-z combreloc has been the default regadless of the architecture since
binutils commit f4d733664aabd7bd78c82895e030ec9779a92809 (2002). The
configure check added in commit fdde83499a (2001) has long been
unneeded.
We can therefore treat HAVE_Z_COMBRELOC as always 1 and delete dead code
paths in dl-machine.h files (many were copied from commit a711b01d34
and ee0cb67ec2).
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Prelinked binaries and libraries still work, the dynamic tags
DT_GNU_PRELINKED, DT_GNU_LIBLIST, DT_GNU_CONFLICT just ignored
(meaning the process is reallocated as default).
The loader environment variable TRACE_PRELINKING is also removed,
since it used solely on prelink.
Checked on x86_64-linux-gnu, i686-linux-gnu, and aarch64-linux-gnu.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
It is not Hurd-specific, but H.J. Lu wants it there.
Also, dc.a can be used to avoid hardcoding .long vs .quad and thus use
the same implementation for i386 and x86_64.
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 7061 files FOO.
I then removed trailing white space from math/tgmath.h,
support/tst-support-open-dev-null-range.c, and
sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following
obscure pre-commit check failure diagnostics from Savannah. I don't
know why I run into these diagnostics whereas others evidently do not.
remote: *** 912-#endif
remote: *** 913:
remote: *** 914-
remote: *** error: lines with trailing whitespace found
...
remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
407765e9f2 ("hurd: Fix ELF_MACHINE_USER_ADDRESS_MASK value") switched
ELF_MACHINE_USER_ADDRESS_MASK from 0xf8000000UL to 0xf0000000UL to let
libraries etc. get loaded at 0x08000000. But
ELF_MACHINE_USER_ADDRESS_MASK is actually only meaningful for the main
program anyway, so keep it at 0xf8000000UL to prevent the program loader
from putting ld.so beyond 0x08000000. And conversely, drop the use of
ELF_MACHINE_USER_ADDRESS_MASK for shared objects, which don't need any
constraints since the program will have already be loaded by then.
And use machine-sp.h instead. The Linux implementation is based on
already provided CURRENT_STACK_FRAME (used on nptl code) and
STACK_GROWS_UPWARD is replaced with _STACK_GROWS_UP.
It consolidates the code required to call la_pltexit audit
callback.
Checked on x86_64-linux-gnu, i686-linux-gnu, and aarch64-linux-gnu.
Reviewed-by: Florian Weimer <fweimer@redhat.com>
hurd initialization stages use RUN_HOOK to run various initialization
functions. That is however using absolute addresses which need to be
relocated, which is done later by csu. We can however easily make the
linker compute relative addresses which thus don't need a relocation.
The new SET_RELHOOK and RUN_RELHOOK macros implement this.
The error handling is moved to sysdeps/ieee754 version with no SVID
support. The compatibility symbol versions still use the wrapper with
SVID error handling around the new code. There is no new symbol version
nor compatibility code on !LIBM_SVID_COMPAT targets (e.g. riscv).
Only ia64 is unchanged, since it still uses the arch specific
__libm_error_region on its implementation.
Checked on x86_64-linux-gnu, i686-linux-gnu, and aarch64-linux-gnu.
The generic hypotf is slight slower, mostly due the tricks the assembly
does to optimize the isinf/isnan/issignaling. The generic hypot is way
slower, since the optimized implementation uses the i386 default
excessive precision to issue the operation directly. A similar
implementation is provided instead of using the generic implementation:
Checked on i686-linux-gnu.
Replace non-UTF-8 and non-ASCII characters in comments with their UTF-8
equivalents so that files don't end up with mixed encodings. With this,
all files (except tests that actually test different encodings) have a
single encoding.
Signed-off-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
TLS_INIT_TCB_ALIGN is not actually used. TLS_TCB_ALIGN was likely
introduced to support a configuration where the thread pointer
has not the same alignment as THREAD_SELF. Only ia64 seems to use
that, but for the stack/pointer guard, not for storing tcbhead_t.
Some ports use TLS_TCB_OFFSET and TLS_PRE_TCB_SIZE to shift
the thread pointer, potentially landing in a different residue class
modulo the alignment, but the changes should not impact that.
In general, given that TLS variables have their own alignment
requirements, having different alignment for the (unshifted) thread
pointer and struct pthread would potentially result in dynamic
offsets, leading to more complexity.
hppa had different values before: __alignof__ (tcbhead_t), which
seems to be 4, and __alignof__ (struct pthread), which was 8
(old default) and is now 32. However, it defines THREAD_SELF as:
/* Return the thread descriptor for the current thread. */
# define THREAD_SELF \
({ struct pthread *__self; \
__self = __get_cr27(); \
__self - 1; \
})
So the thread pointer points after struct pthread (hence __self - 1),
and they have to have the same alignment on hppa as well.
Similarly, on ia64, the definitions were different. We have:
# define TLS_PRE_TCB_SIZE \
(sizeof (struct pthread) \
+ (PTHREAD_STRUCT_END_PADDING < 2 * sizeof (uintptr_t) \
? ((2 * sizeof (uintptr_t) + __alignof__ (struct pthread) - 1) \
& ~(__alignof__ (struct pthread) - 1)) \
: 0))
# define THREAD_SELF \
((struct pthread *) ((char *) __thread_self - TLS_PRE_TCB_SIZE))
And TLS_PRE_TCB_SIZE is a multiple of the struct pthread alignment
(confirmed by the new _Static_assert in sysdeps/ia64/libc-tls.c).
On m68k, we have a larger gap between tcbhead_t and struct pthread.
But as far as I can tell, the port is fine with that. The definition
of TCB_OFFSET is sufficient to handle the shifted TCB scenario.
This fixes commit 23c77f6018
("nptl: Increase default TCB alignment to 32").
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
No bug.
This commit adds support for __memcmpeq() as a new ABI for all
targets. In this commit __memcmpeq() is implemented only as an alias
to the corresponding targets memcmp() implementation. __memcmpeq() is
added as a new symbol starting with GLIBC_2.35 and defined in string.h
with comments explaining its behavior. Basic tests that it is callable
and works where added in string/tester.c
As discussed in the proposal "Add new ABI '__memcmpeq()' to libc"
__memcmpeq() is essentially a reserved namespace for bcmp(). The means
is shares the same specifications as memcmp() except the return value
for non-equal byte sequences is any non-zero value. This is less
strict than memcmp()'s return value specification and can be better
optimized when a boolean return is all that is needed.
__memcmpeq() is meant to only be called by compilers if they can prove
that the return value of a memcmp() call is only used for its boolean
value.
All tests in string/tester.c passed. As well build succeeds on
x86_64-linux-gnu target.
The 4af6982e4c fix does not fully handle RTLD_BOOTSTRAP usage on
rtld.c due two issues:
1. RTLD_BOOTSTRAP is also used on dl-machine.h on various
architectures and it changes the semantics of various machine
relocation functions.
2. The elf_get_dynamic_info() change was done sideways, previously
to 490e6c62aa get-dynamic-info.h was included by the first
dynamic-link.h include *without* RTLD_BOOTSTRAP being defined.
It means that the code within elf_get_dynamic_info() that uses
RTLD_BOOTSTRAP is in fact unused.
To fix 1. this patch now includes dynamic-link.h only once with
RTLD_BOOTSTRAP defined. The ELF_DYNAMIC_RELOCATE call will now have
the relocation fnctions with the expected semantics for the loader.
And to fix 2. part of 4af6982e4c is reverted (the check argument
elf_get_dynamic_info() is not required) and the RTLD_BOOTSTRAP
pieces are removed.
To reorganize the includes the static TLS definition is moved to
its own header to avoid a circular dependency (it is defined on
dynamic-link.h and dl-machine.h requires it at same time other
dynamic-link.h definition requires dl-machine.h defitions).
Also ELF_MACHINE_NO_REL, ELF_MACHINE_NO_RELA, and ELF_MACHINE_PLT_REL
are moved to its own header. Only ancient ABIs need special values
(arm, i386, and mips), so a generic one is used as default.
The powerpc Elf64_FuncDesc is also moved to its own header, since
csu code required its definition (which would require either include
elf/ folder or add a full path with elf/).
Checked on x86_64, i686, aarch64, armhf, powerpc64, powerpc32,
and powerpc64le.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
Before to 490e6c62aa ('elf: Avoid nested functions in the loader
[BZ #27220]'), elf_get_dynamic_info() was defined twice on rtld.c: on
the first dynamic-link.h include and later within _dl_start(). The
former definition did not define DONT_USE_BOOTSTRAP_MAP and it is used
on setup_vdso() (since it is a global definition), while the former does
define DONT_USE_BOOTSTRAP_MAP and it is used on loader self-relocation.
With the commit change, the function is now included and defined once
instead of defined as a nested function. So rtld.c defines without
defining RTLD_BOOTSTRAP and it brokes at least powerpc32.
This patch fixes by moving the get-dynamic-info.h include out of
dynamic-link.h, which then the caller can corirectly set the expected
semantic by defining STATIC_PIE_BOOTSTRAP, RTLD_BOOTSTRAP, and/or
RESOLVE_MAP.
It also required to enable some asserts only for the loader bootstrap
to avoid issues when called from setup_vdso().
As a side note, this is another issues with nested functions: it is
not clear from pre-processed output (-E -dD) how the function will
be build and its semantic (since nested function will be local and
extra C defines may change it).
I checked on x86_64-linux-gnu (w/o --enable-static-pie),
i686-linux-gnu, powerpc64-linux-gnu, powerpc-linux-gnu-power4,
aarch64-linux-gnu, arm-linux-gnu, sparc64-linux-gnu, and
s390x-linux-gnu.
Reviewed-by: Fangrui Song <maskray@google.com>
Intel MPX failed to gain wide adoption and has been deprecated for a
while. GCC 9.1 removed Intel MPX support. Linux kernel removed MPX in
2019.
This patch removes the support code from the dynamic loader.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
dynamic-link.h is included more than once in some elf/ files (rtld.c,
dl-conflict.c, dl-reloc.c, dl-reloc-static-pie.c) and uses GCC nested
functions. This harms readability and the nested functions usage
is the biggest obstacle prevents Clang build (Clang doesn't support GCC
nested functions).
The key idea for unnesting is to add extra parameters (struct link_map
*and struct r_scope_elm *[]) to RESOLVE_MAP,
ELF_MACHINE_BEFORE_RTLD_RELOC, ELF_DYNAMIC_RELOCATE, elf_machine_rel[a],
elf_machine_lazy_rel, and elf_machine_runtime_setup. (This is inspired
by Stan Shebs' ppc64/x86-64 implementation in the
google/grte/v5-2.27/master which uses mixed extra parameters and static
variables.)
Future simplification:
* If mips elf_machine_runtime_setup no longer needs RESOLVE_GOTSYM,
elf_machine_runtime_setup can drop the `scope` parameter.
* If TLSDESC no longer need to be in elf_machine_lazy_rel,
elf_machine_lazy_rel can drop the `scope` parameter.
Tested on aarch64, i386, x86-64, powerpc64le, powerpc64, powerpc32,
sparc64, sparcv9, s390x, s390, hppa, ia64, armhf, alpha, and mips64.
In addition, tested build-many-glibcs.py with {arc,csky,microblaze,nios2}-linux-gnu
and riscv64-linux-gnu-rv64imafdc-lp64d.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This drops reliance on _GLOBAL_OFFSET_TABLE_[0] being the link-time
address of _DYNAMIC.
The code sequence length does not change.
Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
This patch adds the narrowing fused multiply-add functions from TS
18661-1 / TS 18661-3 / C2X to glibc's libm: ffma, ffmal, dfmal,
f32fmaf64, f32fmaf32x, f32xfmaf64 for all configurations; f32fmaf64x,
f32fmaf128, f64fmaf64x, f64fmaf128, f32xfmaf64x, f32xfmaf128,
f64xfmaf128 for configurations with _Float64x and _Float128;
__f32fmaieee128 and __f64fmaieee128 aliases in the powerpc64le case
(for calls to ffmal and dfmal when long double is IEEE binary128).
Corresponding tgmath.h macro support is also added.
The changes are mostly similar to those for the other narrowing
functions previously added, especially that for sqrt, so the
description of those generally applies to this patch as well. As with
sqrt, I reused the same test inputs in auto-libm-test-in as for
non-narrowing fma rather than adding extra or separate inputs for
narrowing fma. The tests in libm-test-narrow-fma.inc also follow
those for non-narrowing fma.
The non-narrowing fma has a known bug (bug 6801) that it does not set
errno on errors (overflow, underflow, Inf * 0, Inf - Inf). Rather
than fixing this or having narrowing fma check for errors when
non-narrowing does not (complicating the cases when narrowing fma can
otherwise be an alias for a non-narrowing function), this patch does
not attempt to check for errors from narrowing fma and set errno; the
CHECK_NARROW_FMA macro is still present, but as a placeholder that
does nothing, and this missing errno setting is considered to be
covered by the existing bug rather than needing a separate open bug.
missing-errno annotations are duly added to many of the
auto-libm-test-in test inputs for fma.
This completes adding all the new functions from TS 18661-1 to glibc,
so will be followed by corresponding stdc-predef.h changes to define
__STDC_IEC_60559_BFP__ and __STDC_IEC_60559_COMPLEX__, as the support
for TS 18661-1 will be at a similar level to that for C standard
floating-point facilities up to C11 (pragmas not implemented, but
library functions done). (There are still further changes to be done
to implement changes to the types of fromfp functions from N2548.)
Tested as followed: natively with the full glibc testsuite for x86_64
(GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC
11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32
hard float, mips64 (all three ABIs, both hard and soft float). The
different GCC versions are to cover the different cases in tgmath.h
and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in
glibc headers, GCC 7 has proper _Float* support, GCC 8 adds
__builtin_tgmath).
As described in bug 28358, the round-to-odd computations used in the
libm functions that round their results to a narrower format can yield
spurious underflow exceptions in the following circumstances: the
narrowing only narrows the precision of the type and not the exponent
range (i.e., it's narrowing _Float128 to _Float64x on x86_64, x86 or
ia64), the architecture does after-rounding tininess detection (which
applies to all those architectures), the result is inexact, tiny
before rounding but not tiny after rounding (with the chosen rounding
mode) for _Float64x (which is possible for narrowing mul, div and fma,
not for narrowing add, sub or sqrt), so the underflow exception
resulting from the toward-zero computation in _Float128 is spurious
for _Float64x.
Fixed by making ROUND_TO_ODD call feclearexcept (FE_UNDERFLOW) in the
problem cases (as indicated by an extra argument to the macro); there
is never any need to preserve underflow exceptions from this part of
the computation, because the conversion of the round-to-odd value to
the narrower type will underflow in exactly the cases in which the
function should raise that exception, but it may be more efficient to
avoid the extra manipulation of the floating-point environment when
not needed.
Tested for x86_64 and x86, and with build-many-glibcs.py.
All the ports now have THREAD_GSCOPE_IN_TCB set to 1. Remove all
support for !THREAD_GSCOPE_IN_TCB, along with the definition itself.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
Message-Id: <20210915171110.226187-4-bugaevc@gmail.com>
Reviewed-by: Samuel Thibault <samuel.thibault@ens-lyon.org>
include/math.h has a mechanism to redirect internal calls to various
libm functions, that can often be inlined by the compiler, to call
non-exported __* names for those functions in the case when the calls
aren't inlined, with the redirection being disabled when
NO_MATH_REDIRECT. Add fma to the functions to which this mechanism is
applied.
At present, libm-internal fma calls (generally to __builtin_fma*
functions) are only done when it's known the call will be inlined,
with alternative code not relying on an fma operation being used in
the caller otherwise. This patch is in preparation for adding the TS
18661 / C2X narrowing fma functions to glibc; it will be natural for
the narrowing function implementations to call the underlying fma
functions unconditionally, with this either being inlined or resulting
in an __fma* call. (Using two levels of round-to-odd computation like
that, in the case where there isn't an fma hardware instruction, isn't
optimal but is certainly a lot simpler for the initial implementation
than writing different narrowing fma implementations for all the
various pairs of formats.)
Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by the patch (using
<https://sourceware.org/pipermail/libc-alpha/2021-September/130991.html>
to fix installed library stripping in build-many-glibcs.py). Also
tested for x86_64.
This patch adds the narrowing square root functions from TS 18661-1 /
TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64,
f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x,
f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128,
f64xsqrtf128 for configurations with _Float64x and _Float128;
__f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case
(for calls to fsqrtl and dsqrtl when long double is IEEE binary128).
Corresponding tgmath.h macro support is also added.
The changes are mostly similar to those for the other narrowing
functions previously added, so the description of those generally
applies to this patch as well. However, the not-actually-narrowing
cases (where the two types involved in the function have the same
floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather
than needing a separately built not-actually-narrowing function such
as was needed for add / sub / mul / div. Thus, there is no
__nldbl_dsqrtl name for ldbl-opt because no such name was needed
(whereas the other functions needed such a name since the only other
name for that entry point was e.g. f32xaddf64, not reserved by TS
18661-1); the headers are made to arrange for sqrt to be called in
that case instead.
The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because
they were observed to be needed in GCC 7 testing of
riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/
files added didn't need such DIAG_* in any configuration I tested with
build-many-glibcs.py, but if they do turn out to be needed in more
files with some other configuration / GCC version, they can always be
added there.
I reused the same test inputs in auto-libm-test-in as for
non-narrowing sqrt rather than adding extra or separate inputs for
narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow
those for non-narrowing sqrt.
Tested as followed: natively with the full glibc testsuite for x86_64
(GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC
11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32
hard float, mips64 (all three ABIs, both hard and soft float). The
different GCC versions are to cover the different cases in tgmath.h
and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in
glibc headers, GCC 7 has proper _Float* support, GCC 8 adds
__builtin_tgmath).
We stopped adding "Contributed by" or similar lines in sources in 2012
in favour of git logs and keeping the Contributors section of the
glibc manual up to date. Removing these lines makes the license
header a bit more consistent across files and also removes the
possibility of error in attribution when license blocks or files are
copied across since the contributed-by lines don't actually reflect
reality in those cases.
Move all "Contributed by" and similar lines (Written by, Test by,
etc.) into a new file CONTRIBUTED-BY to retain record of these
contributions. These contributors are also mentioned in
manual/contrib.texi, so we just maintain this additional record as a
courtesy to the earlier developers.
The following scripts were used to filter a list of files to edit in
place and to clean up the CONTRIBUTED-BY file respectively. These
were not added to the glibc sources because they're not expected to be
of any use in future given that this is a one time task:
https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dchttps://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
They provide TLS_GD/TLS_LD/TLS_IE/TLS_IE macros for TLS testing. Now
that we have migrated to __thread and tls_model attributes, these macros
are unused and the tls-macros.h files can retire.
Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
1. Align struct hdr to MALLOC_ALIGNMENT bytes so that malloc hooks in
libmcheck align memory to MALLOC_ALIGNMENT bytes.
2. Remove tst-mallocalign1 from tests-exclude-mcheck for i386 and x32.
3. Add tst-pvalloc-fortify and tst-reallocarray to tests-exclude-mcheck
since they use malloc_usable_size (see BZ #22057).
This fixed BZ #28068.
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
1. Add sysdeps/generic/malloc-size.h to define size related macros for
malloc.
2. Move x86_64/tst-mallocalign1.c to malloc and replace ALIGN_MASK with
MALLOC_ALIGN_MASK.
3. Add tst-mallocalign1 to tests-exclude-mcheck for i386 and x32 since
mcheck doesn't honor MALLOC_ALIGNMENT.
1. Replace
if ((((uintptr_t) &_d) & (__alignof (double) - 1)) != 0)
which may be optimized out by compiler, with
int
__attribute__ ((weak, noclone, noinline))
is_aligned (void *p, int align)
{
return (((uintptr_t) p) & (align - 1)) != 0;
}
2. Add TEST_STACK_ALIGN_INIT to TEST_STACK_ALIGN.
3. Add a common TEST_STACK_ALIGN_INIT to check 16-byte stack alignment
for both i386 and x86-64.
4. Update powerpc to use TEST_STACK_ALIGN_INIT.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
And replace the generic algorithm with the Brian Kernighan's one.
GCC optimize it with popcnt if the architecture supports, so there
is no need to add the extra POPCNT define to enable it.
This is really a micro-optimization that only adds complexity:
recent ABIs already support it (x86-64-v2 or power64le) and it
simplifies the code for internal usage, since i686 does not allow an
internal iFUNC call.
Checked on x86_64-linux-gnu, aarch64-linux-gnu, and
powerpc64le-linux-gnu.
For some architectures, the two functions are aliased, so these
symbols need to be moved at the same time.
The symbols were moved using scripts/move-symbol-to-libc.py.
The current approach is to do this optimizations at a higher level,
in generic code, so that single-threaded cases can be specifically
targeted.
Furthermore, using IS_IN (libc) as a compile-time indicator that
all locks are private is no longer correct once process-shared lock
implementations are moved into libc.
The generic <lowlevellock.h> is not compatible with assembler code
(obviously), so it's necessary to remove two long-unused #includes.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Remove generic tlsdesc code related to lazy tlsdesc processing since
lazy tlsdesc relocation is no longer supported. This includes removing
GL(dl_load_lock) from _dl_make_tlsdesc_dynamic which is only called at
load time when that lock is already held.
Added a documentation comment too.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Lazy tlsdesc relocation is racy because the static tls optimization and
tlsdesc management operations are done without holding the dlopen lock.
This similar to the commit b7cf203b5c
for aarch64, but it fixes a different race: bug 27137.
On i386 the code is a bit more complicated than on x86_64 because both
rel and rela relocs are supported.
This will be used to consolidate the libgcc_s access for backtrace
and pthread_cancel.
Unlike the existing backtrace implementations, it provides some
hardening based on pointer mangling.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
It turns out the startup code in csu/elf-init.c has a perfect pair of
ROP gadgets (see Marco-Gisbert and Ripoll-Ripoll, "return-to-csu: A
New Method to Bypass 64-bit Linux ASLR"). These functions are not
needed in dynamically-linked binaries because DT_INIT/DT_INIT_ARRAY
are already processed by the dynamic linker. However, the dynamic
linker skipped the main program for some reason. For maximum
backwards compatibility, this is not changed, and instead, the main
map is consulted from __libc_start_main if the init function argument
is a NULL pointer.
For statically linked binaries, the old approach based on linker
symbols is still used because there is nothing else available.
A new symbol version __libc_start_main@@GLIBC_2.34 is introduced because
new binaries running on an old libc would not run their ELF
constructors, leading to difficult-to-debug issues.
Add SUPPORT_STATIC_PIE that targets can define if they support
static PIE. This requires PI_STATIC_AND_HIDDEN support and various
linker features as described in
commit 9d7a3741c9
Add --enable-static-pie configure option to build static PIE [BZ #19574]
Currently defined on x86_64, i386 and aarch64 where static PIE is
known to work.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Calling an IFUNC function defined in unrelocated executable also leads to
segfault. Issue a fatal error message when calling IFUNC function defined
in the unrelocated executable from a shared library.
I used these shell commands:
../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright
(cd ../glibc && git commit -am"[this commit message]")
and then ignored the output, which consisted lines saying "FOO: warning:
copyright statement not found" for each of 6694 files FOO.
I then removed trailing white space from benchtests/bench-pthread-locks.c
and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this
diagnostic from Savannah:
remote: *** pre-commit check failed ...
remote: *** error: lines with trailing whitespace found
remote: error: hook declined to update refs/heads/master
This syncs up isnanl behaviour with gcc. Also move the isnanl
implementation to sysdeps/x86 and remove the sysdeps/x86_64 version.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Also move sysdeps/i386/fpu/s_fpclassifyl.c to
sysdeps/x86/fpu/s_fpclassifyl.c and remove
sysdeps/x86_64/fpu/s_fpclassifyl.c
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The previous definition of THREAD_SELF did not tell the compiler
that %fs (or %gs) usage is invalid for the !DL_LOOKUP_GSCOPE_LOCK
case in _dl_lookup_symbol_x. As a result, ld.so could try to use the
TCB before it was initialized.
As the comment in tls.h explains, asm volatile is undesirable here.
Using the __seg_fs (or __seg_gs) namespace does not interfere with
optimization, and expresses that THREAD_SELF is potentially trapping.
Now __thread_gscope_wait (the function behind THREAD_GSCOPE_WAIT,
formerly __wait_lookup_done) can be implemented directly in ld.so,
eliminating the unprotected GL (dl_wait_lookup_done) function
pointer.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The UP macro is never defined. Also define LOCK_PREFIX
unconditionally, to the same string.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
We need NO_RTLD_HIDDEN because of the need for PLT calls in ld.so.
See Roland's comment in
https://sourceware.org/bugzilla/show_bug.cgi?id=15605
"in the Hurd it's crucial that calls like __mmap be the libc ones
instead of the rtld-local ones after the bootstrap phase, when the
dynamic linker is being used for dlopen and the like."
We used to just avoid all hidden use in the rtld ; this commit switches to
keeping only those that should use PLT calls, i.e. essentially those defined in
sysdeps/mach/hurd/dl-sysdep.c:
__assert_fail
__assert_perror_fail
__*stat64
_exit
This fixes a few startup issues, notably the call to __tunable_get_val that is
made before PLTs are set up.
X86 CPU features in ld.so are initialized by init_cpu_features, which is
invoked by DL_PLATFORM_INIT from _dl_sysdep_start. But when ld.so is
loaded by static executable, DL_PLATFORM_INIT is never called. Also
x86 cache info in libc.o and libc.a is initialized by a constructor
which may be called too late. Since some fields in _rtld_global_ro
in ld.so are initialized by dynamic relocation, we can also initialize
x86 CPU features in _rtld_global_ro in ld.so and cache info in libc.so
by initializing dummy function pointers in ld.so and libc.so via IFUNC
relocation.
Key points:
1. IFUNC is always supported, independent of --enable-multi-arch or
--disable-multi-arch. Linker generates IFUNC relocations from input
IFUNC objects and ld.so performs IFUNC relocations.
2. There are no IFUNC dependencies in ld.so before dynamic relocation
have been performed,
3. The x86 CPU features in ld.so is initialized by DL_PLATFORM_INIT
in dynamic executable and by IFUNC relocation in dlopen in static
executable.
4. The x86 cache info in libc.o is initialized by IFUNC relocation.
5. In libc.a, both x86 CPU features and cache info are initialized from
ARCH_INIT_CPU_FEATURES, not by IFUNC relocation, before __libc_early_init
is called.
Note: _dl_x86_init_cpu_features can be called more than once from
DL_PLATFORM_INIT and during relocation in ld.so.
There are several compiler implementations that allow large stack
allocations to jump over the guard page at the end of the stack and
corrupt memory beyond that. See CVE-2017-1000364.
Compilers can emit code to probe the stack such that the guard page
cannot be skipped, but on aarch64 the probe interval is 64K by default
instead of the minimum supported page size (4K).
This patch enforces at least 64K guard on aarch64 unless the guard
is disabled by setting its size to 0. For backward compatibility
reasons the increased guard is not reported, so it is only observable
by exhausting the address space or parsing /proc/self/maps on linux.
On other targets the patch has no effect. If the stack probe interval
is larger than a page size on a target then ARCH_MIN_GUARD_SIZE can
be defined to get large enough stack guard on libc allocated stacks.
The patch does not affect threads with user allocated stacks.
Fixes bug 26691.
Install <sys/platform/x86.h> so that programmers can do
#if __has_include(<sys/platform/x86.h>)
#include <sys/platform/x86.h>
#endif
...
if (CPU_FEATURE_USABLE (SSE2))
...
if (CPU_FEATURE_USABLE (AVX2))
...
<sys/platform/x86.h> exports only:
enum
{
COMMON_CPUID_INDEX_1 = 0,
COMMON_CPUID_INDEX_7,
COMMON_CPUID_INDEX_80000001,
COMMON_CPUID_INDEX_D_ECX_1,
COMMON_CPUID_INDEX_80000007,
COMMON_CPUID_INDEX_80000008,
COMMON_CPUID_INDEX_7_ECX_1,
/* Keep the following line at the end. */
COMMON_CPUID_INDEX_MAX
};
struct cpuid_features
{
struct cpuid_registers cpuid;
struct cpuid_registers usable;
};
struct cpu_features
{
struct cpu_features_basic basic;
struct cpuid_features features[COMMON_CPUID_INDEX_MAX];
};
/* Get a pointer to the CPU features structure. */
extern const struct cpu_features *__x86_get_cpu_features
(unsigned int max) __attribute__ ((const));
Since all feature checks are done through macros, programs compiled with
a newer <sys/platform/x86.h> are compatible with the older glibc binaries
as long as the layout of struct cpu_features is identical. The features
array can be expanded with backward binary compatibility for both .o and
.so files. When COMMON_CPUID_INDEX_MAX is increased to support new
processor features, __x86_get_cpu_features in the older glibc binaries
returns NULL and HAS_CPU_FEATURE/CPU_FEATURE_USABLE return false on the
new processor feature. No new symbol version is neeeded.
Both CPU_FEATURE_USABLE and HAS_CPU_FEATURE are provided. HAS_CPU_FEATURE
can be used to identify processor features.
Note: Although GCC has __builtin_cpu_supports, it only supports a subset
of <sys/platform/x86.h> and it is equivalent to CPU_FEATURE_USABLE. It
doesn't support HAS_CPU_FEATURE.
Without this ULP patch these 3 tests fail on i686:
FAIL: math/test-float128-j0
FAIL: math/test-float64x-j0
FAIL: math/test-ldouble-j0
CPU info:
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel Xeon Processor (Cascadelake)
Support usable check for all CPU features with the following changes:
1. Change struct cpu_features to
struct cpuid_features
{
struct cpuid_registers cpuid;
struct cpuid_registers usable;
};
struct cpu_features
{
struct cpu_features_basic basic;
struct cpuid_features features[COMMON_CPUID_INDEX_MAX];
unsigned int preferred[PREFERRED_FEATURE_INDEX_MAX];
...
};
so that there is a usable bit for each cpuid bit.
2. After the cpuid bits have been initialized, copy the known bits to the
usable bits. EAX/EBX from INDEX_1 and EAX from INDEX_7 aren't used for
CPU feature detection.
3. Clear the usable bits which require OS support.
4. If the feature is supported by OS, copy its cpuid bit to its usable
bit.
5. Replace HAS_CPU_FEATURE and CPU_FEATURES_CPU_P with CPU_FEATURE_USABLE
and CPU_FEATURE_USABLE_P to check if a feature is usable.
6. Add DEPR_FPU_CS_DS for INDEX_7_EBX_13.
7. Unset MPX feature since it has been deprecated.
The results are
1. If the feature is known and doesn't requre OS support, its usable bit
is copied from the cpuid bit.
2. Otherwise, its usable bit is copied from the cpuid bit only if the
feature is known to supported by OS.
3. CPU_FEATURE_USABLE/CPU_FEATURE_USABLE_P are used to check if the
feature can be used.
4. HAS_CPU_FEATURE/CPU_FEATURE_CPU_P are used to check if CPU supports
the feature.
Since
commit c867597bff
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Wed Jun 8 13:57:50 2016 -0700
X86-64: Remove previous default/SSE2/AVX2 memcpy/memmove
removed the only usage of __x86_prefetchw, we can remove the unused
__x86_prefetchw.
* sysdeps/i386/htl/Makefile: New file.
* sysdeps/i386/htl/tcb-offsets.sym: New file.
* sysdeps/mach/hurd/i386/Makefile [setjmp] (gen-as-const-headers): Add
signal-defines.sym.
* sysdeps/mach/hurd/i386/____longjmp_chk.S: Include tcb-offsets.h.
(____longjmp_chk): Harmonize with i386's __longjmp. Clear SS_ONSTACK
when jumping off the alternate stack.
* sysdeps/mach/hurd/i386/__longjmp.S: New file.
1. Include <dl-procruntime.c> to get architecture specific initializer in
rtld_global.
2. Change _dl_x86_feature_1[2] to _dl_x86_feature_1.
3. Add _dl_x86_feature_control after _dl_x86_feature_1, which is a
struct of 2 bitfields for IBT and SHSTK control
This fixes [BZ #25887].
Most gmp-mparam.h headers in glibc define various macros to the same
values they would be defined to by the generic version of that header,
plus macros IEEE_DOUBLE_BIG_ENDIAN or IEEE_DOUBLE_MIXED_ENDIAN related
to the representation of double. The latter macros are in turn only
used in gmp-impl.h to define union ieee_double_extract, which is not
used in glibc. Thus all of these headers, except for the generic one
and those that define _LONG_LONG_LIMB for ILP32 configurations with
64-bit registers, are redundant, and this patch removes them.
Tested with build-many-glibcs.py that installed stripped shared
libraries are unchanged by this patch.
Since GCC 6.2 or later is required to build glibc, remove build support
for GCC older than GCC 6.
Testd with GCC 6.4 and GCC 9.3.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The corner cases included were generated using exhaustive search
for all float/binary32 values on x86_64 (comparing to MPFR for
correct rounding to nearest).
For the j0/j1/y0 functions, only cases with ulp error <= 9 were
included.
Reviewed-by: Carlos O'Donell <carlos@redhat.com>
With mathinline removal there is no need to keep building and testing
inline math tests.
The gen-libm-tests.py support to generate ULP_I_* is removed and all
libm-test-ulps files are updated to longer have the
i{float,double,ldouble} entries. The support for no-test-inline is
also removed from both gen-auto-libm-tests and the
auto-libm-test-out-* were regenerated.
Checked on x86_64-linux-gnu and i686-linux-gnu.
GCC has moved from using .gnu.linkonce for i386 setup pic register with
minimum current version (as for binutils minimum binutils that support
comdat).
Trying to pinpoint when binutils has added comdat support for i686, it
seems it was around 2004 [1]. I also checking with some ancient
binutils older than 2.16 I see:
test.o: In function `__x86.get_pc_thunk.bx':
test.o(.text.__x86.get_pc_thunk.bx+0x0): multiple definition of `__x86.get_pc_thunk.bx'
/usr/lib/gcc/x86_64-linux-gnu/5/../../../i386-linux-gnu/crti.o(.gnu.linkonce.t.__x86.get_pc_thunk.bx+0x0): first defined here
Which seems that such version can not handle either comdat at all or
a mix of linkonce and comdat. For binutils 2.16.1 I am getting a
different issue trying to link a binary with and more recent
ctri.o (unrecognized relocation (0x2b) in section `.init', which is
R_386_GOT32X and old binutils won't generate it anyway).
So I think that either unlikely someone will use an older binutils than
the one used to glibc and even this scenario may fail with some issue
as the R_386_GOT32X. Also, 2.16.1 is quite old and not really supported
(glibc itself required 2.25).
Checked on i686-linux-gnu.
[1] https://gcc.gnu.org/ml/gcc/2004-05/msg00030.html
With all Linux ABIs using the expected Linux kABI to indicate
syscalls errors, the INTERNAL_SYSCALL_DECL is an empty declaration
on all ports.
This patch removes the 'err' argument on INTERNAL_SYSCALL* macro
and remove the INTERNAL_SYSCALL_DECL usage.
Checked with a build against all affected ABIs.
With all Linux ABIs using the expected Linux kABI to indicate
syscalls errors, there is no need to replicate the INLINE_SYSCALL.
The generic Linux sysdep.h includes errno.h even for !__ASSEMBLER__,
which is ok now and it allows cleanup some archaic code that assume
otherwise.
Checked with a build against all affected ABIs.
Use ENTRY and END in assembly codes so that ENDBR32 will be added at
function entries when CET is enabled.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch adds a new macro, libm_alias_finite, to define all _finite
symbol. It sets all _finite symbol as compat symbol based on its first
version (obtained from the definition at built generated first-versions.h).
The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need
special treatment in code that is shared between long double and float128.
It is done by adding a list, similar to internal symbol redifinition,
on sysdeps/ieee754/float128/float128_private.h.
Alpha also needs some tricky changes to ensure we still emit 2 compat
symbols for sqrt(f).
Passes buildmanyglibc.
Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
This commit adds missing skip_ifunc checks to aarch64, arm, i386,
sparc, and x86_64. A new test case ensures that IRELATIVE IFUNC
resolvers do not run in various diagnostic modes of the dynamic
loader.
Reviewed-By: Szabolcs Nagy <szabolcs.nagy@arm.com>
This patch new build tests to check for internal fields offsets for
internal pthread_rwlock_t definition. Althoug the '__data.__flags'
field layout should be preserved due static initializators, the patch
also adds tests for the futexes that may be used in a shared memory
(although using different libc version in such scenario is not really
supported).
Checked with a build against all affected ABIs.
Change-Id: Iccc103d557de13d17e4a3f59a0cad2f4a640c148
The offsets of pthread_mutex_t __data.__nusers, __data.__spins,
__data.elision, __data.list are not required to be constant over
the releases. Only the __data.__kind is used for static
initializers.
This patch also adds an additional size check for __data.__kind.
Checked with a build against affected ABIs.
Change-Id: I7a4e48cc91b4c4ada57e9a5d1b151fb702bfaa9f