/pthread-offsets.h: Likewise.
* sysdeps/nios2/nptl/pthread-offsets.h: Likewise.
* sysdeps/powerpc/nptl/pthread-offsets.h: Likewise.
* sysdeps/s390/nptl/pthread-offsets.h: Likewise.
* sysdeps/sh/nptl/pthread-offsets.h: Likewise.
* sysdeps/sparc/nptl/pthread-offsets.h: Likewise.
* sysdeps/tile/nptl/pthread-offsets.h: Likewise.
* sysdeps/x86_64/nptl/pthread-offsets.h: Likewise.
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch obsoletes the pow10, pow10f and pow10l functions (makes
them into compat symbols, not available for new ports or static
linking). The exp10 names for these functions are standardized (in TS
18661-4) and were added in the same glibc version (2.1) as pow10 so
source code can change to use them without any loss of portability.
Since pow10 is deliberately not provided for _Float128, only exp10,
this slightly simplifies moving to the new wrapper templates in the
!LIBM_SVID_COMPAT case, by avoiding needing to arrange for pow10,
pow10f and pow10l to be defined by those templates.
Tested for x86_64, and with build-many-glibcs.py.
* manual/math.texi (pow10): Do not document.
(pow10f): Likewise.
(pow10l): Likewise.
* math/bits/mathcalls.h [__USE_GNU] (pow10): Do not declare.
* math/bits/math-finite.h [__USE_GNU] (pow10): Likewise.
* math/libm-test-exp10.inc (pow10_test): Remove.
(do_test): Do not call pow10.
* math/w_exp10_compat.c (pow10): Make into compat symbol.
[NO_LONG_DOUBLE] (pow10l): Likewise.
* math/w_exp10f_compat.c (pow10f): Likewise.
* math/w_exp10l_compat.c (pow10l): Likewise.
* sysdeps/ia64/fpu/e_exp10.S: Include <shlib-compat.h>.
(pow10): Make into compat symbol.
* sysdeps/ia64/fpu/e_exp10f.S: Include <shlib-compat.h>.
(pow10f): Make into compat symbol.
* sysdeps/ia64/fpu/e_exp10l.S: Include <shlib-compat.h>.
(pow10l): Make into compat symbol.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Remove
pow10.
(CFLAGS-nldbl-pow10.c): Remove variable..
* sysdeps/ieee754/ldbl-opt/nldbl-pow10.c: Remove file.
* sysdeps/ieee754/ldbl-opt/w_exp10_compat.c (pow10l): Condition on
[SHLIB_COMPAT (libm, GLIBC_2_1, GLIBC_2_27)].
* sysdeps/ieee754/ldbl-opt/w_exp10l_compat.c (compat_symbol):
Undefine and redefine.
(pow10l): Make into compat symbol.
* sysdeps/aarch64/libm-test-ulps: Remove pow10 ulps.
* sysdeps/alpha/fpu/libm-test-ulps: Likewise.
* sysdeps/arm/libm-test-ulps: Likewise.
* sysdeps/hppa/fpu/libm-test-ulps: Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Likewise.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps: Likewise.
* sysdeps/microblaze/libm-test-ulps: Likewise.
* sysdeps/mips/mips32/libm-test-ulps: Likewise.
* sysdeps/mips/mips64/libm-test-ulps: Likewise.
* sysdeps/nios2/libm-test-ulps: Likewise.
* sysdeps/powerpc/fpu/libm-test-ulps: Likewise.
* sysdeps/powerpc/nofpu/libm-test-ulps: Likewise.
* sysdeps/s390/fpu/libm-test-ulps: Likewise.
* sysdeps/sh/libm-test-ulps: Likewise.
* sysdeps/sparc/fpu/libm-test-ulps: Likewise.
* sysdeps/tile/libm-test-ulps: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
The new IBM z14 is added to platform string array.
The macro _DL_PLATFORMS_COUNT is incremented.
ChangeLog:
* sysdeps/s390/dl-procinfo.c (_dl_s390_cap_flags): Add z14.
* sysdeps/s390/dl-procinfo.h (_DL_PLATFORMS_COUNT): Increased.