Backtrace through _dl_tlsdesc_resolve_rela was broken because the offset
of x30 from cfa was not in the debug info.
Add enough annotation so backtracing from the dynamic linker through
tlsdesc entry points works and the debugger shows registers correctly.
These machine-dependent inline string functions have never been on by
default, and even if they were a good idea at the time they were
introduced, they haven't really been touched in ten to fifteen years
and probably aren't a good idea on current-gen processors. Current
thinking is that this class of optimization is best left to the
compiler.
* bits/string.h, string/bits/string.h
* sysdeps/aarch64/bits/string.h
* sysdeps/m68k/m680x0/m68020/bits/string.h
* sysdeps/s390/bits/string.h, sysdeps/sparc/bits/string.h
* sysdeps/x86/bits/string.h: Delete file.
* string/string.h: Don't include bits/string.h.
* string/bits/string3.h: Rename to bits/string_fortified.h.
No need to undef various symbols that the removed headers
might have defined as macros.
* string/Makefile (headers): Remove bits/string.h, change
bits/string3.h to bits/string_fortified.h.
* string/string-inlines.c: Update commentary. Remove definitions
of various macros that nothing looks at anymore. Don't directly
include bits/string.h. Set _STRING_INLINE_unaligned here, based on
compiler-predefined macros.
* string/strncat.c: If STRNCAT is not defined, or STRNCAT_PRIMARY
_is_ defined, provide internal hidden alias __strncat.
* include/string.h: Declare internal hidden alias __strncat.
Only forward __stpcpy to __builtin_stpcpy if __NO_STRING_INLINES is
not defined.
* include/bits/string3.h: Rename to bits/string_fortified.h,
update to match above.
* sysdeps/i386/string-inlines.c: Define compat symbols for
everything formerly defined by sysdeps/x86/bits/string.h.
Make existing definitions into compat symbols as well.
Remove some no-longer-necessary messing around with macros.
* sysdeps/powerpc/powerpc32/power4/multiarch/mempcpy.c
* sysdeps/powerpc/powerpc64/multiarch/mempcpy.c
* sysdeps/powerpc/powerpc64/multiarch/stpcpy.c
* sysdeps/s390/multiarch/mempcpy.c
No need to define _HAVE_STRING_ARCH_mempcpy.
Do define __NO_STRING_INLINES and NO_MEMPCPY_STPCPY_REDIRECT.
* sysdeps/i386/i686/multiarch/strncat-c.c
* sysdeps/s390/multiarch/strncat-c.c
* sysdeps/x86_64/multiarch/strncat-c.c
Define STRNCAT_PRIMARY. Don't change definition of libc_hidden_def.
ELFv2 functions with localentry:0 are those with a single entry point,
ie. global entry == local entry, that have no requirement on r2 or
r12 and guarantee r2 is unchanged on return. Such an external
function can be called via the PLT without saving r2 or restoring it
on return, avoiding a common load-hit-store for small functions.
This patch implements the ld.so changes necessary for this
optimization. ld.so needs to check that an optimized plt call
sequence is in fact calling a function implemented with localentry:0,
end emit a fatal error otherwise.
The elf/testobj6.c change is to stop "error while loading shared
libraries: expected localentry:0 `preload'" when running
elf/preloadtest, which we'd get otherwise.
* elf/elf.h (PPC64_OPT_LOCALENTRY): Define.
* sysdeps/alpha/dl-machine.h (elf_machine_fixup_plt): Add
refsym and sym parameters. Adjust callers.
* sysdeps/aarch64/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/arm/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/generic/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/hppa/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/i386/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/ia64/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/m68k/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/microblaze/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/mips/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/nios2/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/powerpc/powerpc32/dl-machine.h (elf_machine_fixup_plt):
Likewise.
* sysdeps/s390/s390-32/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/s390/s390-64/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/sh/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/sparc/sparc32/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/sparc/sparc64/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/tile/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/x86_64/dl-machine.h (elf_machine_fixup_plt): Likewise.
* sysdeps/powerpc/powerpc64/dl-machine.c (_dl_error_localentry): New.
(_dl_reloc_overflow): Increase buffser size. Formatting.
* sysdeps/powerpc/powerpc64/dl-machine.h (ppc64_local_entry_offset):
Delete reloc param, add refsym and sym. Check optimized plt
call stubs for localentry:0 functions. Adjust callers.
(elf_machine_fixup_plt, elf_machine_plt_conflict): Add refsym
and sym parameters. Adjust callers.
(_dl_reloc_overflow): Move attribute.
(_dl_error_localentry): Declare.
* elf/dl-runtime.c (_dl_fixup): Save original sym. Pass
refsym and sym to elf_machine_fixup_plt.
* elf/testobj6.c (preload): Call printf.
This patch optimizes the generic spinlock code.
The type pthread_spinlock_t is a typedef to volatile int on all archs.
Passing a volatile pointer to the atomic macros which are not mapped to the
C11 atomic builtins can lead to extra stores and loads to stack if such
a macro creates a temporary variable by using "__typeof (*(mem)) tmp;".
Thus, those macros which are used by spinlock code - atomic_exchange_acquire,
atomic_load_relaxed, atomic_compare_exchange_weak - have to be adjusted.
According to the comment from Szabolcs Nagy, the type of a cast expression is
unqualified (see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_423.htm):
__typeof ((__typeof (*(mem)) *(mem)) tmp;
Thus from spinlock perspective the variable tmp is of type int instead of
type volatile int. This patch adjusts those macros in include/atomic.h.
With this construct GCC >= 5 omits the extra stores and loads.
The atomic macros are replaced by the C11 like atomic macros and thus
the code is aligned to it. The pthread_spin_unlock implementation is now
using release memory order instead of sequentially consistent memory order.
The issue with passed volatile int pointers applies to the C11 like atomic
macros as well as the ones used before.
I've added a glibc_likely hint to the first atomic exchange in
pthread_spin_lock in order to return immediately to the caller if the lock is
free. Without the hint, there is an additional jump if the lock is free.
I've added the atomic_spin_nop macro within the loop of plain reads.
The plain reads are also realized by C11 like atomic_load_relaxed macro.
The new define ATOMIC_EXCHANGE_USES_CAS determines if the first try to acquire
the spinlock in pthread_spin_lock or pthread_spin_trylock is an exchange
or a CAS. This is defined in atomic-machine.h for all architectures.
The define SPIN_LOCK_READS_BETWEEN_CMPXCHG is now removed.
There is no technical reason for throwing in a CAS every now and then,
and so far we have no evidence that it can improve performance.
If that would be the case, we have to adjust other spin-waiting loops
elsewhere, too! Using a CAS loop without plain reads is not a good idea
on many targets and wasn't used by one. Thus there is now no option to
do so.
Architectures are now using the generic spinlock automatically if they
do not provide an own implementation. Thus the pthread_spin_lock.c files
in sysdeps folder are deleted.
ChangeLog:
* NEWS: Mention new spinlock implementation.
* include/atomic.h:
(__atomic_val_bysize): Cast type to omit volatile qualifier.
(atomic_exchange_acq): Likewise.
(atomic_load_relaxed): Likewise.
(ATOMIC_EXCHANGE_USES_CAS): Check definition.
* nptl/pthread_spin_init.c (pthread_spin_init):
Use atomic_store_relaxed.
* nptl/pthread_spin_lock.c (pthread_spin_lock):
Use C11-like atomic macros.
* nptl/pthread_spin_trylock.c (pthread_spin_trylock):
Likewise.
* nptl/pthread_spin_unlock.c (pthread_spin_unlock):
Use atomic_store_release.
* sysdeps/aarch64/nptl/pthread_spin_lock.c: Delete File.
* sysdeps/arm/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/hppa/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/m68k/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/microblaze/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/mips/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/nios2/nptl/pthread_spin_lock.c: Likewise.
* sysdeps/aarch64/atomic-machine.h (ATOMIC_EXCHANGE_USES_CAS): Define.
* sysdeps/alpha/atomic-machine.h: Likewise.
* sysdeps/arm/atomic-machine.h: Likewise.
* sysdeps/i386/atomic-machine.h: Likewise.
* sysdeps/ia64/atomic-machine.h: Likewise.
* sysdeps/m68k/coldfire/atomic-machine.h: Likewise.
* sysdeps/m68k/m680x0/m68020/atomic-machine.h: Likewise.
* sysdeps/microblaze/atomic-machine.h: Likewise.
* sysdeps/mips/atomic-machine.h: Likewise.
* sysdeps/powerpc/powerpc32/atomic-machine.h: Likewise.
* sysdeps/powerpc/powerpc64/atomic-machine.h: Likewise.
* sysdeps/s390/atomic-machine.h: Likewise.
* sysdeps/sparc/sparc32/atomic-machine.h: Likewise.
* sysdeps/sparc/sparc32/sparcv9/atomic-machine.h: Likewise.
* sysdeps/sparc/sparc64/atomic-machine.h: Likewise.
* sysdeps/tile/tilegx/atomic-machine.h: Likewise.
* sysdeps/tile/tilepro/atomic-machine.h: Likewise.
* sysdeps/unix/sysv/linux/hppa/atomic-machine.h: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/atomic-machine.h: Likewise.
* sysdeps/unix/sysv/linux/nios2/atomic-machine.h: Likewise.
* sysdeps/unix/sysv/linux/sh/atomic-machine.h: Likewise.
* sysdeps/x86_64/atomic-machine.h: Likewise.
This patch removes all the replicated pthread definition accross the
architectures and consolidates it on shared headers. The new
organization is as follow:
* Architecture specific definition (such as pthread types sizes) are
place in the new pthreadtypes-arch.h header in arch specific path.
* All shared structure definition are moved to a common NPTL header
at sysdeps/nptl/bits/pthreadtypes.h (with now includes the arch
specific one for internal definitions).
* Also, for C11 future thread support, both mutex and condition
definition are placed in a common header at
sysdeps/nptl/bits/thread-shared-types.h.
It is also a refactor patch without expected functional changes.
Checked with a build for all major ABI (aarch64-linux-gnu, alpha-linux-gnu,
arm-linux-gnueabi, i386-linux-gnu, ia64-linux-gnu,
m68k-linux-gnu, microblaze-linux-gnu, mips{64}-linux-gnu, nios2-linux-gnu,
powerpc{64le}-linux-gnu, s390{x}-linux-gnu, sparc{64}-linux-gnu,
tile{pro,gx}-linux-gnu, and x86_64-linux-gnu).
* posix/Makefile (headers): Add pthreadtypes-arch.h and
thread-shared-types.h.
* sysdeps/aarch64/nptl/bits/pthreadtypes-arch.h: New file: arch
specific thread definition.
* sysdeps/alpha/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/arm/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/hppa/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/powerpc/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/sparc/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/x86/nptl/bits/pthreadtypes-arch.h: Likewise.
* sysdeps/nptl/bits/thread-shared-types.h: New file: shared
thread definition between POSIX and C11.
* sysdeps/aarch64/nptl/bits/pthreadtypes.h.: Remove file.
* sysdeps/alpha/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/arm/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/hppa/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/powerpc/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/sparc/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/x86/nptl/bits/pthreadtypes.h: Likewise.
* sysdeps/nptl/bits/pthreadtypes.h: New file: common thread
definitions shared across all architectures.
This is a new implementation for condition variables, required
after http://austingroupbugs.net/view.php?id=609 to fix bug 13165. In
essence, we need to be stricter in which waiters a signal or broadcast
is required to wake up; this couldn't be solved using the old algorithm.
ISO C++ made a similar clarification, so this also fixes a bug in
current libstdc++, for example.
We can't use the old algorithm anymore because futexes do not guarantee
to wake in FIFO order. Thus, when we wake, we can't simply let any
waiter grab a signal, but we need to ensure that one of the waiters
happening before the signal is woken up. This is something the previous
algorithm violated (see bug 13165).
There's another issue specific to condvars: ABA issues on the underlying
futexes. Unlike mutexes that have just three states, or semaphores that
have no tokens or a limited number of them, the state of a condvar is
the *order* of the waiters. A waiter on a semaphore can grab a token
whenever one is available; a condvar waiter must only consume a signal
if it is eligible to do so as determined by the relative order of the
waiter and the signal.
Therefore, this new algorithm maintains two groups of waiters: Those
eligible to consume signals (G1), and those that have to wait until
previous waiters have consumed signals (G2). Once G1 is empty, G2
becomes the new G1. 64b counters are used to avoid ABA issues.
This condvar doesn't yet use a requeue optimization (ie, on a broadcast,
waking just one thread and requeueing all others on the futex of the
mutex supplied by the program). I don't think doing the requeue is
necessarily the right approach (but I haven't done real measurements
yet):
* If a program expects to wake many threads at the same time and make
that scalable, a condvar isn't great anyway because of how it requires
waiters to operate mutually exclusive (due to the mutex usage). Thus, a
thundering herd problem is a scalability problem with or without the
optimization. Using something like a semaphore might be more
appropriate in such a case.
* The scalability problem is actually at the mutex side; the condvar
could help (and it tries to with the requeue optimization), but it
should be the mutex who decides how that is done, and whether it is done
at all.
* Forcing all but one waiter into the kernel-side wait queue of the
mutex prevents/avoids the use of lock elision on the mutex. Thus, it
prevents the only cure against the underlying scalability problem
inherent to condvars.
* If condvars use short critical sections (ie, hold the mutex just to
check a binary flag or such), which they should do ideally, then forcing
all those waiter to proceed serially with kernel-based hand-off (ie,
futex ops in the mutex' contended state, via the futex wait queues) will
be less efficient than just letting a scalable mutex implementation take
care of it. Our current mutex impl doesn't employ spinning at all, but
if critical sections are short, spinning can be much better.
* Doing the requeue stuff requires all waiters to always drive the mutex
into the contended state. This leads to each waiter having to call
futex_wake after lock release, even if this wouldn't be necessary.
[BZ #13165]
* nptl/pthread_cond_broadcast.c (__pthread_cond_broadcast): Rewrite to
use new algorithm.
* nptl/pthread_cond_destroy.c (__pthread_cond_destroy): Likewise.
* nptl/pthread_cond_init.c (__pthread_cond_init): Likewise.
* nptl/pthread_cond_signal.c (__pthread_cond_signal): Likewise.
* nptl/pthread_cond_wait.c (__pthread_cond_wait): Likewise.
(__pthread_cond_timedwait): Move here from pthread_cond_timedwait.c.
(__condvar_confirm_wakeup, __condvar_cancel_waiting,
__condvar_cleanup_waiting, __condvar_dec_grefs,
__pthread_cond_wait_common): New.
(__condvar_cleanup): Remove.
* npt/pthread_condattr_getclock.c (pthread_condattr_getclock): Adapt.
* npt/pthread_condattr_setclock.c (pthread_condattr_setclock):
Likewise.
* npt/pthread_condattr_getpshared.c (pthread_condattr_getpshared):
Likewise.
* npt/pthread_condattr_init.c (pthread_condattr_init): Likewise.
* nptl/tst-cond1.c: Add comment.
* nptl/tst-cond20.c (do_test): Adapt.
* nptl/tst-cond22.c (do_test): Likewise.
* sysdeps/aarch64/nptl/bits/pthreadtypes.h (pthread_cond_t): Adapt
structure.
* sysdeps/arm/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/x86/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/nptl/internaltypes.h (COND_NWAITERS_SHIFT): Remove.
(COND_CLOCK_BITS): Adapt.
* sysdeps/nptl/pthread.h (PTHREAD_COND_INITIALIZER): Adapt.
* nptl/pthreadP.h (__PTHREAD_COND_CLOCK_MONOTONIC_MASK,
__PTHREAD_COND_SHARED_MASK): New.
* nptl/nptl-printers.py (CLOCK_IDS): Remove.
(ConditionVariablePrinter, ConditionVariableAttributesPrinter): Adapt.
* nptl/nptl_lock_constants.pysym: Adapt.
* nptl/test-cond-printers.py: Adapt.
* sysdeps/unix/sysv/linux/hppa/internaltypes.h (cond_compat_clear,
cond_compat_check_and_clear): Adapt.
* sysdeps/unix/sysv/linux/hppa/pthread_cond_timedwait.c: Remove file ...
* sysdeps/unix/sysv/linux/hppa/pthread_cond_wait.c
(__pthread_cond_timedwait): ... and move here.
* nptl/DESIGN-condvar.txt: Remove file.
* nptl/lowlevelcond.sym: Likewise.
* nptl/pthread_cond_timedwait.c: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S: Likewise.
Information about whether the ABI of long double is the same as that
of double is split between bits/mathdef.h and bits/wordsize.h.
When the ABIs are the same, bits/mathdef.h defines
__NO_LONG_DOUBLE_MATH. In addition, in the case where the same glibc
binary supports both -mlong-double-64 and -mlong-double-128,
bits/wordsize.h defines __LONG_DOUBLE_MATH_OPTIONAL, along with
__NO_LONG_DOUBLE_MATH if this particular compilation is with
-mlong-double-64.
As part of the refactoring I proposed in
<https://sourceware.org/ml/libc-alpha/2016-11/msg00745.html>, this
patch puts all that information in a single header,
bits/long-double.h. It is included from sys/cdefs.h alongside the
include of bits/wordsize.h, so other headers generally do not need to
include bits/long-double.h directly.
Previously, various bits/mathdef.h headers and bits/wordsize.h headers
had this long double information (including implicitly in some
bits/mathdef.h headers through not having the defines present in the
default version). After the patch, it's all in six bits/long-double.h
headers. Furthermore, most of those new headers are not
architecture-specific. Architectures with optional long double all
use the ldbl-opt sysdeps directory, either in the order (ldbl-64-128,
ldbl-opt, ldbl-128) or (ldbl-128ibm, ldbl-opt). Thus a generic header
for the case where long double = double, and headers in ldbl-128,
ldbl-96 and ldbl-opt, suffices to cover every architecture except for
cases where long double properties vary between different ABIs sharing
a set of installed headers; fortunately all the ldbl-opt cases share a
single compiler-predefined macro __LONG_DOUBLE_128__ that can be used
to tell whether this compilation is -mlong-double-64 or
-mlong-double-128.
The two cases where a set of headers is shared between ABIs with
different long double properties, MIPS (o32 has long double = double,
other ABIs use ldbl-128) and SPARC (32-bit has optional long double,
64-bit has required long double), need their own bits/long-double.h
headers.
As with bits/wordsize.h, multiple-include protection for this header
is generally implicit through the include guards on sys/cdefs.h, and
multiple inclusion is harmless in any case. There is one subtlety:
the header must not define __LONG_DOUBLE_MATH_OPTIONAL if
__NO_LONG_DOUBLE_MATH was defined before its inclusion, because doing
so breaks how sysdeps/ieee754/ldbl-opt/nldbl-compat.h defines
__NO_LONG_DOUBLE_MATH itself before including system headers. Subject
to keeping that working, it would be reasonable to move these macros
from defined/undefined #ifdef to always-defined 1/0 #if semantics, but
this patch does not attempt to do so, just rearranges where the macros
are defined.
After this patch, the only use of bits/mathdef.h is the alpha one for
modifying complex function ABIs for old GCC. Thus, all versions of
the header other than the default and alpha versions are removed, as
is the include from math.h.
Tested for x86_64 and x86. Also did compilation-only testing with
build-many-glibcs.py.
* bits/long-double.h: New file.
* sysdeps/ieee754/ldbl-128/bits/long-double.h: Likewise.
* sysdeps/ieee754/ldbl-96/bits/long-double.h: Likewise.
* sysdeps/ieee754/ldbl-opt/bits/long-double.h: Likewise.
* sysdeps/mips/bits/long-double.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/long-double.h: Likewise.
* math/Makefile (headers): Add bits/long-double.h.
* misc/sys/cdefs.h: Include <bits/long-double.h>.
* stdlib/strtold.c: Include <bits/long-double.h> instead of
<bits/wordsize.h>.
* bits/mathdef.h [!_COMPLEX_H]: Do not allow inclusion.
[!__NO_LONG_DOUBLE_MATH]: Remove conditional code.
* math/math.h: Do not include <bits/mathdef.h>.
* sysdeps/aarch64/bits/mathdef.h: Remove file.
* sysdeps/alpha/bits/mathdef.h [!_COMPLEX_H]: Do not allow
inclusion.
* sysdeps/ia64/bits/mathdef.h: Remove file.
* sysdeps/m68k/m680x0/bits/mathdef.h: Likewise.
* sysdeps/mips/bits/mathdef.h: Likewise.
* sysdeps/powerpc/bits/mathdef.h: Likewise.
* sysdeps/s390/bits/mathdef.h: Likewise.
* sysdeps/sparc/bits/mathdef.h: Likewise.
* sysdeps/x86/bits/mathdef.h: Likewise.
* sysdeps/s390/s390-32/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]: Remove
conditional code.
* sysdeps/s390/s390-64/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
Continuing the refactoring of bits/mathdef.h, this patch stops it
defining FP_ILOGB0 and FP_ILOGBNAN, moving the required information to
a new header bits/fp-logb.h.
There are only two possible values of each of those macros permitted
by ISO C. TS 18661-1 adds corresponding macros for llogb, and their
values are required to correspond to those of the ilogb macros in the
obvious way. Thus two boolean values - for which the same choices are
correct for most architectures - suffice to determine the value of all
these macros, and by defining macros for those boolean values in
bits/fp-logb.h we can then define the public FP_* macros in math.h and
avoid the present duplication of the associated feature test macro
logic.
This patch duly moves to bits/fp-logb.h defining __FP_LOGB0_IS_MIN and
__FP_LOGBNAN_IS_MIN. Default definitions of those to 0 are correct
for both architectures, while ia64, m68k and x86 get their own
versions of bits/fp-logb.h to reflect their use of values different
from the defaults.
The patch renders many copies of bits/mathdef.h trivial (needed only
to avoid the default __NO_LONG_DOUBLE_MATH). I'll revise
<https://sourceware.org/ml/libc-alpha/2016-11/msg00865.html>
accordingly so that it removes all bits/mathdef.h headers except the
default one and the alpha one, and arranges for the header to be
included only by complex.h as the only remaining use at that point
will be for the alpha ABI issues there.
Tested for x86_64 and x86. Also did compile-only testing with
build-many-glibcs.py (using glibc sources from before the commit that
introduced many build failures with undefined __GI___sigsetjmp).
* bits/fp-logb.h: New file.
* sysdeps/ia64/bits/fp-logb.h: Likewise.
* sysdeps/m68k/m680x0/bits/fp-logb.h: Likewise.
* sysdeps/x86/bits/fp-logb.h: Likewise.
* math/Makefile (headers): Add bits/fp-logb.h.
* math/math.h: Include <bits/fp-logb.h>.
[__USE_ISOC99] (FP_ILOGB0): Define based on __FP_LOGB0_IS_MIN.
[__USE_ISOC99] (FP_ILOGBNAN): Define based on __FP_LOGBNAN_IS_MIN.
* bits/mathdef.h (FP_ILOGB0): Remove.
(FP_ILOGBNAN): Likewise.
* sysdeps/aarch64/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/alpha/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/ia64/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/m68k/m680x0/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/mips/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/powerpc/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/s390/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/sparc/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
* sysdeps/x86/bits/mathdef.h (FP_ILOGB0): Likewise.
(FP_ILOGBNAN): Likewise.
Continuing the refactoring of bits/mathdef.h, this patch moves the
FP_FAST_* definitions into a new bits/fp-fast.h header. Currently
this is only for FP_FAST_FMA*, but in future it would be the
appropriate place for the FP_FAST_* macros from TS 18661-1 as well.
The generic bits/mathdef.h header defines these macros based on
whether the compiler defines __FP_FAST_*. Most architecture-specific
headers, however, fail to do so, meaning that if the architecture (or
some particular processors) does in fact have fused operations, and
GCC knows to use them inline, the FP_FAST_* macros will still not be
defined.
By refactoring, this patch causes the generic version (based on
__FP_FAST_*) to be used in more cases, and so the macro definitions to
be more accurate. Architectures that already defined some or all of
these macros other than based on the predefines have their own
versions of fp-fast.h, which are arranged so they define FP_FAST_* if
either the architecture-specific conditions are true or __FP_FAST_*
are defined.
After this refactoring, various bits/mathdef.h headers for
architectures with long double = double are semantically identical to
the generic version. The patch removes those headers that are
redundant. (In fact two of the four removed were already redundant
before this patch because they did use __FP_FAST_*.)
Tested for x86_64 and x86, and compilation-only with
build-many-glibcs.py.
* bits/fp-fast.h: New file.
* sysdeps/aarch64/bits/fp-fast.h: Likewise.
* sysdeps/powerpc/bits/fp-fast.h: Likewise.
* math/Makefile (headers): Add bits/fp-fast.h.
* math/math.h: Include <bits/fp-fast.h>.
* bits/mathdef.h (FP_FAST_FMA): Remove.
(FP_FAST_FMAF): Likewise.
(FP_FAST_FMAL): Likewise.
* sysdeps/aarch64/bits/mathdef.h (FP_FAST_FMA): Likewise.
(FP_FAST_FMAF): Likewise.
* sysdeps/powerpc/bits/mathdef.h (FP_FAST_FMA): Likewise.
(FP_FAST_FMAF): Likewise.
* sysdeps/x86/bits/mathdef.h (FP_FAST_FMA): Likewise.
(FP_FAST_FMAF): Likewise.
(FP_FAST_FMAL): Likewise.
* sysdeps/arm/bits/mathdef.h: Remove file.
* sysdeps/hppa/fpu/bits/mathdef.h: Likewise.
* sysdeps/sh/sh4/bits/mathdef.h: Likewise.
* sysdeps/tile/bits/mathdef.h: Likewise.
This patch remove the PID cache and usage in current GLIBC code. Current
usage is mainly used a performance optimization to avoid the syscall,
however it adds some issues:
- The exposed clone syscall will try to set pid/tid to make the new
thread somewhat compatible with current GLIBC assumptions. This cause
a set of issue with new workloads and usecases (such as BZ#17214 and
[1]) as well for new internal usage of clone to optimize other algorithms
(such as clone plus CLONE_VM for posix_spawn, BZ#19957).
- The caching complexity also added some bugs in the past [2] [3] and
requires more effort of each port to handle such requirements (for
both clone and vfork implementation).
- Caching performance gain in mainly on getpid and some specific
code paths. The getpid performance leverage is questionable [4],
either by the idea of getpid being a hotspot as for the getpid
implementation itself (if it is indeed a justifiable hotspot a
vDSO symbol could let to a much more simpler solution).
Other usage is mainly for non usual code paths, such as pthread
cancellation signal and handling.
For thread creation (on stack allocation) the code simplification in fact
adds some performance gain due the no need of transverse the stack cache
and invalidate each element pid.
Other thread usages will require a direct getpid syscall, such as
cancellation/setxid signal, thread cancellation, thread fail path (at
create_thread), and thread signal (pthread_kill and pthread_sigqueue).
However these are hardly usual hotspots and I think adding a syscall is
justifiable.
It also simplifies both the clone and vfork arch-specific implementation.
And by review each fork implementation there are some discrepancies that
this patch also solves:
- microblaze clone/vfork does not set/reset the pid/tid field
- hppa uses the default vfork implementation that fallback to fork.
Since vfork is deprecated I do not think we should bother with it.
The patch also removes the TID caching in clone. My understanding for
such semantic is try provide some pthread usage after a user program
issue clone directly (as done by thread creation with CLONE_PARENT_SETTID
and pthread tid member). However, as stated before in multiple discussions
threads, GLIBC provides clone syscalls without further supporting all this
semantics.
I ran a full make check on x86_64, x32, i686, armhf, aarch64, and powerpc64le.
For sparc32, sparc64, and mips I ran the basic fork and vfork tests from
posix/ folder (on a qemu system). So it would require further testing
on alpha, hppa, ia64, m68k, nios2, s390, sh, and tile (I excluded microblaze
because it is already implementing the patch semantic regarding clone/vfork).
[1] https://codereview.chromium.org/800183004/
[2] https://sourceware.org/ml/libc-alpha/2006-07/msg00123.html
[3] https://sourceware.org/bugzilla/show_bug.cgi?id=15368
[4] http://yarchive.net/comp/linux/getpid_caching.html
* sysdeps/nptl/fork.c (__libc_fork): Remove pid cache setting.
* nptl/allocatestack.c (allocate_stack): Likewise.
(__reclaim_stacks): Likewise.
(setxid_signal_thread): Obtain pid through syscall.
* nptl/nptl-init.c (sigcancel_handler): Likewise.
(sighandle_setxid): Likewise.
* nptl/pthread_cancel.c (pthread_cancel): Likewise.
* sysdeps/unix/sysv/linux/pthread_kill.c (__pthread_kill): Likewise.
* sysdeps/unix/sysv/linux/pthread_sigqueue.c (pthread_sigqueue):
Likewise.
* sysdeps/unix/sysv/linux/createthread.c (create_thread): Likewise.
* sysdeps/unix/sysv/linux/getpid.c: Remove file.
* nptl/descr.h (struct pthread): Change comment about pid value.
* nptl/pthread_getattr_np.c (pthread_getattr_np): Remove thread
pid assert.
* sysdeps/unix/sysv/linux/pthread-pids.h (__pthread_initialize_pids):
Do not set pid value.
* nptl_db/td_ta_thr_iter.c (iterate_thread_list): Remove thread
pid cache check.
* nptl_db/td_thr_validate.c (td_thr_validate): Likewise.
* sysdeps/aarch64/nptl/tcb-offsets.sym: Remove pid offset.
* sysdeps/alpha/nptl/tcb-offsets.sym: Likewise.
* sysdeps/arm/nptl/tcb-offsets.sym: Likewise.
* sysdeps/hppa/nptl/tcb-offsets.sym: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym: Likewise.
* sysdeps/ia64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/m68k/nptl/tcb-offsets.sym: Likewise.
* sysdeps/microblaze/nptl/tcb-offsets.sym: Likewise.
* sysdeps/mips/nptl/tcb-offsets.sym: Likewise.
* sysdeps/nios2/nptl/tcb-offsets.sym: Likewise.
* sysdeps/powerpc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/s390/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sh/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sparc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/tile/nptl/tcb-offsets.sym: Likewise.
* sysdeps/x86_64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/unix/sysv/linux/aarch64/clone.S: Remove pid and tid caching.
* sysdeps/unix/sysv/linux/alpha/clone.S: Likewise.
* sysdeps/unix/sysv/linux/arm/clone.S: Likewise.
* sysdeps/unix/sysv/linux/hppa/clone.S: Likewise.
* sysdeps/unix/sysv/linux/i386/clone.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/clone2.S: Likewise.
* sysdeps/unix/sysv/linux/mips/clone.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sh/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/tile/clone.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/aarch64/vfork.S: Remove pid set and reset.
* sysdeps/unix/sysv/linux/alpha/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/arm/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/i386/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/clone.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/mips/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sh/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tile/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tst-clone2.c (f): Remove direct pthread
struct access.
(clone_test): Remove function.
(do_test): Rewrite to take in consideration pid is not cached anymore.
At present, definitions of float_t and double_t are split among many
bits/mathdef.h headers.
For all but three architectures, these types are float and double.
Furthermore, if you assume __FLT_EVAL_METHOD__ to be defined, that
provides a more generic way of determining the correct values of these
typedefs. Defining these typedefs more generally based on
__FLT_EVAL_METHOD__ was previously proposed by Paul Eggert in
<https://sourceware.org/ml/libc-alpha/2012-02/msg00002.html>.
This patch refactors things in the way I proposed in
<https://sourceware.org/ml/libc-alpha/2016-11/msg00745.html>. A new
header bits/flt-eval-method.h defines a single macro,
__GLIBC_FLT_EVAL_METHOD, which is then used by math.h to define
float_t and double_t. The default is based on __FLT_EVAL_METHOD__
(although actually a default to 0 would have the same effect for
current ports, because ports where values other than 0 or 16 are
possible all have their own headers).
To avoid changing the existing semantics in any case, including for
compilers not defining __FLT_EVAL_METHOD__, architecture-specific
files are then added for m68k, s390, x86 which replicate the existing
semantics. At least with __FLT_EVAL_METHOD__ values possible with
GCC, there should be no change to the choices of float_t and double_t
for any supported configuration.
Architecture maintainer notes:
* m68k: sysdeps/m68k/m680x0/bits/flt-eval-method.h always defines
__GLIBC_FLT_EVAL_METHOD to 2 to replicate the existing logic. But
actually GCC defines __FLT_EVAL_METHOD__ to 0 if TARGET_68040. It
might make sense to make the header prefer to base things on
__FLT_EVAL_METHOD__ if defined, like the x86 version, and so make
the choices of these types more accurate (with a NEWS entry as for
the other changes to these types on particular architectures).
* s390: sysdeps/s390/bits/flt-eval-method.h always defines
__GLIBC_FLT_EVAL_METHOD to 1 to replicate the existing logic. As
previously discussed, it might make sense in coordination with GCC
to eliminate the historic mistake, avoid excess precision in the
-fexcess-precision=standard case and make the typedefs match (with a
NEWS entry, again).
Tested for x86-64 and x86. Also did compilation-only testing with
build-many-glibcs.py.
* bits/flt-eval-method.h: New file.
* sysdeps/m68k/m680x0/bits/flt-eval-method.h: Likewise.
* sysdeps/s390/bits/flt-eval-method.h: Likewise.
* sysdeps/x86/bits/flt-eval-method.h: Likewise.
* math/Makefile (headers): Add bits/flt-eval-method.h.
* math/math.h: Include <bits/flt-eval-method.h>.
[__USE_ISOC99] (float_t): Define based on __GLIBC_FLT_EVAL_METHOD.
[__USE_ISOC99] (double_t): Likewise.
* bits/mathdef.h (float_t): Remove.
(double_t): Likewise.
* sysdeps/aarch64/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/alpha/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/arm/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/hppa/fpu/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/ia64/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/m68k/m680x0/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/mips/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/powerpc/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/s390/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/sh/sh4/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/sparc/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/tile/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
* sysdeps/x86/bits/mathdef.h (float_t): Likewise.
(double_t): Likewise.
manual/libm-err-tab.pl hardcodes a list of names for particular
platforms (mapping from sysdeps directory name to friendly name for
the manual). This goes against the principle of keeping information
about individual platforms in their corresponding sysdeps directory,
and the list is also very out-of-date regarding supported platforms
and their corresponding sysdeps directories.
This patch fixes this by adding a libm-test-ulps-name file alongside
each libm-test-ulps file. The script then gets the friendly name from
that file, which is required to exist, so it no longer needs to allow
for the mapping being missing.
Tested for x86_64.
[BZ #14139]
* manual/libm-err-tab.pl (%pplatforms): Initialize to empty.
(find_files): Obtain platform name from libm-test-ulps-name and
store in %pplatforms.
(canonicalize_platform): Remove.
(print_platforms): Use $pplatforms directly.
(by_platforms): Do not allow for platforms missing from
%pplatforms.
* sysdeps/aarch64/libm-test-ulps-name: New file.
* sysdeps/alpha/fpu/libm-test-ulps-name: Likewise.
* sysdeps/arm/libm-test-ulps-name: Likewise.
* sysdeps/generic/libm-test-ulps-name: Likewise.
* sysdeps/hppa/fpu/libm-test-ulps-name: Likewise.
* sysdeps/i386/fpu/libm-test-ulps-name: Likewise.
* sysdeps/i386/i686/fpu/multiarch/libm-test-ulps-name: Likewise.
* sysdeps/ia64/fpu/libm-test-ulps-name: Likewise.
* sysdeps/m68k/coldfire/fpu/libm-test-ulps-name: Likewise.
* sysdeps/m68k/m680x0/fpu/libm-test-ulps-name: Likewise.
* sysdeps/microblaze/libm-test-ulps-name: Likewise.
* sysdeps/mips/mips32/libm-test-ulps-name: Likewise.
* sysdeps/mips/mips64/libm-test-ulps-name: Likewise.
* sysdeps/nios2/libm-test-ulps-name: Likewise.
* sysdeps/powerpc/fpu/libm-test-ulps-name: Likewise.
* sysdeps/powerpc/nofpu/libm-test-ulps-name: Likewise.
* sysdeps/s390/fpu/libm-test-ulps-name: Likewise.
* sysdeps/sh/libm-test-ulps-name: Likewise.
* sysdeps/sparc/fpu/libm-test-ulps-name: Likewise.
* sysdeps/tile/libm-test-ulps-name: Likewise.
* sysdeps/x86_64/fpu/libm-test-ulps-name: Likewise.
strchr and is significantly faster than the C version.
2016-11-04 Wilco Dijkstra <wdijkstr@arm.com>
Kevin Petit <kevin.petit@arm.com>
* sysdeps/aarch64/memchr.S (__memchr): New file.
This patch adds AArch64 versions of fegetmode and fesetmode.
Untested.
* sysdeps/aarch64/fpu/fegetmode.c: New file.
* sysdeps/aarch64/fpu/fesetmode.c: Likewise.
TS 18661-1 defines a type femode_t to represent the set of dynamic
floating-point control modes (such as the rounding mode and trap
enablement modes), and functions fegetmode and fesetmode to manipulate
those modes (without affecting other state such as the raised
exception flags) and a corresponding macro FE_DFL_MODE.
This patch series implements those interfaces for glibc. This first
patch adds the architecture-independent pieces, the x86 and x86_64
implementations, and the <bits/fenv.h> and ABI baseline updates for
all architectures so glibc keeps building and passing the ABI tests on
all architectures. Subsequent patches add the fegetmode and fesetmode
implementations for other architectures.
femode_t is generally an integer type - the same type as fenv_t, or as
the single element of fenv_t where fenv_t is a structure containing a
single integer (or the single relevant element, where it has elements
for both status and control registers) - except where architecture
properties or consistency with the fenv_t implementation indicate
otherwise. FE_DFL_MODE follows FE_DFL_ENV in whether it's a magic
pointer value (-1 cast to const femode_t *), a value that can be
distinguished from valid pointers by its high bits but otherwise
contains a representation of the desired register contents, or a
pointer to a constant variable (the powerpc case; __fe_dfl_mode is
added as an exported constant object, an alias to __fe_dfl_env).
Note that where architectures (that share a register between control
and status bits) gain definitions of new floating-point control or
status bits in future, the implementations of fesetmode for those
architectures may need updating (depending on whether the new bits are
control or status bits and what the implementation does with
previously unknown bits), just like existing implementations of
<fenv.h> functions that take care not to touch reserved bits may need
updating when the set of reserved bits changes. (As any new bits are
outside the scope of ISO C, that's just a quality-of-implementation
issue for supporting them, not a conformance issue.)
As with fenv_t, femode_t should properly include any software DFP
rounding mode (and for both fenv_t and femode_t I'd consider that
fragment of DFP support appropriate for inclusion in glibc even in the
absence of the rest of libdfp; hardware DFP rounding modes should
already be included if the definitions of which bits are status /
control bits are correct).
Tested for x86_64, x86, mips64 (hard float, and soft float to test the
fallback version), arm (hard float) and powerpc (hard float, soft
float and e500). Other architecture versions are untested.
* math/fegetmode.c: New file.
* math/fesetmode.c: Likewise.
* sysdeps/i386/fpu/fegetmode.c: Likewise.
* sysdeps/i386/fpu/fesetmode.c: Likewise.
* sysdeps/x86_64/fpu/fegetmode.c: Likewise.
* sysdeps/x86_64/fpu/fesetmode.c: Likewise.
* math/fenv.h: Update comment on inclusion of <bits/fenv.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fegetmode): New function
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fesetmode): Likewise.
* bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (femode_t): New
typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/aarch64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/alpha/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/arm/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/hppa/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/ia64/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/m68k/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/microblaze/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/mips/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/nios2/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/powerpc/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (__fe_dfl_mode): New variable
declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/s390/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sh/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/sparc/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/tile/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* sysdeps/x86/fpu/bits/fenv.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(femode_t): New typedef.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FE_DFL_MODE): New macro.
* manual/arith.texi (FE_DFL_MODE): Document macro.
(fegetmode): Document function.
(fesetmode): Likewise.
* math/Versions (fegetmode): New libm symbol at version
GLIBC_2.25.
(fesetmode): Likewise.
* math/Makefile (libm-support): Add fegetmode and fesetmode.
(tests): Add test-femode and test-femode-traps.
* math/test-femode-traps.c: New file.
* math/test-femode.c: Likewise.
* sysdeps/powerpc/fpu/fenv_const.c (__fe_dfl_mode): Declare as
alias for __fe_dfl_env.
* sysdeps/powerpc/nofpu/fenv_const.c (__fe_dfl_mode): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/fenv_const.c
(__fe_dfl_mode): Likewise.
* sysdeps/powerpc/Versions (__fe_dfl_mode): New libm symbol at
version GLIBC_2.25.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
This partly reverts commit f8238ae3c7
that regenerated the ulps, to make the max ulps good for gcc-5,
gcc-6 and gcc-trunk as well.
* sysdeps/aarch64/libm-test-ulps: Updated.
When glibc is built with --enable-profile, the ENTRY of
asm functions includes CALL_MCOUNT for profiling.
(matters for binaries static linked against libc_p.a.)
CALL_MCOUNT did not save/restore argument registers
around the _mcount call so it clobbered them.
(it is enough to only save/restore the arguments passed
to a given asm function, but that would be too many asm
changes so it is simpler to always save all argument
registers in this macro.)
float args are not saved: mcount does not clobber the
float regs and currently no asm function takes float
arguments anyway.
[BZ #18707]
* sysdeps/aarch64/Makefile (CFLAGS-mcount.c): Add -mgeneral-regs-only.
* sysdeps/aarch64/sysdep.h (CALL_MCOUNT): Save argument registers.
atomic_compare_and_exchange_bool_rel and
catomic_compare_and_exchange_bool_rel are removed and replaced with the
new C11-like atomic_compare_exchange_weak_release. The concurrent code
in nscd/cache.c has not been reviewed yet, so this patch does not add
detailed comments.
* nscd/cache.c (cache_add): Use new C11-like atomic operation instead
of atomic_compare_and_exchange_bool_rel.
* nptl/pthread_mutex_unlock.c (__pthread_mutex_unlock_full): Likewise.
* include/atomic.h (atomic_compare_and_exchange_bool_rel,
catomic_compare_and_exchange_bool_rel): Remove.
* sysdeps/aarch64/atomic-machine.h
(atomic_compare_and_exchange_bool_rel): Likewise.
* sysdeps/alpha/atomic-machine.h
(atomic_compare_and_exchange_bool_rel): Likewise.
* sysdeps/arm/atomic-machine.h
(atomic_compare_and_exchange_bool_rel): Likewise.
* sysdeps/mips/atomic-machine.h
(atomic_compare_and_exchange_bool_rel): Likewise.
* sysdeps/tile/atomic-machine.h
(atomic_compare_and_exchange_bool_rel): Likewise.
is the fastest way to search for '\0'. Otherwise use memchr with an infinite
size. This is 3x faster on benchtests for large sizes. Passes GLIBC tests.
* sysdeps/aarch64/rawmemchr.S (__rawmemchr): New file.
* sysdeps/aarch64/strlen.S (__strlen): Change to __strlen to avoid PLT.
cases: small copies of up to 16 bytes, medium copies of 17..96 bytes which are
fully unrolled. Large copies of more than 96 bytes align the destination and
use an unrolled loop processing 64 bytes per iteration. In order to share code
with memmove, small and medium copies read all data before writing, allowing
any kind of overlap. All memmoves except for the large backwards case fall
into memcpy for optimal performance. On a random copy test memcpy/memmove are
40% faster on Cortex-A57 and 28% on Cortex-A53.
* sysdeps/aarch64/memcpy.S (memcpy):
Rewrite of optimized memcpy and memmove.
* sysdeps/aarch64/memmove.S (memmove): Remove
memmove code (merged into memcpy.S).
small sets of up to 16 bytes, medium of 16..96 bytes which are fully unrolled.
Large memsets of more than 96 bytes align the destination and use an unrolled
loop processing 64 bytes per iteration. Memsets of zero of more than 256 use
the dc zva instruction, and there are faster versions for the common ZVA sizes
64 or 128. STP of Q registers is used to reduce codesize without loss of
performance.
The speedup on test-memset is 1% on Cortex-A57 and 8% on Cortex-A53.
* sysdeps/aarch64/memset.S (__memset):
Rewrite of optimized memset.
As discussed in
https://sourceware.org/ml/libc-alpha/2015-10/msg00403.html
the setting of _STRING_ARCH_unaligned currently controls the external
GLIBC ABI as well as selecting the use of unaligned accesses withing
GLIBC.
Since _STRING_ARCH_unaligned was recently changed for AArch64, this
would potentially break the ABI in GLIBC 2.23, so split the uses and add
_STRING_INLINE_unaligned to select the string ABI. This setting must be
fixed for each target, while _STRING_ARCH_unaligned may be changed from
release to release. _STRING_ARCH_unaligned is used unconditionally in
glibc. But <bits/string.h>, which defines _STRING_ARCH_unaligned, isn't
included with -Os. Since _STRING_ARCH_unaligned is internal to glibc and
may change between glibc releases, it should be made private to glibc.
_STRING_ARCH_unaligned should defined in the new string_private.h heade
file which is included unconditionally from internal <string.h> for glibc
build.
[BZ #19462]
* bits/string.h (_STRING_ARCH_unaligned): Renamed to ...
(_STRING_INLINE_unaligned): This.
* include/string.h: Include <string_private.h>.
* string/bits/string2.h: Replace _STRING_ARCH_unaligned with
_STRING_INLINE_unaligned.
* sysdeps/aarch64/bits/string.h (_STRING_ARCH_unaligned): Removed.
(_STRING_INLINE_unaligned): New.
* sysdeps/aarch64/string_private.h: New file.
* sysdeps/generic/string_private.h: Likewise.
* sysdeps/m68k/m680x0/m68020/string_private.h: Likewise.
* sysdeps/s390/string_private.h: Likewise.
* sysdeps/x86/string_private.h: Likewise.
* sysdeps/m68k/m680x0/m68020/bits/string.h
(_STRING_ARCH_unaligned): Renamed to ...
(_STRING_INLINE_unaligned): This.
* sysdeps/s390/bits/string.h (_STRING_ARCH_unaligned): Renamed
to ...
(_STRING_INLINE_unaligned): This.
* sysdeps/sparc/bits/string.h (_STRING_ARCH_unaligned): Renamed
to ...
(_STRING_INLINE_unaligned): This.
* sysdeps/x86/bits/string.h (_STRING_ARCH_unaligned): Renamed
to ...
(_STRING_INLINE_unaligned): This.
It was noted in
<https://sourceware.org/ml/libc-alpha/2012-09/msg00305.html> that the
bits/*.h naming scheme should only be used for installed headers.
This patch renames bits/atomic.h to atomic-machine.h to follow that
convention.
This is the only change in this series that needs to change the
filename rather than simply removing a directory level (because both
atomic.h and bits/atomic.h exist at present).
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch).
[BZ #14912]
* sysdeps/aarch64/bits/atomic.h: Move to ...
* sysdeps/aarch64/atomic-machine.h: ...here.
(_AARCH64_BITS_ATOMIC_H): Rename macro to
_AARCH64_ATOMIC_MACHINE_H.
* sysdeps/alpha/bits/atomic.h: Move to ...
* sysdeps/alpha/atomic-machine.h: ...here.
* sysdeps/arm/bits/atomic.h: Move to ...
* sysdeps/arm/atomic-machine.h: ...here. Update comments.
* bits/atomic.h: Move to ...
* sysdeps/generic/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/i386/bits/atomic.h: Move to ...
* sysdeps/i386/atomic-machine.h: ...here.
* sysdeps/ia64/bits/atomic.h: Move to ...
* sysdeps/ia64/atomic-machine.h: ...here.
* sysdeps/m68k/coldfire/bits/atomic.h: Move to ...
* sysdeps/m68k/coldfire/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/m68k/m680x0/m68020/bits/atomic.h: Move to ...
* sysdeps/m68k/m680x0/m68020/atomic-machine.h: ...here.
* sysdeps/microblaze/bits/atomic.h: Move to ...
* sysdeps/microblaze/atomic-machine.h: ...here.
* sysdeps/mips/bits/atomic.h: Move to ...
* sysdeps/mips/atomic-machine.h: ...here.
(_MIPS_BITS_ATOMIC_H): Rename macro to _MIPS_ATOMIC_MACHINE_H.
* sysdeps/powerpc/bits/atomic.h: Move to ...
* sysdeps/powerpc/atomic-machine.h: ...here. Update comments.
* sysdeps/powerpc/powerpc32/bits/atomic.h: Move to ...
* sysdeps/powerpc/powerpc32/atomic-machine.h: ...here. Update
comments. Include <atomic-machine.h> instead of <bits/atomic.h>.
* sysdeps/powerpc/powerpc64/bits/atomic.h: Move to ...
* sysdeps/powerpc/powerpc64/atomic-machine.h: ...here. Include
<atomic-machine.h> instead of <bits/atomic.h>.
* sysdeps/s390/bits/atomic.h: Move to ...
* sysdeps/s390/atomic-machine.h: ...here.
* sysdeps/sparc/sparc32/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc32/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/sparc/sparc32/sparcv9/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc32/sparcv9/atomic-machine.h: ...here.
* sysdeps/sparc/sparc64/bits/atomic.h: Move to ...
* sysdeps/sparc/sparc64/atomic-machine.h: ...here.
* sysdeps/tile/bits/atomic.h: Move to ...
* sysdeps/tile/atomic-machine.h: ...here.
* sysdeps/tile/tilegx/bits/atomic.h: Move to ...
* sysdeps/tile/tilegx/atomic-machine.h: ...here. Include
<sysdeps/tile/atomic-machine.h> instead of
<sysdeps/tile/bits/atomic.h>.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/tile/tilepro/bits/atomic.h: Move to ...
* sysdeps/tile/tilepro/atomic-machine.h: ...here. Include
<sysdeps/tile/atomic-machine.h> instead of
<sysdeps/tile/bits/atomic.h>.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/arm/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/arm/atomic-machine.h: ...here. Include
<sysdeps/arm/atomic-machine.h> instead of
<sysdeps/arm/bits/atomic.h>.
* sysdeps/unix/sysv/linux/hppa/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/hppa/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/m68k/coldfire/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/m68k/coldfire/atomic-machine.h: ...here.
(_BITS_ATOMIC_H): Rename macro to _ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/nios2/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/nios2/atomic-machine.h: ...here.
(_NIOS2_BITS_ATOMIC_H): Rename macro to _NIOS2_ATOMIC_MACHINE_H.
* sysdeps/unix/sysv/linux/sh/bits/atomic.h: Move to ...
* sysdeps/unix/sysv/linux/sh/atomic-machine.h: ...here.
* sysdeps/x86_64/bits/atomic.h: Move to ...
* sysdeps/x86_64/atomic-machine.h: ...here.
* include/atomic.h: Include <atomic-machine.h> instead of
<bits/atomic.h>.
It was noted in
<https://sourceware.org/ml/libc-alpha/2012-09/msg00305.html> that the
bits/*.h naming scheme should only be used for installed headers.
This patch renames bits/linkmap.h to plain linkmap.h to follow that
convention.
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch).
[BZ #14912]
* bits/linkmap.h: Move to ...
* sysdeps/generic/linkmap.h: ...here.
* sysdeps/aarch64/bits/linkmap.h: Move to ...
* sysdeps/aarch64/linkmap.h: ...here.
* sysdeps/arm/bits/linkmap.h: Move to ...
* sysdeps/arm/linkmap.h: ...here.
* sysdeps/hppa/bits/linkmap.h: Move to ...
* sysdeps/hppa/linkmap.h: ...here.
* sysdeps/ia64/bits/linkmap.h: Move to ...
* sysdeps/ia64/linkmap.h: ...here.
* sysdeps/mips/bits/linkmap.h: Move to ...
* sysdeps/mips/linkmap.h: ...here.
* sysdeps/s390/bits/linkmap.h: Move to ...
* sysdeps/s390/linkmap.h: ...here.
* sysdeps/sh/bits/linkmap.h: Move to ...
* sysdeps/sh/linkmap.h: ...here.
* sysdeps/x86/bits/linkmap.h: Move to ...
* sysdeps/x86/linkmap.h: ...here.
* include/link.h: Include <linkmap.h> instead of <bits/linkmap.h>.
It uses the same logic as the ARM version. The common case removes 1 FPSR
and 1 FPCR read. For FE_DFL_ENV and FE_NOMASK_ENV a FPCR read is avoided in
case the FPCR does not change.