Commit 67385a01d2 added a new feature for
powerpc, where we store HWCAP/Platform bits in the TCB. In the dynamic
linking case, we use the versioned symbol
'__parse_hwcap_and_convert_at_platform' to verify if this feature is
available. However, the same symbol was not exported to libc.a, making
it not possible for GCC to check for it prior to link time.
This fixes build when _IO_funlockfile is a macro, fixes build where
_IO_acquire_lock_clear_flags2 is used, and fixes unlocking on unexpected
stack unwind.
* sysdeps/generic/stdio-lock.h [__EXCEPTIONS] (_IO_acquire_lock,
_IO_release_lock ): Use cleanup attribute on new
_IO_acquire_lock_file variable instead of assuming that
_IO_release_lock will be called.
[!__EXCEPTIONS] (_IO_acquire_lock): Define to non-existing
_IO_acquire_lock_needs_exceptions_enabled.
(_IO_acquire_lock_clear_flags2): New macro.
* malloc/arena.c (list_lock): Document lock ordering requirements.
(free_list_lock): New lock.
(ptmalloc_lock_all): Comment on free_list_lock.
(ptmalloc_unlock_all2): Reinitialize free_list_lock.
(detach_arena): Update comment. free_list_lock is now needed.
(_int_new_arena): Use free_list_lock around detach_arena call.
Acquire arena lock after list_lock. Add comment, including FIXME
about incorrect synchronization.
(get_free_list): Switch to free_list_lock.
(reused_arena): Acquire free_list_lock around detach_arena call
and attached threads counter update. Add two FIXMEs about
incorrect synchronization.
(arena_thread_freeres): Switch to free_list_lock.
* malloc/malloc.c (struct malloc_state): Update comments to
mention free_list_lock.
Like the previous change, exploit the fact that computation for sin
and cos is identical except that it is apart by a quadrant. Also
remove csloww, csloww1 and csloww2 since they can easily be expressed
in terms of sloww, sloww1 and sloww2.
The sin and cos computation for this range of input is identical
except for a difference in quadrants by 1. Exploit that fact and the
common argument reduction to reduce computations for sincos.
Range reduction needs to be done only once for sin and cos, so copy
over all of the relevant functions (__sin, __cos, reduce_and_compute)
and consolidate common code.
The i386 ULPs are actually the i686/multiarch ones. The i686/multiarch
float ULPs are more precise as the SSE2 version (when available) uses
double for the cosf and sinf functions.
On the other hand the higher precision of the x86 FPU improves the
precision for a few other math functions.
* sysdeps/i386/fpu/libm-test-ulps: Move to ....
* sysdeps/i386/i686/multiarch/fpu/libm-test-ulps: ...here.
* sysdeps/i386/fpu/libm-test-ulps: Regenerate.
It shows improvement up to 28% over AVX2 memset (performance results
attached at <https://sourceware.org/ml/libc-alpha/2015-12/msg00052.html>).
* sysdeps/x86_64/multiarch/memset-avx512-no-vzeroupper.S: New file.
* sysdeps/x86_64/multiarch/Makefile (sysdep_routines): Added new file.
* sysdeps/x86_64/multiarch/ifunc-impl-list.c: Added new tests.
* sysdeps/x86_64/multiarch/memset.S: Added new IFUNC branch.
* sysdeps/x86_64/multiarch/memset_chk.S: Likewise.
* sysdeps/x86/cpu-features.h (bit_Prefer_No_VZEROUPPER,
index_Prefer_No_VZEROUPPER): New.
* sysdeps/x86/cpu-features.c (init_cpu_features): Set the
Prefer_No_VZEROUPPER for Knights Landing.
This patch fixes the SYSCALL_CANCEL macro for usage with zero argument
number (for instance SYSCALL_CANCEL (pause)) using a similar approach
used for SOCKETCALL_CANCEL.
GLIBC build still does not hit this issue still since SYSCALL_CANCEL
is not currently being used for zero arguments calls.
Tested on i386, x86_64, powerpc64le, aarch64.
* sysdeps/unix/sysdep.h (SYSCALL_CANCEL): Fix macro for zero argument
syscalls.
(__SYSCALL0): New macro.
(__SYSCALL1): Likewise.
(__SYSCALL2): Likewise.
(__SYSCALL3): Likewise.
(__SYSCALL4): Likewise.
(__SYSCALL5): Likewise.
(__SYSCALL6): Likewise.
(__SYSCALL7): Likewise.
(__SYSCALL_CONCAT_X): Likewise.
(__SYSCALL_CONCAT): Likewise.
(__SYSCALL_DIST): Likewise.
(__SYSCALL_CALL): Likewise.
Since times returns 64-bit clock_t on x32, we need to provide x32 times
by redefining INTERNAL_SYSCALL_NCS and INTERNAL_SYSCALL_ERROR_P with
64-bit return type for syscall. All system calls returning 64-bit
integer, which are lseek, time and times, must be handled specially for
x32. lseek is handled by x32 lseek.S and time doesn't check syscall
return. times is the only missed one. Before this patch, there are
0000000 <__times>:
0: b8 64 00 00 40 mov $0x40000064,%eax
5: 0f 05 syscall
7: 48 63 d0 movslq %eax,%rdx
^^^^^^^^^^ Incorrect signed extension
a: 48 83 fa f2 cmp $0xfffffffffffffff2,%rdx
e: 75 07 jne 17 <__times+0x17>
10: 3d 00 f0 ff ff cmp $0xfffff000,%eax
^^^^^^^^^^^^^^^^^^^^^ 32-bit compare
15: 77 11 ja 28 <__times+0x28>
17: 48 83 fa ff cmp $0xffffffffffffffff,%rdx
1b: b8 00 00 00 00 mov $0x0,%eax
20: 48 0f 45 c2 cmovne %rdx,%rax
24: c3 retq
After this patch, there are
00000000 <__times>:
0: b8 64 00 00 40 mov $0x40000064,%eax
5: 0f 05 syscall
7: 48 83 f8 f2 cmp $0xfffffffffffffff2,%rax
b: 75 08 jne 15 <__times+0x15>
d: 48 3d 00 f0 ff ff cmp $0xfffffffffffff000,%rax
13: 77 13 ja 28 <__times+0x28>
15: 48 83 f8 ff cmp $0xffffffffffffffff,%rax
19: ba 00 00 00 00 mov $0x0,%edx
1e: 48 0f 44 c2 cmove %rdx,%rax
22: c3 retq
The incorrect signed extension and 32-bit compare are gone.
[BZ #19363]
* sysdeps/unix/sysv/linux/x86_64/x32/times.c: New file.
The optimized POWER7 logb implementation does not use the absolute
value of the word extracted from the input to apply the leading 0-bits
builtin (to ignore the float sign). This patch fixes it by
clearing the signal bit in the resulting word.
It fixes the subnormal tests failures when running on POWER7 ou
newer chip.
Tested on powerpc64le (POWER8).
[BZ# 19375]
* sysdeps/powerpc/power7/fpu/s_logb.c (__logb): Fix return for
negative subnormals.
X86-64 system calls use a different calling convention, which clobbers
CC, %r11 an %rcx registers. Define REGISTERS_CLOBBERED_BY_SYSCALL for
x86-64 inline asm statements.
* sysdeps/unix/sysv/linux/x86_64/sysdep.h
(REGISTERS_CLOBBERED_BY_SYSCALL): New.
(INTERNAL_SYSCALL_NCS): Use it.
(INTERNAL_SYSCALL_NCS_TYPES): Likewise.
reused_arena can increase the attached thread count of arenas on the
free list. This means that the assertion that the reference count is
zero is incorrect. In this case, the reference count initialization
is incorrect as well and could cause arenas to be put on the free
list too early (while they still have attached threads).
* malloc/arena.c (get_free_list): Remove assert and adjust
reference count handling. Add comment about reused_arena
interaction.
(reused_arena): Add comments abount get_free_list interaction.
* malloc/tst-malloc-thread-exit.c: New file.
* malloc/Makefile (tests): Add tst-malloc-thread-exit.
(tst-malloc-thread-exit): Link against libpthread.
According to Silvermont software optimization guide, for 64-bit
applications, branch prediction performance can be negatively impacted
when the target of a branch is more than 4GB away from the branch. Add
the Prefer_MAP_32BIT_EXEC bit so that mmap will try to map executable
pages with MAP_32BIT first. NB: MAP_32BIT will map to lower 2GB, not
lower 4GB, address. Prefer_MAP_32BIT_EXEC reduces bits available for
address space layout randomization (ASLR), which is always disabled for
SUID programs and can only be enabled by setting environment variable,
LD_PREFER_MAP_32BIT_EXEC.
On Fedora 23, this patch speeds up GCC 5 testsuite by 3% on Silvermont.
[BZ #19367]
* sysdeps/unix/sysv/linux/wordsize-64/mmap.c: New file.
* sysdeps/unix/sysv/linux/x86_64/64/dl-librecon.h: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/mmap.c: Likewise.
* sysdeps/x86/cpu-features.h (bit_Prefer_MAP_32BIT_EXEC): New.
(index_Prefer_MAP_32BIT_EXEC): Likewise.
Knights Landing processor is based on Silvermont. This patch enables
Silvermont optimizations for Knights Landing.
* sysdeps/x86/cpu-features.c (init_cpu_features): Enable
Silvermont optimizations for Knights Landing.
Various Linux kernel syscalls have become obsolete over time.
Specifically, the following are obsolete in all kernel versions
supported by glibc, are not present for architectures more recently
added to the kernel, and as such, the wrapper functions for them
should be compat symbols, not in static libc and not available for new
links with shared libc.
* bdflush: in Linux 2.6, does nothing if present.
* create_module get_kernel_syms query_module: Linux 2.4 module
interface, syscalls not present in Linux 2.6.
* uselib: part of the mechanism for loading a.out shared libraries,
irrelevant with ELF.
This patch adds support for syscalls.list to list syscall aliases of
the form NAME@VERSION:OBSOLETED, with SHLIB_COMPAT conditionals being
generated for such aliases. Those five syscalls are then made into
compat symbols (obsoleted in glibc 2.23, so future ports won't have
these symbols at all), with the header <sys/kdaemon.h> declaring
bdflush being removed. When we move to 3.2 as minimum kernel version,
the same can be done for nfsservctl (removed in Linux 3.1) as well.
Tested for x86_64 and x86 (testsuite, as well as checking that the
symbols in question indeed become compat symbols, that they are indeed
omitted from static libc, and that the generated SHLIB_COMPAT
conditionals look right).
[BZ #18472]
* sysdeps/unix/Makefile ($(objpfx)stub-syscalls.c): Handle entries
for the form NAME@VERSION:OBSOLETED and generate SHLIB_COMPAT
conditionals for them.
* sysdeps/unix/make-syscalls.sh (emit_weak_aliases): Likewise.
* sysdeps/unix/sysv/linux/sys/kdaemon.h: Remove file.
* sysdeps/unix/sysv/linux/Makefile (sysdep_headers): Remove
sys/kdaemon.h.
* sysdeps/unix/sysv/linux/syscalls.list (bdflush): Make into
compat-only syscall, obsoleted in glibc 2.23.
(create_module): Likewise.
(get_kernel_syms): Likewise.
(query_module): Likewise.
(uselib): Likewise.
* manual/sysinfo.texi (System Parameters): Do not mention bdflush.
This patch makes the automation of Unicode LC_CTYPE generation also
support generating the modified LC_CTYPE used for Turkish (where case
conversions of 'i' and 'I' differ from ASCII conventions), so allowing
that to be more readily kept in sync for future Unicode updates. The
patch includes the locale update generated by the scripts.
Tested for x86_64.
[BZ #18491]
* unicode-gen/unicode_utils.py (to_upper_turkish): New function.
(to_lower_turkish): Likewise.
* unicode-gen/gen_unicode_ctype.py (output_tables): Support
producing output with Turkish case conversions.
(--turkish): New command-line option.
* unicode-gen/Makefile (GENERATED): Add tr_TR.
(tr_TR): New rule.
* locales/tr_TR: Regenerate LC_CTYPE.
According to POSIX the grantpt() function does the following:
The grantpt() function shall change the mode and ownership of the
slave pseudo-terminal device associated with its master
pseudo-terminal counterpart. The fildes argument is a file descriptor
that refers to a master pseudo-terminal device. The user ID of the
slave shall be set to the real UID of the calling process and the
group ID shall be set to an unspecified group ID. The permission
mode of the slave pseudo-terminal shall be set to readable and
writable by the owner, and writable by the group.
Historically the GNU libc has been responsible to setup the permission
mode to 0620 and the group to 'tty' usually number 5, using the pt_chown
helper, badly known for its security issues. With the creation of the
devpts filesytem in the Linux kernel, this responsibility has been moved
to the Linux kernel. The system is responsible to mount the devpts
filesystem in /dev/pts with the options gid=5 and mode=0620. In that
case the GNU libc has nothing to do and pt_chown is not need anymore. So
far so good.
The problem is that by default the devpts filesystem is shared between
all mounts, and that contrary to other filesystem, the mount options are
honored at the second mount, including for the default mount options.
Given it corresponds to mode=0600 without gid parameter (that is the
filesystem GID of the creating process), it's common to see systems
where the devpts filesystem is mounted using these options. It is enough
to run a "mount -t devpts devpts /mychroot/dev/pts" to come into this
situation, and it's unfortunately wrongly used in a lot of scripts
dealing with chroots, or for creating virtual machines images.
When this happens the GNU libc tries to fix the group and permission
mode of the pty nodes, and given it fails to do so for non-root users,
grantpt() almost always fail. It means users are not able to open new
terminals.
This patch changes grantpt() to not enforce this anymore, while still
enforcing minimum security measures to the permission mode. Therefore
the responsibility to follow POSIX is now shared at the system level,
i.e. kernel + system scripts + GNU libc. It stops trying to change the
group, and makes the pty node readable and writable by the owner, and
writable by the group only when originally writable and when the group
is the tty one.
As a result, on a system wrongly mounted with gid=0 and mode=0600, the
pty nodes won't be accessible by the tty group, but the grantpt()
function will succeed and users will have a working system. The system
is not fully POSIX compliant (which might be an admin choice to default
to "mesg n" mode), but the GNU libc is not to blame here, as without the
pt_chown helper it can't do anything.
With this patch there should not be any reason left to build the GNU
libc with the --enable-pt_chown configure option on a GNU/Linux system.
* manual/examples/strncat.c: Remove.
This example was misleading, as the code would have undefined
behavior if "hello" was longer than SIZE. Anyway, the manual
shouldn't encourage strncpy+strncat for this sort of thing.
* manual/string.texi (Copying Strings and Arrays): Split into
three sections Copying Strings and Arrays, Concatenating Strings,
and Truncating Strings, as this section was way too long. All
cross-referenced changed. Add advice about string-truncation
functions. Remove misleading strncat example.
NSS modules which can run in disconnected modes should
return NSS_STATUS_NOTFOUND and SUCCESS in order to follow
best practice for such modules and ensure user applications
can have these modules configured without causing problems
if the data sources are not connected.
Update __STDC_ISO_10646__ to 201505L for Unicode 8.0.0.
Update character encoding, ctype, and transliteration tables.
New scripts autogenerate transliteration tables.
- Remove duplicate transliterations for U+0152 and U+0153 from
C-translit.h.in.
- Change Ö U+00D6 LATIN CAPITAL LETTER O WITH STROKE → O
(instead of → OE)
- Change ö U+00F6 LATIN SMALL LETTER O WITH STROKE → o
(instead of → oe)
- Add ₹ U+20B9 INDIAN RUPEE SIGN → INR
- Add ₫ U+20AB DONG SIGN → Dong (in addition to "₫ → Đồng")
- Add many others from
http://unicode.org/cldr/trac/browser/trunk/common/transforms/Latin-ASCII.xml
- Add some more currency signs suggested by Marko Myllynen
- Add another patch with more characters by Marko Myllynen
The ldbl-128ibm implementation of logl is inaccurate for arguments
near 1, because when deciding whether to bypass a series expansion for
log(1+z), where z = x-1, it compares the square of z rather than z
itself with an epsilon value. This patch fixes that comparison, so
eliminating the test failures for inaccuracy of logl in such cases.
Tested for powerpc.
[BZ #19351]
* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): When
expanding log(1+z), compare z rather than its square with epsilon
to determine when to avoid evaluating the expansion.
The ldbl-128ibm implementation of sinhl uses a slightly too small
overflow threshold (similar to bug 16407 for coshl). This patch fixes
it to use a safe threshold (so that values whose high part is above
the value compared with definitely result in an overflow in all
rounding modes).
Tested for powerpc.
[BZ #19350]
* sysdeps/ieee754/ldbl-128ibm/e_sinhl.c (__ieee754_sinhl):
Increase overflow threshold.
The ldbl-128ibm implementation of tanhl is inaccurate for small
arguments, because it returns x*(1+x) (maybe in an attempt to raise
"inexact") when x itself would be the accurate return value but
multiplying by 1+x introduces large errors. This patch fixes it to
return x in that case (when the mathematical result is x plus a
negligible remainder on the order of x^3) to avoid those errors.
Tested for powerpc.
[BZ #19349]
* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Return argument
when small.
Now that we have __ASSUME_* macros for direct socket syscalls to use
them instead of socketcall when they can be assumed to be available on
socketcall architectures, this patch defines those macros when
appropriate for i386, m68k, microblaze and sh (for 4.3, 4.3, all
supported kernels and 2.6.37, respectively; the only use of socketcall
support on microblaze is it allows accept4 and sendmmsg to be
supported on a wider range of kernel versions).
David, it seems that 32-bit SPARC is the only architecture supported
by glibc that still lacks these direct syscalls. It would be good to
get them added to the SPARC kernel so we can eventually eliminate
socketcall support in glibc (and thereby just use entries in
sysdeps/unix/syscalls.list for most of these functions) when we can
assume new-enough kernels.
Tested for i386 (testsuite, and that installed shared libraries are
unchanged by this patch - not using a new enough kernel, so this
doesn't actually test much, but the i386 and m68k code is essentially
the same as that already in use for s390).
* sysdeps/unix/sysv/linux/i386/kernel-features.h
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SOCKET_SYSCALL):
New macro.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_SOCKETPAIR_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_BIND_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_CONNECT_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_LISTEN_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_ACCEPT4_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_ACCEPT4_FOR_ACCEPT_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_GETSOCKOPT_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_SETSOCKOPT_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_GETSOCKNAME_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_GETPEERNAME_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SENDTO_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_SENDTO_FOR_SEND_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SENDMSG_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_RECVFROM_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_RECVFROM_FOR_RECV_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_RECVMSG_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SHUTDOWN_SYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/m68k/kernel-features.h
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_RECVMMSG_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SENDMMSG_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SOCKET_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_SOCKETPAIR_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_BIND_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_CONNECT_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_LISTEN_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_ACCEPT4_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_ACCEPT4_FOR_ACCEPT_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_GETSOCKOPT_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_SETSOCKOPT_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_GETSOCKNAME_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_GETPEERNAME_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SENDTO_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_SENDTO_FOR_SEND_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SENDMSG_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_RECVFROM_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300]
(__ASSUME_RECVFROM_FOR_RECV_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_RECVMSG_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x040300] (__ASSUME_SHUTDOWN_SYSCALL):
Likewise.
* sysdeps/unix/sysv/linux/microblaze/kernel-features.h
(__ASSUME_SOCKET_SYSCALL): Likewise.
(__ASSUME_BIND_SYSCALL): Likewise.
(__ASSUME_CONNECT_SYSCALL): Likewise.
(__ASSUME_LISTEN_SYSCALL): Likewise.
(__ASSUME_ACCEPT_SYSCALL): Likewise.
(__ASSUME_GETSOCKNAME_SYSCALL): Likewise.
(__ASSUME_GETPEERNAME_SYSCALL): Likewise.
(__ASSUME_SOCKETPAIR_SYSCALL): Likewise.
(__ASSUME_SEND_SYSCALL): Likewise.
(__ASSUME_SENDTO_SYSCALL): Likewise.
(__ASSUME_RECV_SYSCALL): Likewise.
(__ASSUME_RECVFROM_SYSCALL): Likewise.
(__ASSUME_SHUTDOWN_SYSCALL): Likewise.
(__ASSUME_GETSOCKOPT_SYSCALL): Likewise.
(__ASSUME_SETSOCKOPT_SYSCALL): Likewise.
(__ASSUME_SENDMSG_SYSCALL): Likewise.
(__ASSUME_RECVMSG_SYSCALL): Likewise.
* sysdeps/unix/sysv/linux/sh/kernel-features.h
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_SOCKET_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_BIND_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_CONNECT_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_LISTEN_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_ACCEPT_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625]
(__ASSUME_GETSOCKNAME_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625]
(__ASSUME_GETPEERNAME_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625]
(__ASSUME_SOCKETPAIR_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_SEND_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_SENDTO_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_RECV_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_RECVFROM_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_SHUTDOWN_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625]
(__ASSUME_GETSOCKOPT_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625]
(__ASSUME_SETSOCKOPT_SYSCALL): Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_SENDMSG_SYSCALL):
Likewise.
[__LINUX_KERNEL_VERSION >= 0x020625] (__ASSUME_RECVMSG_SYSCALL):
Likewise.
On MIPS when the toolchain is using the O32 FPXX ABI, the testsuite
fails to build for pre-R2 CPU.
It assumes that it is possible to use the -mfp64 option to build
tst-abi-fp64amod and tst-abi-fp64mod, while this requires a CPU which
supports the mfhc1 and mthc1 instructions, ie at least a R2 CPU:
error: '-mgp32' and '-mfp64' can only be combined if the target
supports the mfhc1 and mthc1 instructions
The same way it assumes that it is possible to use the -modd-spreg option
to build tst-abi-fpxxomod and tst-abi-fp64mod, while this requires at
least a R1 CPU:
warning: the 'mips2' architecture does not support odd
single-precision registers
This patches changes that by checking the usability of -mfp64 and
-modd-spreg options in configure, and disable those tests when they can
not be used.
Commit cf06a4e3 removed test-xfail-POSIX2008/unistd.h/linknamespace, but
left one basename namespace issue in grantpt. However this issue is not
visible with the default configuration buy only when configure is passed
the --enable-pt_chown option.
The ffs and ffsll functions were listed as math functions when they
are actually defined in strings.h and string.h respectively. Shuffle
around the Makefile variables a bit and make a separate space for ffs
and ffsll.
The sincos benchmark has only about a dozen inputs that don't measure
the impact of changes to various passes. Since much of the code
properties are inherited from sin and cos, copy those inputs in to get
more comprehensive coverage.
This patch allows to use x86_64 vector math functions with GCC 6.*
without OpenMP SIMD constructs. For additional details please visit
<https://sourceware.org/glibc/wiki/libmvec#Example_2>.
* sysdeps/x86/fpu/bits/math-vector.h: W/o -fopenmp declare vector math
functions with GCC 6.* __attribute__ ((__simd__)).
* manual/string.texi (Copying and Concatenation): Fix typos in
sample implementations of strncat and wcsncat, by having them use
the old value of the destination length, not the new one.
The nan, nanf and nanl functions handle payload strings by doing e.g.:
if (tagp[0] != '\0')
{
char buf[6 + strlen (tagp)];
sprintf (buf, "NAN(%s)", tagp);
return strtod (buf, NULL);
}
This is an unbounded stack allocation based on the length of the
argument. Furthermore, if the argument starts with an n-char-sequence
followed by ')', that n-char-sequence is wrongly treated as
significant for determining the payload of the resulting NaN, when ISO
C says the call should be equivalent to strtod ("NAN", NULL), without
being affected by that initial n-char-sequence. This patch fixes both
those problems by using the __strtod_nan etc. functions recently
factored out of strtod etc. for that purpose, with those functions
being exported from libc at version GLIBC_PRIVATE.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16961]
[BZ #16962]
* math/s_nan.c (__nan): Use __strtod_nan instead of constructing a
string on the stack for strtod.
* math/s_nanf.c (__nanf): Use __strtof_nan instead of constructing
a string on the stack for strtof.
* math/s_nanl.c (__nanl): Use __strtold_nan instead of
constructing a string on the stack for strtold.
* stdlib/Versions (libc): Add __strtof_nan, __strtod_nan and
__strtold_nan to GLIBC_PRIVATE.
* math/test-nan-overflow.c: New file.
* math/test-nan-payload.c: Likewise.
* math/Makefile (tests): Add test-nan-overflow and
test-nan-payload.
* manual/string.texi (String and Array Utilities):
Distinguish more carefully among bytes, multibyte characters,
and wide characters. Use "byte" when talking about C 'char',
to distinguish it more clearly from multibyte characters.
Say "wide character" or "multibyte character" instead of
"character", when a wide or multibyte character is intended.
Similarly for "multibyte string" versus "string".
Define these terms more carefully.