fstatat64 depends on inlining to produce the desired __fxstatat64
call, which does not happen with -Os, leading to a link failure
with an undefined reference to fstatat64. __fxstatat64 has a macro
definition in include/sys/stat.h and thus avoids the problem.
After recent discussions:
- "[PATCH] s390: Remove backchain-based fallback from backtrace"
https://www.sourceware.org/ml/libc-alpha/2020-02/msg00287.html
- "Re: [PATCH 07/11] s390: Implement backtrace on top of <unwind-link.h>"
https://www.sourceware.org/ml/libc-alpha/2020-02/msg00637.html
We've checked and decided to remove the backchain:
We don't know of any environments without libgcc. Thus the backchain
unwinder is not used. If somebody builds with -mbackchain and without
fasynchronous-unwind-tables and has libgcc installed, then the
libgcc unwinder is called but not the backchain-based fallback.
This step allows to get rid of the s390x specific backtrace.c files at all.
Furthermore the now used debug/backtrace.c version has some more
advantages:
- Free all resources if necessary. (libc_freeres_fn)
- Remove NULL address above _start.
- Check whether we make any progress while getting addresses.
Change all of the #! lines in Python scripts that are called from
Makefiles to reference /usr/bin/python3.
All of the scripts called from Makefiles are already run with Python 3,
so let's make sure they are explicitly using Python 3 if called
manually.
The combination of GCC 10 and binutils 2.35 (both unreleased) is no
longer able to link the dynamic linker, due to a GP16 relocation
overflow error:
glibc/alpha-linux-gnu/elf/librtld.os: in function `calloc': glibc/elf/../include/rtld-malloc.h:44:(.text+0xd98): relocation truncated to fit: GPREL16 against symbol `__rtld_calloc' defined in .data.rel.ro section in glibc/alpha-linux-gnu/elf/librtld.os
glibc/alpha-linux-gnu/elf/librtld.os: in function `malloc': glibc/elf/../include/rtld-malloc.h:56:(.text+0x2978): relocation truncated to fit: GPREL16 against symbol `__rtld_malloc' defined in .data.rel.ro section in glibc/alpha-linux-gnu/elf/librtld.os
This is arguably a linker bug; the object files and their section size
requirements look reasonable enough.
Using -fPIC (the default) works around this issue.
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for utime with one which adds extra
support for setting file's access and modification 64 bit time on machines
with __TIMESIZE != 64.
Internally, the __utimensat_time64 helper function is used. This patch is
necessary for having architectures with __WORDSIZE == 32 && __TIMESIZE != 64
Y2038 safe.
Moreover, a 32 bit version - __utime has been refactored to internally use
__utime64.
The __utime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion between struct
utimbuf and struct __utimbuf64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as
without to test proper usage of both __utime64 and __utime.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new __utimes64 explicit 64 bit function for setting file's
64 bit attributes for access and modification time.
Internally, the __utimensat64_helper function is used. This patch is necessary
for having architectures with __WORDSIZE == 32 Y2038 safe.
Moreover, a 32 bit version - __utimes has been refactored to internally use
__utimes64.
The __utimes is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion of struct
timeval to 64 bit struct __timeval64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test proper usage of both __utimes64 and __utimes.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This type is a glibc's "internal" type to store file's access and modification
times in __time64_t rather than __time_t, which makes it Y2038-proof.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Due to the built-in tables, __NR_vfork is always defined, so the
fork-based fallback code is never used.
(It appears that the vfork system call was wired up when the port was
contributed to the kernel.)
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_set_robust_list is always defined
(although it may not be available at run time).
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_getdents64 is always defined,
although it may not be supported at run time.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
With the built-in tables __NR_preadv2 and __NR_pwritev2 are always
defined.
The kernel has never defined __NR_preadv64v2 and __NR_pwritev64v2
and is unlikely to do so, given that the preadv2 and pwritev2 system
calls themselves are 64-bit.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_rt_sigqueueinfo is always defined.
sysdeps/pthread/time_routines.c is not updated because it is shared with
Hurd.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The names __NR_preadv64, __NR_pwritev64 appear to be a glibc invention.
With the built-in tables, __NR_preadv and __NR_pwritev are always defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux removed the last definitions of __NR_pread and __NR_pwrite
in commit 4ba66a9760722ccbb691b8f7116cad2f791cca7b, the removal
of the blackfin port. All architectures now define __NR_pread64 and
__NR_pwrite64 only.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_mq_getsetattr, __NR_mq_notify,
__NR_mq_open, __NR_mq_timedreceive, __NR_mq_timedsend, __NR_mq_unlink
are always defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The history is not used by build-many-glibcs.py itself.
--replace-sources deletes an existing source tree before switching
the version. But some users prefer to have the full history
available, therefore make shallow clones optional with the --shallow
option.
Writable, executable segments defeat security hardening. The
existing check for DT_TEXTREL does not catch this.
hppa and SPARC currently keep the PLT in an RWX load segment.
GCC has moved from using .gnu.linkonce for i386 setup pic register with
minimum current version (as for binutils minimum binutils that support
comdat).
Trying to pinpoint when binutils has added comdat support for i686, it
seems it was around 2004 [1]. I also checking with some ancient
binutils older than 2.16 I see:
test.o: In function `__x86.get_pc_thunk.bx':
test.o(.text.__x86.get_pc_thunk.bx+0x0): multiple definition of `__x86.get_pc_thunk.bx'
/usr/lib/gcc/x86_64-linux-gnu/5/../../../i386-linux-gnu/crti.o(.gnu.linkonce.t.__x86.get_pc_thunk.bx+0x0): first defined here
Which seems that such version can not handle either comdat at all or
a mix of linkonce and comdat. For binutils 2.16.1 I am getting a
different issue trying to link a binary with and more recent
ctri.o (unrecognized relocation (0x2b) in section `.init', which is
R_386_GOT32X and old binutils won't generate it anyway).
So I think that either unlikely someone will use an older binutils than
the one used to glibc and even this scenario may fail with some issue
as the R_386_GOT32X. Also, 2.16.1 is quite old and not really supported
(glibc itself required 2.25).
Checked on i686-linux-gnu.
[1] https://gcc.gnu.org/ml/gcc/2004-05/msg00030.html
For lack of a more comprehensive solution, tack on the ibm128 ABI
compiler options for the totalorder{,mag}l compat tests which exist
prior to enabling this feature.
The functions in the nexttoward family are special, in the sense that
they always have a long double argument, regardless of their suffix
(i.e.: nexttowardf and nexttoward have a long double argument, besides
the float and double arguments).
On top of that, they are also special because nexttoward functions are
not part of the _FloatN API, hence __nexttowardf128 do not exist.
This patch adds 4 new function implementations for the new long double
format:
__nexttoward_to_ieee128
__nexttowardf_to_ieee128
__nexttowardieee128 (as an alias to __nextafterieee128)
Likewise, rename "long double" "_Float128" in shared ldbl-128
files to ensure correct type is used irrespective of ABI
switches.
Thank you to those who helped out with this patch:
Co-Authored-By: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
The API doesn't change, i.e. compilers using a long double format compatible
with the IEEE 128-bit extended precision format are redirected from *l
functions to __*ieee128 symbols using the same mechanism already
used with -mlong-double-64 for complex math functions.
Modify the headers to redirect long double functions to global __*f128
symbols or to __*ieee128 otherwise.
Most of the functions in math.h benefit from the infrastructure already
available for __LDBL_COMPAT. The only exceptions are nexttowardf and
nexttoward that need especial treatment.
Both math/bits/mathcalls-helper-functions.h and math/bits/mathcalls.h
were modified in order to provide alternative redirection destinations
that are essential to support functions that should not be redirected to
the same name pattern of the rest of the functions, i.e.: __fpclassify,
__signbit, __iseqsig, __issignaling, isinf, finite and isnan, which will
be redirected to __*f128 instead of __*ieee128 used for the rest.
The POSIX waitid implementation is problematic in some ways:
- It emulates using waitpid, which default implementation calls
wait4 and wait4 returns ENOSYS as default.
- Also by using waitpid it does not allod support the WNOWAIT,
WEXITED, WSTOPPED, or WCONTINUED flag. With current POSIX
specification the flags are no longer marked as optional.
Also due BZ#23091 Hurd still uses the implementation, so it is moved
to as a Hurd arch-specific folder (with some minor cleanups).
Checked against a i686-gnu (run-built-tests=no)
The main changes are:
- Adapt to libsupport.
- Synchronize the signal handler using atomics.
- Replace waitpid by waitid calls.
- Use support_process_state_wait to wait for child state.
- Add tests for P_PGID and P_ALL.
- Use sigwaitinfo instead of global state set by the signal handler.
Checked on x86_64-linux-gnu and i686-linux-gnu.