This commit adds tests for a bug in the wide char variant of the
functions where the implementation may assume that maxlen for wcsnlen
or n for wmemchr/strncat will not overflow when multiplied by
sizeof(wchar_t).
These tests show the following implementations failing on x86_64:
wcsnlen-sse4_1
wcsnlen-avx2
wmemchr-sse2
wmemchr-avx2
strncat would fail as well if it where on a system that prefered
either of the wcsnlen implementations that failed as it relies on
wcsnlen.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit da5a6fba0f)
No bug. This commit optimizes strlen-evex.S. The
optimizations are mostly small things but they add up to roughly
10-30% performance improvement for strlen. The results for strnlen are
bit more ambiguous. test-strlen, test-strnlen, test-wcslen, and
test-wcsnlen are all passing.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
(cherry picked from commit 4ba6558684)
This commit fixes the bug mentioned in the previous commit.
The previous implementations of wmemchr in these files relied
on maxlen * sizeof(wchar_t) which was not guranteed by the standard.
The new overflow tests added in the previous commit now
pass (As well as all the other tests).
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit a775a7a3eb)
No bug. This comment adds the ifunc / build infrastructure
necessary for wcslen to prefer the sse4.1 implementation
in strlen-vec.S. test-wcslen.c is passing.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit 6f573a27b6)
Since strlen.S contains SSE2 version of strlen/strnlen and SSE4.1
version of wcslen/wcsnlen, move strlen.S to multiarch/strlen-vec.S
and include multiarch/strlen-vec.S from SSE2 and SSE4.1 variants.
This also removes the unused symbols, __GI___strlen_sse2 and
__GI___wcsnlen_sse4_1.
(cherry picked from commit a0db678071)
An unknown vector operation occurred in commit 2a76821c30. Fixed it
by using "ymm{k1}{z}" but not "ymm {k1} {z}".
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit 6ea916adfa)
No bug. This commit optimizes memchr-evex.S. The optimizations include
replacing some branches with cmovcc, avoiding some branches entirely
in the less_4x_vec case, making the page cross logic less strict,
saving some ALU in the alignment process, and most importantly
increasing ILP in the 4x loop. test-memchr, test-rawmemchr, and
test-wmemchr are all passing.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit 2a76821c30)
No bug. This commit optimizes strlen-avx2.S. The optimizations are
mostly small things but they add up to roughly 10-30% performance
improvement for strlen. The results for strnlen are bit more
ambiguous. test-strlen, test-strnlen, test-wcslen, and test-wcsnlen
are all passing.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
(cherry picked from commit aaa23c3507)
This commit fixes the bug mentioned in the previous commit.
The previous implementations of wmemchr in these files relied
on n * sizeof(wchar_t) which was not guranteed by the standard.
The new overflow tests added in the previous commit now
pass (As well as all the other tests).
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit 645a158978)
No bug. This commit optimizes memchr-avx2.S. The optimizations include
replacing some branches with cmovcc, avoiding some branches entirely
in the less_4x_vec case, making the page cross logic less strict,
asaving a few instructions the in loop return loop. test-memchr,
test-rawmemchr, and test-wmemchr are all passing.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit acfd088a19)
Place strings ending at page boundary without the null byte. If an
implementation goes beyond EXP_LEN, it will trigger the segfault.
(cherry picked from commit cb882b21b6)
Since __strlen_evex and __strnlen_evex added by
commit 1fd8c163a8
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Fri Mar 5 06:24:52 2021 -0800
x86-64: Add ifunc-avx2.h functions with 256-bit EVEX
use sarx:
c4 e2 6a f7 c0 sarx %edx,%eax,%eax
require BMI2 for __strlen_evex and __strnlen_evex in ifunc-impl-list.c.
ifunc-avx2.h already requires BMI2 for EVEX implementation.
(cherry picked from commit 55bf411b45)
Update ifunc-memmove.h to select the function optimized with AVX512
instructions using ZMM16-ZMM31 registers to avoid RTM abort with usable
AVX512VL since VZEROUPPER isn't needed at function exit.
(cherry picked from commit e4fda46310)
Update ifunc-memset.h/ifunc-wmemset.h to select the function optimized
with AVX512 instructions using ZMM16-ZMM31 registers to avoid RTM abort
with usable AVX512VL and AVX512BW since VZEROUPPER isn't needed at
function exit.
(cherry picked from commit 4e2d8f3527)
At function exit, AVX optimized string/memory functions have VZEROUPPER
which triggers RTM abort. When such functions are called inside a
transactionally executing RTM region, RTM abort causes severe performance
degradation. Add tests to verify that string/memory functions won't
cause RTM abort in RTM region.
(cherry picked from commit 4bd660be40)
Since VZEROUPPER triggers RTM abort while VZEROALL won't, select AVX
optimized string/memory functions with
xtest
jz 1f
vzeroall
ret
1:
vzeroupper
ret
at function exit on processors with usable RTM, but without 256-bit EVEX
instructions to avoid VZEROUPPER inside a transactionally executing RTM
region.
(cherry picked from commit 7ebba91361)
Update ifunc-memcmp.h to select the function optimized with 256-bit EVEX
instructions using YMM16-YMM31 registers to avoid RTM abort with usable
AVX512VL, AVX512BW and MOVBE since VZEROUPPER isn't needed at function
exit.
(cherry picked from commit 91264fe357)
Update ifunc-memset.h/ifunc-wmemset.h to select the function optimized
with 256-bit EVEX instructions using YMM16-YMM31 registers to avoid RTM
abort with usable AVX512VL and AVX512BW since VZEROUPPER isn't needed at
function exit.
(cherry picked from commit 1b968b6b9b)
Update ifunc-memmove.h to select the function optimized with 256-bit EVEX
instructions using YMM16-YMM31 registers to avoid RTM abort with usable
AVX512VL since VZEROUPPER isn't needed at function exit.
(cherry picked from commit 63ad43566f)
Update ifunc-strcpy.h to select the function optimized with 256-bit EVEX
instructions using YMM16-YMM31 registers to avoid RTM abort with usable
AVX512VL and AVX512BW since VZEROUPPER isn't needed at function exit.
(cherry picked from commit 525bc2a32c)
Update ifunc-avx2.h, strchr.c, strcmp.c, strncmp.c and wcsnlen.c to
select the function optimized with 256-bit EVEX instructions using
YMM16-YMM31 registers to avoid RTM abort with usable AVX512VL, AVX512BW
and BMI2 since VZEROUPPER isn't needed at function exit.
For strcmp/strncmp, prefer AVX2 strcmp/strncmp if Prefer_AVX2_STRCMP
is set.
(cherry picked from commit 1fd8c163a8)
1. Set Prefer_No_VZEROUPPER if RTM is usable to avoid RTM abort triggered
by VZEROUPPER inside a transactionally executing RTM region.
2. Since to compare 2 32-byte strings, 256-bit EVEX strcmp requires 2
loads, 3 VPCMPs and 2 KORDs while AVX2 strcmp requires 1 load, 2 VPCMPEQs,
1 VPMINU and 1 VPMOVMSKB, AVX2 strcmp is faster than EVEX strcmp. Add
Prefer_AVX2_STRCMP to prefer AVX2 strcmp family functions.
(cherry picked from commit 1da50d4bda)
Fixes [BZ# 28755] for wcsncmp by redirecting length >= 2^56 to
__wcscmp_avx2. For x86_64 this covers the entire address range so any
length larger could not possibly be used to bound `s1` or `s2`.
test-strcmp, test-strncmp, test-wcscmp, and test-wcsncmp all pass.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
(cherry picked from commit ddf0992cf5)
The sunrpc function svcunix_create suffers from a stack-based buffer
overflow with overlong pathname arguments.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
(cherry picked from commit f545ad4928)
This is helpful for testing compat symbols in cases where _ISOMAC
is activated implicitly due to -DMODULE_NAME=testsuite and cannot
be disabled easily.
(cherry picked from commit 36f6e40884)
Processing an overlong pathname in the sunrpc clnt_create function
results in a stack-based buffer overflow.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
(cherry picked from commit 226b46770c)
Starting with commit b05fae4d8e
"elf: Use the minimal malloc on tunables_strdup",
I get lots of segfaults in static tests on s390x when also using, e.g.:
export GLIBC_TUNABLES="glibc.elision.enable=1"
tunables_strdup callls __minimal_malloc which tries to call __mmap
due to insufficient space left. __mmap itself first setups a new
stack frame and segfaults when copying the stack-protector canary
from thread-pointer. The latter one is not yet setup.
Thus this patch also turns off stack-protection for mmap.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Bugfix 27256 has introduced another issue:
In conversion from ISO-2022-JP-3 encoding, it is possible
to force iconv to emit extra NUL character on internal state reset.
To do this, it is sufficient to feed iconv with escape sequence
which switches active character set.
The simplified check 'data->__statep->__count != ASCII_set'
introduced by the aforementioned bugfix picks that case and
behaves as if '\0' character has been queued thus emitting it.
To eliminate this issue, these steps are taken:
* Restore original condition
'(data->__statep->__count & ~7) != ASCII_set'.
It is necessary since bits 0-2 may contain
number of buffered input characters.
* Check that queued character is not NUL.
Similar step is taken for main conversion loop.
Bundled test case follows following logic:
* Try to convert ISO-2022-JP-3 escape sequence
switching active character set
* Reset internal state by providing NULL as input buffer
* Ensure that nothing has been converted.
Signed-off-by: Nikita Popov <npv1310@gmail.com>
(cherry picked from commit ff012870b2)
https://sourceware.org/bugzilla/show_bug.cgi?id=21782 dropped an ld
diagnostic for R_X86_64_PC32 referencing an undefined weak symbol in
-pie links. Arguably keeping the diagnostic like other ports is more
correct, since statically resolving movl foo(%rip), %eax to the
link-time zero address produces a corrupted output.
It turns out that --enable-static-pie builds do not depend on the ld
behavior. GCC generates GOT indirection for weak declarations for
-fPIE/-fPIC, so what ld does with the PC-relative relocation doesn't
really matter.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
(cherry picked from commit 115d242456)
When parse_tunables tries to erase a tunable marked as SXID_ERASE for
setuid programs, it ends up setting the envvar string iterator
incorrectly, because of which it may parse the next tunable
incorrectly. Given that currently the implementation allows malformed
and unrecognized tunables pass through, it may even allow SXID_ERASE
tunables to go through.
This change revamps the SXID_ERASE implementation so that:
- Only valid tunables are written back to the tunestr string, because
of which children of SXID programs will only inherit a clean list of
identified tunables that are not SXID_ERASE.
- Unrecognized tunables get scrubbed off from the environment and
subsequently from the child environment.
- This has the side-effect that a tunable that is not identified by
the setxid binary, will not be passed on to a non-setxid child even
if the child could have identified that tunable. This may break
applications that expect this behaviour but expecting such tunables
to cross the SXID boundary is wrong.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
(cherry picked from commit 2ed18c5b53)
Instead of passing GLIBC_TUNABLES via the environment, pass the
environment variable from parent to child. This allows us to test
multiple variables to ensure better coverage.
The test list currently only includes the case that's already being
tested. More tests will be added later.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
(cherry picked from commit 061fe3f8ad)
Use the support_capture_subprogram_self_sgid to spawn an sgid child.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
(cherry picked from commit ca33528106)
Add a new function support_capture_subprogram_self_sgid that spawns an
sgid child of the running program with its own image and returns the
exit code of the child process. This functionality is used by at
least three tests in the testsuite at the moment, so it makes sense to
consolidate.
There is also a new function support_subprogram_wait which should
provide simple system() like functionality that does not set up file
actions. This is useful in cases where only the return code of the
spawned subprocess is interesting.
This patch also ports tst-secure-getenv to this new function. A
subsequent patch will port other tests. This also brings an important
change to tst-secure-getenv behaviour. Now instead of succeeding, the
test fails as UNSUPPORTED if it is unable to spawn a setgid child,
which is how it should have been in the first place.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
(cherry picked from commit 716a3bdc41)
The arch13 memmove variant is currently selected by the ifunc selector
if the Miscellaneous-Instruction-Extensions Facility 3 facility bit
is present, but the function is also using vector instructions.
If the vector support is not present, one is receiving an operation
exception.
Therefore this patch also checks for vector support in the ifunc
selector and in ifunc-impl-list.c.
Just to be sure, the configure check is now also testing an arch13
vector instruction and an arch13 Miscellaneous-Instruction-Extensions
Facility 3 instruction.
(cherry picked from commit 7759be2593)
A not so recent kernel change[1] changed how the trampoline
`__kernel_sigtramp_rt64` is used to call signal handlers.
This was exposed on the test misc/tst-sigcontext-get_pc
Before kernel 5.9, the kernel set LR to the trampoline address and
jumped directly to the signal handler, and at the end the signal
handler, as any other function, would `blr` to the address set. In
other words, the trampoline was executed just at the end of the signal
handler and the only thing it did was call sigreturn. But since
kernel 5.9 the kernel set CTRL to the signal handler and calls to the
trampoline code, the trampoline then `bctrl` to the address in CTRL,
setting the LR to the next instruction in the middle of the
trampoline, when the signal handler returns, the rest of the
trampoline code executes the same code as before.
Here is the full trampoline code as of kernel 5.11.0-rc5 for
reference:
V_FUNCTION_BEGIN(__kernel_sigtramp_rt64)
.Lsigrt_start:
bctrl /* call the handler */
addi r1, r1, __SIGNAL_FRAMESIZE
li r0,__NR_rt_sigreturn
sc
.Lsigrt_end:
V_FUNCTION_END(__kernel_sigtramp_rt64)
This new behavior breaks how `backtrace()` uses to detect the
trampoline frame to correctly reconstruct the stack frame when it is
called from inside a signal handling.
This workaround rely on the fact that the trampoline code is at very
least two (maybe 3?) instructions in size (as it is in the 32 bits
version, only on `li` and `sc`), so it is safe to check the return
address be in the range __kernel_sigtramp_rt64 .. + 4.
[1] subject: powerpc/64/signal: Balance return predictor stack in signal trampoline
commit: 0138ba5783ae0dcc799ad401a1e8ac8333790df9
url: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0138ba5783ae0dcc799ad401a1e8ac8333790df9
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
(cherry picked from commit 5ee506ed35)
In commit 745664bd79 a use-after-free
was fixed, but this led to an occasional double-free. This patch
tracks the "live" allocation better.
Tested manually by a third party.
Related: RHBZ 1927877
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
(cherry picked from commit dca565886b)
The conversion loop to the internal encoding does not follow
the interface contract that __GCONV_FULL_OUTPUT is only returned
after the internal wchar_t buffer has been filled completely. This
is enforced by the first of the two asserts in iconv/skeleton.c:
/* We must run out of output buffer space in this
rerun. */
assert (outbuf == outerr);
assert (nstatus == __GCONV_FULL_OUTPUT);
This commit solves this issue by queuing a second wide character
which cannot be written immediately in the state variable, like
other converters already do (e.g., BIG5-HKSCS or TSCII).
Reported-by: Tavis Ormandy <taviso@gmail.com>
(cherry picked from commit 7d88c6142c)
Calling an IFUNC function defined in unrelocated executable also leads to
segfault. Issue a fatal error message when calling IFUNC function defined
in the unrelocated executable from a shared library.
On x86, ifuncmain6pie failed with:
[hjl@gnu-cfl-2 build-i686-linux]$ ./elf/ifuncmain6pie --direct
./elf/ifuncmain6pie: IFUNC symbol 'foo' referenced in '/export/build/gnu/tools-build/glibc-32bit/build-i686-linux/elf/ifuncmod6.so' is defined in the executable and creates an unsatisfiable circular dependency.
[hjl@gnu-cfl-2 build-i686-linux]$ readelf -rW elf/ifuncmod6.so | grep foo
00003ff4 00000706 R_386_GLOB_DAT 0000400c foo_ptr
00003ff8 00000406 R_386_GLOB_DAT 00000000 foo
0000400c 00000401 R_386_32 00000000 foo
[hjl@gnu-cfl-2 build-i686-linux]$
Remove non-JUMP_SLOT relocations against foo in ifuncmod6.so, which
trigger the circular IFUNC dependency, and build ifuncmain6pie with
-Wl,-z,lazy.
(cherry picked from commits 6ea5b57afa
and 7137d682eb)
When copying with "rep movsb", if the distance between source and
destination is N*4GB + [1..63] with N >= 0, performance may be very
slow. This patch updates memmove-vec-unaligned-erms.S for AVX and
AVX512 versions with the distance in RCX:
cmpl $63, %ecx
// Don't use "rep movsb" if ECX <= 63
jbe L(Don't use rep movsb")
Use "rep movsb"
Benchtests data with bench-memcpy, bench-memcpy-large, bench-memcpy-random
and bench-memcpy-walk on Skylake, Ice Lake and Tiger Lake show that its
performance impact is within noise range as "rep movsb" is only used for
data size >= 4KB.
(cherry picked from commit 3ec5d83d2a)